亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        淺議教師如何進(jìn)行類比教學(xué)的研究

        2015-12-03 17:41:50張小剛
        文理導(dǎo)航 2015年35期
        關(guān)鍵詞:類比思想橢圓數(shù)學(xué)

        張小剛

        【摘 要】類比思想是中學(xué)數(shù)學(xué)教學(xué)中一種較為常見的數(shù)學(xué)思想,類比教學(xué)恰成為中學(xué)數(shù)學(xué)教學(xué)常常使用的一種教學(xué)手段。本文以圓和橢圓的類比研究為例,談一談利用類比思想挖掘數(shù)學(xué)教學(xué)的研究.

        【關(guān)鍵詞】類比思想;數(shù)學(xué);圓;橢圓;類比教學(xué)

        數(shù)學(xué)思想一直是中學(xué)數(shù)學(xué)教學(xué)的魁寶,是數(shù)學(xué)教學(xué)三重境界的最高境界。從新課程實(shí)施更多的自主學(xué)習(xí)、積極建構(gòu)的理念來說,數(shù)學(xué)思想成為指導(dǎo)學(xué)生進(jìn)一步前進(jìn)的階梯.筆者認(rèn)為,數(shù)學(xué)思想有不同的種類區(qū)分,對(duì)于學(xué)生而言比較重要的思想如數(shù)形結(jié)合思想、分類討論思想、函數(shù)與方程思想等在初中后期教學(xué)階段已經(jīng)開始積極滲透,這些對(duì)于學(xué)生解決數(shù)學(xué)問題有著較為重要的作用,可以稱之為知識(shí)型思想方法。

        另一方面來說,數(shù)學(xué)思想方法還有下面這些,如特殊與一般、具體與抽象、轉(zhuǎn)化與化歸、類比等等,這些思想方法明顯比上述知識(shí)型的思想方法來得更為高端。為什么這么說?筆者以為,知識(shí)型的思想方法固然重要,但其依舊只解決了就題論題的層面,無(wú)法給予學(xué)生更多的學(xué)習(xí)能力上的提高,而特殊與一般、具體與抽象、轉(zhuǎn)化與化歸、類比等等思想方法卻在更高的層面引領(lǐng)學(xué)生進(jìn)行思維的開發(fā),比如:從特殊到一般的思想可以幫助學(xué)生認(rèn)識(shí)抽象問題的具體解決,可以采用先嘗試特殊進(jìn)而總結(jié)歸納一般的探索之路;類比思想可以用來將未知范疇內(nèi)的問題通過已經(jīng)所掌握知識(shí)比較解決,這是一種思想、意識(shí)形態(tài)上的提高.因此,本文將從類比思想的視角去審視教學(xué)的一些探索,以圓與橢圓的類比進(jìn)行嘗試,與大家交流。

        1.圓和橢圓類比伸縮的認(rèn)識(shí)

        眾所周知橢圓 + =1(a>b>0)可以看作是圓x2+y2=a2在縱向均勻壓縮為原來的 倍,橫向不變得到的——這就是“縱向伸縮變換”。(本文研究的橢圓均為焦點(diǎn)在x軸,焦點(diǎn)在y軸的類似)記:已知圓上點(diǎn)P(x,y)變換成P′(x′,y′),縱向變換為f:x=x′y= y′,顯然這是一個(gè)一一映射(可逆的),且由于P,P′橫坐標(biāo)相等,因此PP′連線必垂直x軸。同理:有橫向伸縮變換。

        2.圓和橢圓類比伸縮的性質(zhì)

        性質(zhì)1:f將直線變換為直線,且變換后直線斜率為原來直線斜率的 倍。

        簡(jiǎn)證:設(shè)原直線斜為y=kx+m,經(jīng)過變換后直線為 y′=kx′+m,即斜率k′= k。

        說明:由此可知,變換前后兩直線平行性保持不變。

        性質(zhì)2:f將分線段AB為定比λ的點(diǎn)P變換成分線段A′B′為同一分比的點(diǎn)P′。

        說明:由定比分點(diǎn)公式可知證明易,不贅述.此性質(zhì)說明變換前后同一直線上的點(diǎn)分線段所成的比是不會(huì)改變的。

        性質(zhì)3:一個(gè)面積為的三角形經(jīng)變換后的三角形面積S′= S。

        簡(jiǎn)證:設(shè)△A1A2A3三個(gè)頂點(diǎn)坐標(biāo)分別為Ai(xi,yi),則xi=xi′,yi=yi′(i=1,2,3),所以:

