閆雪
【摘要】數(shù)學教學是初中階段的重點內容,教師將數(shù)形結合思想融入初中數(shù)學教學中,可增強學生的邏輯思維能力.數(shù)學教師應用“數(shù)”與“形”結合的教學思想,使學生充分理解抽象、復雜的數(shù)學概念,建立起直觀化的知識體系,使學生直觀地了解到函數(shù)、算理、圖形知識的內容,明確形狀在課程學習上的應用,更加快速地解決數(shù)學問題,找尋到問題的解決方案.
【關鍵詞】初中數(shù)學;教學思想;數(shù)形結合;融入與滲透
在我國,數(shù)學是初中階段三大主科之一.近年來,初中數(shù)學教師積極改革課堂教學的形式,創(chuàng)新課堂教學的方法,將空間教學與數(shù)字教學有機結合在一起,在傳授給學生文化知識的同時培養(yǎng)他們的空間概念,使學生逐步形成立體化的思想,增加對空間立體圖形的認識與理解.同時,教師積極挖掘教材知識的本質內涵,將理論知識與數(shù)學圖形完美地結合在一起,引導學生形成數(shù)形結合的思想,使學生增加數(shù)與形的認識,以數(shù)字來解釋圖形,以圖形來簡化文字信息,逐步形成良好的解題能力.
一、數(shù)形結合思想在初中數(shù)學教學中滲透的具體概念及實施原則
數(shù)形結合思想就是將數(shù)與形有機地結合在一起,利用數(shù)來表達圖形的條件,利用圖形來簡化文字的信息,明確地指出數(shù)與圖形之間存在的相互關系.教師應引導學生逐漸形成立體化思維能力,使學生形成良好的空間想象能力,將數(shù)與形進行良好的轉化,建立起數(shù)形結合的數(shù)學思想,這樣做可以簡化數(shù)學問題的解決方案,節(jié)省大量的學習時間.
數(shù)形結合思想被逐步應用到初中課堂教學中,成為學生需要掌握的基本思想,需要教師遵循多種多樣的教學原則.第一,數(shù)形結合思想的應用需要遵循著雙向性的教學原則,將數(shù)與形完美地結合在一起,一方面?zhèn)魇诮o學生理論文化內容,教會他們基本的數(shù)學定理,另一方面,培養(yǎng)學生形成良好的圖形概念,使學生注重數(shù)與形的相互轉化,將圖形的應用表現(xiàn)出來.第二,等效性原則,數(shù)的抽象意義與形的直觀內容進行相互的轉化,在兩者之間畫上一個等號,形成知識的等效性,并展現(xiàn)出數(shù)的文化內涵及圖形的表現(xiàn)形式.第三,數(shù)形結合思想需要遵循著簡明性的教學原則,以數(shù)與形之間的相互關系簡化題目的信息內容,使學生更加明了數(shù)與圖形的轉變方式,更快速地得出問題的答案,這大大縮短了學生的做題時間,學生可以簡單地表示出問題的條件及解題步驟,形成簡明的思路形式.
二、數(shù)形結合思想應用到初中數(shù)學教學中展現(xiàn)出的重要作用
將數(shù)形結合思想應用到初中數(shù)學教學中,對學生學習數(shù)學知識有著重大的幫助,直接影響到學生學習質量的提升,關系到他們學習效果的提高,對他們未來的學習與發(fā)展有著巨大的促進作用.首先,應用數(shù)形結合思想有助于提高學生的思維能力,增加他們對“數(shù)”與“形”的認識與理解,使學生真正明確數(shù)形結合的重要性.學生利用數(shù)去簡化圖形,利用圖形去表達數(shù)的關系,明確數(shù)與圖形之間的相互作用,思考出數(shù)與圖形之間的相互轉換,形成較強的思維能力.其次,應用數(shù)形結合思想有助于提高學生做題的靈活性,強化他們舉一反三的能力,使學生在做題時主動嘗試多種解決方法,創(chuàng)新出不同的解決方案,將“數(shù)”與“形”完美地結合在一起,使學生逐步形成較高的創(chuàng)新能力.再者,應用數(shù)形結合思想有助于提高課堂教學的效率,強化學生的學習效果,使學生快速接受數(shù)學文化知識的本質內涵,明確數(shù)學文化知識背后所隱藏的基本意義,掌握到數(shù)學文化知識的本質,逐步形成較高的學習效率.最后,應用數(shù)形結合思想有助于幫助學生構建完善的知識體系,增強他們對數(shù)學文化知識的歸納能力,使學生利用圖形將相關的知識歸納在一起,將前后的知識串聯(lián)在一起,形成完善的知識體系,快速記憶和理解數(shù)學文化知識內容.
