李書艷
摘要:滲透數學思想對于提升初中生的數學核心素養(yǎng)具有重要的意義和作用。在初中數學教學中,應關注學生在課堂上對數學思想的認識和應用,并引導學生將數學思想有效的應用在課堂中。在初中數學課堂上,滲透類比思想,可培養(yǎng)數學推理能力;滲透數形結合思想,可提升問題解決能力;滲透化歸思想,可培養(yǎng)數學解題能力。
關鍵詞:初中數學;數學思想;滲透
中圖分類號:G623.5?文獻標識碼:A?文章編號:1672-9129(2020)05-0187-01
Abstract:Infiltrating?mathematics?ideas?is?of?great?significance?and?role?in?improving?the?junior?middle?school?students'?core?mathematics?literacy.?In?junior?middle?school?mathematics?teaching,we?should?pay?attention?to?students'?understanding?and?application?of?mathematics?thoughts?in?the?classroom,and?guide?students?to?effectively?apply?mathematics?thoughts?in?the?classroom.?In?the?junior?middle?school?mathematics?class,infiltration?of?analogy?thoughts?can?cultivate?mathematical?reasoning?ability;infiltration?of?the?combination?of?numbers?and?shapes?can?improve?problem?solving?ability;infiltration?of?naturalization?thoughts?can?cultivate?mathematics?problem?solving?ability.
Key?words:junior?high?school?mathematics;mathematical?thinking;penetration
1?滲透類比思想,培養(yǎng)數學推理能力
類比思想在初中數學應用較多,是較為重要的數學思想,能夠探索定理、概念、法則、公式等。在初中數學教學中,恰當地應用新舊知識的類比,有利于理解、掌握新知識,還能讓舊知識得到鞏固,同時拓展學生的視野。類比思想的引入一方面能夠讓學生快速理解數學知識的本質特點,提升學生的學習水平;另一方面能夠培養(yǎng)學生開拓創(chuàng)造的意識和能力,從而進一步促使學生數學推理能力的提升。
1.1在概念教學中滲透類比思想。初中數學概念具有相似性高、難以區(qū)分的特點,因此教師在教學相似性高的數學概念時,可以充分利用類比思想,即從已經學習過、同時學生掌握較好的數學概念入手,在原有的知識上通過類比創(chuàng)設數學情境,引發(fā)學生關于新概念的好奇和思索,在學生發(fā)現不同和變化時,適時為新的概念進行定義。這樣能夠很好地推動學生在兩個概念中形成同一思維,進而使學生充分理解要學習的新概念。
1.2在定理、公式教學中滲透類比思想。類比思想的應用不僅體現在數學概念方面,還體現在數學定理與數學公式方面。在數學定理與數學公式的推理過程中,類比思想被廣泛應用,利用兩個對象的類似性進行對比進而推導出結論,是較為常用的推導手法。
滲透數形結合思想,提升問題解決能力,由于初中學生受抽象能力不足所限,認為很多概念及定理都晦澀難懂,此時引入圖形來教學能夠很好地解決這一問題,使每一個概念和定義更加直觀具體(符合學生的認知特點),便于學生領會。因此,在教學晦澀難懂的數學概念或定理時,教師有必要引入數形結合思想,利用圖形的直觀性來理解抽象的數學概念,同時進一步將數學思想貫穿于學生的日常學習中,使學生養(yǎng)成利用數學思想解決問題的習慣。
2?滲透化歸思想,培養(yǎng)數學解題能力
相較于類比思想和數形結合思想,化歸思想更為常見。化歸思想對于解決問題具有普遍的指導意義,它是最基本、最重要、應用最廣泛的數學思想方法之一。所謂化歸思想是指將一種數學問題通過某種變換或手段轉化為另一種數學問題,利用另一種數學問題形態(tài)來思考我們要解決的數學問題,一般是將陌生的、復雜的、抽象的問題轉化為熟悉的、簡單的、具體的問題,在這一大的概念背景下,類比思想和數形結合思想都可看作是化歸思想的具體應用。
教師在教學過程中要積極培養(yǎng)學生的化歸精神。初中數學的所有內容幾乎都存在著化歸思想,不管是數學概念、定理,還是數學公式、性質,都有化歸思想的影子。教師在授課中,需要積極通過數學知識來培養(yǎng)學生的化歸精神。對于教師而言,化歸思想的應用也有利于其順利開展教學,進一步促進教學體系的完善,促使教師優(yōu)化傳統教學模式,使教師在知識系統的梳理過程中暢通無阻。
2.1化陌生為熟悉。學生往往對已經掌握的知識更加熟悉,應用過程游刃有余,在心理上也更加傾向于主動應用,但對于陌生的問題卻不知從何下手。此時,教師應引導學生開動思維,將不熟悉的問題轉化為熟悉的問題進行解決,而不是在困境中一籌莫展,促使學生運用熟悉的方法解決問題。
例如,△ABC中,∠A=30°,∠B=45°,AC=2?,求AB的長。
此問題用高中知識(正弦定理)很容易解決,但我們如何用初中知識解決這一問題呢?問題中涉及了兩個特殊角:30°,45°,這兩個角是我們所熟悉的,且常出現于直角三角形中。問題要求的是邊長,在直角三角形中,30°角、45°角與60°角所對的直角邊與斜邊或另一直角邊有特殊關系,因此問題可轉化為在直角三角形中利用特殊角所對邊的特殊關系求邊長,以此達到化陌生為熟悉的目的。
2.2化復雜為簡單?;瘡碗s為簡單是化歸思想在數學問題解決中最基本的轉化過程。我們在研究問題時可以發(fā)現,一個復雜的問題往往可以由若干個較為簡單的問題組合而成。這就給了我們轉化問題的基礎,利用知識之間的內在聯系,將其轉化成多個簡單問題,逐一解決,各個擊破,從而最終解決原有的復雜問題。教師以這種方法引導學生對問題展開分析,能夠降低對應問題的難度,同時讓學生體驗問題由繁到簡的化歸過程,幫助他們積累繁難問題的處理方法,提升解決問題的能力。
結語:綜上所述,教師在初中教學中應用數學思想進行教學,能夠簡化教學過程。教師應靈活運用數學思想,優(yōu)化教學方式,將數學思想潛移默化地滲透進初中數學教學過程中。
參考文獻:
[1]劉海軍.?淺析初中數學教學中數學思想方法的滲透[C].?.教育理論研究(第七輯).:重慶市鼎耘文化傳播有限公司,2019:86.
[2]劉艷平.探析初中數學教學中如何滲透數學思想方法[J/OL].中國培訓:1[2020-05-22].
[3]李浩峰.數學思想在初中數學教學中的滲透[J].中國校外教育,2017(13):126-127.
[4]于立敏.初中數學教學中如何滲透數學思想方法[J].中國校外教育,2016(29):23-24.