        S′= x1 ?y1 1x2 ?y2 1x3 ?y3 1= · x1 y1 1x2 y2 1x3 y3 1= S。

        說明:此性質(zhì)可以推廣到多邊形的面積,即變換前后兩個(gè)多邊形面積之比為 = 。

        3.圓和橢圓類比伸縮的運(yùn)用

        例1:已知橢圓 + =1(a>b>0),A,B分別為橢圓左右頂點(diǎn),P為橢圓上任意異于A,B的點(diǎn).求證:KAP·KBP是定值。

        圖1

        證明:把縱坐標(biāo)變換為原來的 倍,則橢圓變成半徑為a的圓,如圖1,已知圓中KAP·KBP=-1,由性質(zhì)1得:kAP·kBP= KAP· KBP=- 。(本性質(zhì)可以再橢圓中進(jìn)行證明,但是運(yùn)算量比通過伸縮變換證明稍顯復(fù)雜一些。)

        例2:已知橢圓 + =1(a>b>0),P為橢圓上任意異于橢圓頂點(diǎn)的點(diǎn),過P作傾斜角互補(bǔ)的兩直線PA,PB交橢圓于A,B兩點(diǎn),求證:只要P點(diǎn)給定,則kAB為定值。

        證明:把縱坐標(biāo)變換為原來的 倍,則橢圓變成半徑為a的圓,如圖2,經(jīng)過同樣的伸縮變換,圓中

        圖2

        兩直線斜率KPA+KPB=0,在圓中作P關(guān)于x軸對(duì)稱點(diǎn)D(恰在圓O上),則∠APD=∠BPD,故 = ,連接AB,OD,易知OD⊥AB,顯然KAB=- ,只要P點(diǎn)給定,即可知KAB為定值,由性質(zhì)1,橢圓中kAB= KAB為定值。

        注: 高三復(fù)習(xí)卷中時(shí)常出現(xiàn)為定點(diǎn),求kAB為定值的試題,筆者將試題改編為只要P點(diǎn)坐標(biāo)可知的任意點(diǎn),均可求證kAB為定值.可以想象,任意的點(diǎn)P代數(shù)計(jì)算較繁瑣,利用橢圓和圓的伸縮變換達(dá)到了簡(jiǎn)化計(jì)算的效果。

        例3:點(diǎn)P(x0,y0)在橢圓 + =1(a>b>0)上,x0=acosβ,y0=bsinβ(0<β< ),直線l2與直線l1: + =1垂直,O為坐標(biāo)原點(diǎn),直線OP的傾斜角為α,直線l2的傾斜角為γ。

        求證:點(diǎn)是橢圓 + =1與直線l1的唯一交點(diǎn)。(安徽高考數(shù)學(xué)09年理科20)

        分析:?jiǎn)栴}的實(shí)質(zhì)就是證明直線l1是橢圓在點(diǎn)P的切線方程。由過圓x2+y2=a2上一點(diǎn)(x0,y0)的切線方程為x0x+y0y=a2,可知利用伸縮變換得到直線l1: + =1即為過點(diǎn)P的橢圓切線。

        證明:把縱坐標(biāo)變換為原來的 倍,則橢圓變成半徑為a的圓,則過圓上點(diǎn)Q(X0,Y0)(Q為P的一一對(duì)應(yīng)點(diǎn))的切線方程為:X0x+Y0y=a2,又伸縮變換f:X=xY= y,代入得x0x+ y0 y=a2,整理得: + =1即為直線l1的方程.因此,l1就是橢圓在點(diǎn)P的切線方程。證畢。

        例4 求橢圓 + =1(a>b>0)內(nèi)接n邊形面積的最大值.

        解析:把縱坐標(biāo)變換為原來的 倍,則橢圓變成半徑為a的圓,如圖3,可知在圓中:

        圖3

        記∠AiOAi+1=θ(1≤i≤n-1),∠AnOA1=θn,且 θi=2π,S=SA A …A = a2( sinθi)…(*),因?yàn)閒(θ)=sinθ在(0,π)上為凸函數(shù),由琴聲不等式(*)≤ a2(n·sin )= a2·sin (當(dāng)且僅當(dāng)θ1=θ2=…θn= 等號(hào)成立),由性質(zhì)3,橢圓中內(nèi)接n邊形面積S′= ·S≤ ·sin ,即為橢圓中內(nèi)接n邊形面積最大值。

        4.類比教學(xué)探索的思考

        上述運(yùn)用類比性質(zhì)進(jìn)行的圓和橢圓問題的探索,是筆者教學(xué)中一些數(shù)學(xué)問題積累的總結(jié)。通過研究,筆者發(fā)現(xiàn)橢圓是圓的更為一般化的形態(tài)和情形。用一個(gè)形象的比喻來說,對(duì)于圓的研究是最基本、最為對(duì)稱的圖形深入思考,猶如三角函數(shù)中最基本的函數(shù)模型,那么類比研究經(jīng)過伸縮變換的三角函數(shù)模型恰如橢圓般的圖形,這種變換關(guān)系存在于數(shù)學(xué)知識(shí)的很多知識(shí)之中。