三、數(shù)形結合思想應用到初中數(shù)學教學中所實施的具體措施
(一)化抽象概念為直觀圖形,增加知識內容的直觀性
對于初中的學生來說,他們不易掌握和理解抽象的數(shù)學知識.因此教師需積極應用數(shù)形結合思想,將抽象的概念變得更加直觀化,使學生逐步形成數(shù)形結合思想,以圖形來理解抽象的數(shù)學概念,明確抽象內容所蘊藏的深刻內涵,對數(shù)學概念形成直觀化的認識與理解.學生掌握數(shù)形結合思想,就可能逐步形成明確的解題思路,將數(shù)與形進行完美的轉化,掌握到每一類數(shù)學圖形的解題技巧,具備較高的解題能力.例如,在學習《勾股定理》時,針對這一定理,教師如果不采用數(shù)形結合的思想,只是講解c2=a2+b2的話,就會顯得比較單調和無聊,如果將直角三角形的圖形引入進來,用a,b,c分別表示三角形不同的邊,那么就會很直觀明了地展示出這一概念,這樣做增強了學生對這一概念的理解與應用,加深了他們對勾股定理的印象.
(二)用數(shù)形結合思想解釋函數(shù)與方程的應用,增強學生的理解能力
在初中數(shù)學課堂上,教師積極將數(shù)形結合思想應用到教學體系中,利用數(shù)形結合教學手段吸引學生的目光,將數(shù)形結合思想應用到函數(shù)與方程教學中,使學生自主分析函數(shù)與方程之間存在的相互關系,將函數(shù)關系式轉化為數(shù)學圖形,深入了解每一個函數(shù)的構成特點.教師引導學生應用數(shù)形結合方法,引領他們將數(shù)學問題轉化為圖形,使學生以圖形來求解方程的解,由曲線的交點來明確方程的解,這樣做有效地簡化了問題的條件,更快地解答出了方程的答案.例如,在學習《一元二次方程》時,學生運用“數(shù)”與“形”結合的整體思想,將方程中的數(shù)字體現(xiàn)在直角坐標系上,比如:y=x2-1,針對這一函數(shù)建立起了坐標系,觀察圖像與x軸的交點情況便能明確方程x2-1=0有兩個解,簡化了計算的步驟.
(三)應用到解不等式組中,提升學生的解題準確性
在初中階段,數(shù)學教師積極將數(shù)形結合思想應用到解不等式組中,使學生應用數(shù)形結合思想去分析不等式組,快速得到準確的解集.例如,在學習《不等式與不等式組》時,教師會給學生提出以下問題:“求20x>500,
30x<900的解集”.針對這一問題,學生將數(shù)軸引入進來,就能很快找到解集了,明確x在25和30之間,并且不包括25和30.利用數(shù)軸絕不會將范圍弄錯.
(四)簡化復雜的代數(shù)關系,給予學生直觀化影響
數(shù)形結合思想已經(jīng)成為學生需要具備的基本思想了,因為它直接關系到他們學習質量的提升.初中數(shù)學教師將數(shù)形結合思想傳授給學生,引導他們掌握到數(shù)形結合思想的本質,幫助他們樹立起數(shù)形結合思想的意識,使學生自主利用圖形簡化復雜的代數(shù)關系,將代數(shù)關系變?yōu)橹庇^化的圖形,將抽象的知識內容變得更加直觀化,逐步形成較高的學習效率.同時,學生積極利用數(shù)形結合思想,利用圖形簡化復雜的代數(shù)關系,將一些復雜的數(shù)學公式用圖形的方式表達出來,找尋到公式中所涉及的相互關系,加深對數(shù)學公式的認識與理解.例如,學生在學習“x2+2x+1=?”這一公式時,用圖形表示出關系,利用同一圖形面積相等即可得到x2+2x+1=(x+1)2.
(五)導入數(shù)形結合思想,增加學生的學習意識
初中數(shù)學教師應當導入數(shù)形結合思想,充分調動學生的數(shù)形結合思維,使學生在學習時明確“數(shù)”與“形”之間的相互關系,確定出完善的知識體系,以數(shù)形結合思想為基礎,利用圖形表示數(shù),利用數(shù)解答圖形,將圖形與數(shù)進行相互轉化,進而增加學生的學習意識,強化他們的自主學習能力.教師需要由淺入深地導入數(shù)形結合思想,逐步引入數(shù)形結合思想的概念,使學生認識到圖形與數(shù)之間的相互關系,明確圖形與數(shù)之間的對應關系,增加對數(shù)的認識與理解.例如,學生借助數(shù)軸認識絕對值的概念,在數(shù)軸上逐步明確絕對值的概念,增加對絕對值概念的理解,逐步形成夯實的文化基礎.