        本文所闡述的是圓和橢圓的類比伸縮教學(xué)研究,其實(shí)從更高的角度而言,筆者思考了一個(gè)問題:從圓錐曲線第二定義的角度來說,橢圓、雙曲線、拋物線本質(zhì)是一個(gè)統(tǒng)一體,只不過是其到定點(diǎn)的距離與到定直線距離比值不同的曲線形態(tài),那么圓既然可以類比到橢圓,那么圓應(yīng)該也可以突破更高的限制(諸如曲線不需要封閉之類特性),類比得到相對(duì)應(yīng)的雙曲線、拋物線中去,得到相應(yīng)的數(shù)學(xué)性質(zhì)和更高的研究突破能力,值得有興趣的教師做進(jìn)一步的思考。

        通過類比教學(xué)研究,筆者也有幾點(diǎn)不成熟的思考與大家交流:

        (1)上述幾個(gè)例題,有少數(shù)來自學(xué)生的提出和探索,筆者覺得學(xué)生對(duì)于感興趣的數(shù)學(xué)問題研究興趣和熱情遠(yuǎn)遠(yuǎn)在教師之上。教師的作用更在于進(jìn)行良好的引導(dǎo),給予這樣的學(xué)生更寬松的學(xué)習(xí)環(huán)境,既提高了學(xué)生學(xué)習(xí)的興趣,也有助于學(xué)生研究問題能力的提高。

        (2)意識(shí)類的思想方法教學(xué)要更注重在教學(xué)中的滲透,尤其是特殊與一般、類比思想、轉(zhuǎn)化與化歸思想等等。這些思想看似無(wú)形, 卻每時(shí)每刻出現(xiàn)在學(xué)生待解決的數(shù)學(xué)問題中,通過引導(dǎo)學(xué)生利用學(xué)過的指數(shù)類比解決未知范疇內(nèi)的知識(shí),這正是努力培養(yǎng)學(xué)生自主探索和積極建構(gòu)的有效途徑,而且從一定程度上對(duì)于教師的專業(yè)化水平提高有較為明顯的幫助。

        【參考文獻(xiàn)】

        [1]楊結(jié)東.深化分析培養(yǎng)能力[J].數(shù)學(xué)通報(bào),2010.9

        [2]張琴竽.活用伸縮變換巧解橢圓問題[J].中國(guó)數(shù)學(xué)教育(高中版),2009.10

        [3]劉瑞美.對(duì)2009年高考中一道圓錐曲線問題的探究[J].中學(xué)數(shù)學(xué)雜志(高中版),2009.6

        (作者單位:江蘇省泰興中學(xué))

        猜你喜歡
        類比思想橢圓數(shù)學(xué)
        Heisenberg群上由加權(quán)次橢圓p-Laplace不等方程導(dǎo)出的Hardy型不等式及應(yīng)用
        例談橢圓的定義及其應(yīng)用
        一道橢圓試題的別樣求法
        “數(shù)學(xué)思想”在教學(xué)中的演繹
        橢圓的三類切點(diǎn)弦的包絡(luò)
        年輕教師如何利用高效課堂培養(yǎng)學(xué)生的思維靈活性
        考試周刊(2016年36期)2016-05-28 00:27:53
        我為什么怕數(shù)學(xué)
        新民周刊(2016年15期)2016-04-19 18:12:04
        數(shù)學(xué)到底有什么用?
        新民周刊(2016年15期)2016-04-19 15:47:52
        如何在初中幾何教學(xué)中滲透數(shù)學(xué)思想
        如何在初中幾何教學(xué)中滲透數(shù)學(xué)思想
        亚洲中文字幕一区高清在线| 少妇人妻在线视频| 亚洲午夜无码久久yy6080| 用力草我小逼视频在线播放| 日韩av一区二区三区激情在线| 最近2019年好看中文字幕视频| 日韩精品一区二区三区在线观看| 麻豆久久久国内精品| 久久伊人精品中文字幕有| 欧美成人精品a∨在线观看| 中文字幕精品久久久久人妻红杏1 丰满人妻妇伦又伦精品国产 | 不卡一本av天堂专区| 国产边摸边吃奶叫床视频| 久久免费国产精品| 久久久亚洲女精品aa| 日本视频一区二区三区一| 国产精品视频露脸| 亚洲人成人一区二区三区| 亚洲女同性恋激情网站| 亚洲综合色无码| 老妇肥熟凸凹丰满刺激| 亚洲欧美v国产蜜芽tv| 日本一区二区三区光视频| av鲁丝一区鲁丝二区鲁丝三区| 国产亚洲婷婷香蕉久久精品| 免费在线观看亚洲视频| 91自拍视频国产精品| 国产综合久久久久| 被欺辱的高贵人妻被中出| 久久久亚洲av午夜精品| 性猛交╳xxx乱大交| 欧美三级免费网站| 97久久久一区二区少妇| 国产精品人人做人人爽人人添| 亚洲日韩∨a无码中文字幕| 亚洲国产一区久久yourpan| 少妇下面好爽好紧好湿一区二区| 国产精品熟女视频一区二区| 日本视频一区二区三区免费观看| 国产精品女同av在线观看| 国产伦人人人人人人性|