(六)以多媒體展示數(shù)形結合的真諦,激發(fā)學生的感官認識
多媒體是一種輔助教學工具,可以真正展現(xiàn)出數(shù)與圖形之間的相互關系.初中數(shù)學教師積極利用多媒體教學用具,以多媒體展示出數(shù)與圖形的相互作用,在多媒體上用圖形表達出數(shù)的相互關系.同時,教師利用多媒體對圖形進行隨意的拆分和組合,直接表達出圖形所隱藏的相互關系,將圖形條件轉化為數(shù),使學生通過多媒體演示逐步形成數(shù)形結合思想,在視覺上形成一定的感官刺激,進而激發(fā)學生的感官認識,展現(xiàn)出數(shù)形結合的真諦.多媒體教學用具的應用,使學生不再只依靠自我的想象來形成數(shù)形結合思想,而是以更為直觀的圖形操作來形成數(shù)形結合思想,教師以多媒體動態(tài)的演示明確數(shù)形結合思想的表達形式,將枯燥乏味的數(shù)學變得更加趣味化,進而激起學生的探索欲望.
(七)以史實滲透數(shù)形結合思想,挖掘數(shù)形結合的本質
史實有很多與數(shù)形結合思想相關聯(lián)的內容,成為引導學生思想意識的主要內容.初中數(shù)學教師積極引入各種史實,將古代一些與數(shù)形結合思想相關的內容引入課堂教學中,帶領學生一同挖掘數(shù)形結合的本質,教會他們數(shù)形結合的方法,使學生明確數(shù)形結合的主要應用形式,通過一個個有趣的小故事掌握到數(shù)形結合的思想,進而滿足其學習和探索的好奇心.例如,教師在講解數(shù)軸這一章節(jié)的內容時,引入笛卡爾的數(shù)學故事,再舉出蒼蠅在天花板上爬的過程,引導學生建立起幾何思想,進而啟迪學生的數(shù)形結合思想.
(八)將數(shù)形結合思想滲透到解題過程中,提高學生解題效率
初中數(shù)學教師積極將數(shù)形結合思想滲透到解題過程中,以數(shù)形結合方式幫助學生進行解題,使學生在解題時無意識地使用到數(shù)形結合思想,將圖形與數(shù)進行相互轉化,進而提高學生的解題效率,增加他們對數(shù)形結合方法的掌握.例如,學生在解決面積轉化問題時可以有效地利用數(shù)形結合思想,明確數(shù)形結合方法的應用形式,在解題時利用數(shù)形結合思想來化簡圖形的面積公式,以圖形來輔助公式的運用,逐步形成較高的問題解決能力.
(九)將數(shù)形結合思想滲透到復習過程中,提升學生對知識的歸納能力
初中數(shù)學教師積極將數(shù)形結合思想滲透到復習過程當中,以圖形來歸納數(shù)學知識內容,利用樹狀圖將知識歸納總結在一起,逐步形成完善的知識體系,使學生通過樹狀圖明確知識之間存在的相互關系,明確新舊知識之間存在的聯(lián)系,進而提升學生對知識的歸納能力.同時,學生利用圖形來記憶數(shù)學概念,明確數(shù)學知識背后所蘊藏的本質內涵,牢固地掌握數(shù)學知識的基本內容,更為清楚地記憶教材上所蘊含的內容,在做題時可以更快地調取出知識內容,以圖形深入研究知識之間存在的內在關系,進而夯實自己的文化基礎,提高自己對數(shù)學文化知識的理解與掌握.
結束語
數(shù)形結合思想成為數(shù)學教學中的重要思想形式,已經(jīng)成為學生必須具備的基本思想之一,其能促進學生思考能力的提升.教師積極將數(shù)形結合思想應用到數(shù)學課堂教學當中,以數(shù)形結合思想分析數(shù)學教材中所包含的抽象概念,使學生加深對抽象概念的理解與掌握,增加對圖形的感官認識,逐步形成良好的數(shù)學解答能力,擁有較高的綜合能力.
【參考文獻】
[1]宋玉敏.高中數(shù)學教學中數(shù)形結合思想的融入[J].新課程(中學),2014(06):25,27.
[2]冉正偉.淺談在高中數(shù)學教學中如何滲透數(shù)形結合思想[J].科學咨詢,2012(16):141.