陳金萍 李雄輝 周春花 歐陽(yáng)珊 吳小平
摘要 環(huán)境DNA(environmental DNA,eDNA)是指有機(jī)體與外界進(jìn)行物質(zhì)交換(攝食、排泄等)時(shí)脫落的DNA片段。eDNA技術(shù)是指從環(huán)境樣品(土壤、沉積物、水體等)中直接提取DNA片段后,利用測(cè)序技術(shù)對(duì)生物進(jìn)行定性或定量分析。與傳統(tǒng)方法相比,eDNA技術(shù)具有效率高、分辨率高、采樣無(wú)損傷性等優(yōu)點(diǎn)。環(huán)境DNA技術(shù)自問(wèn)世以來(lái),受到了廣泛的應(yīng)用,主要應(yīng)用于水生生物的生物監(jiān)測(cè)、保護(hù)生物學(xué)(單(多)種檢測(cè)、豐度估計(jì))、入侵生物學(xué)(早期物種檢測(cè)、被動(dòng)監(jiān)視)和環(huán)境監(jiān)測(cè)等。綜述了環(huán)境DNA技術(shù)在軟體動(dòng)物研究中的取樣方法、研究進(jìn)展、優(yōu)勢(shì)、局限,以及該方法在軟體動(dòng)物入侵物種防治、瀕危物種保護(hù)、物種多樣性評(píng)價(jià)和生物量檢測(cè)中的研究現(xiàn)狀,同時(shí)對(duì)環(huán)境DNA在軟體動(dòng)物資源中的應(yīng)用前景進(jìn)行了展望,以期為軟體動(dòng)物資源多樣性的研究和保護(hù)提供新的技術(shù)和手段。
關(guān)鍵詞 環(huán)境DNA;軟體動(dòng)物;取樣方法;應(yīng)用;研究現(xiàn)狀
中圖分類(lèi)號(hào) Q 958.1 ?文獻(xiàn)標(biāo)識(shí)碼 A ?文章編號(hào) 0517-6611(2021)14-0022-03
Abstract Environmental DNA (eDNA) refers to DNA fragments that organisms shed in their surrounding environment when in exchange for material (ingestion, excretion, etc.) with otuside,eDNA technology refers to the direct extraction of DNA fragments from environmental samples (soil, sediment and water, etc.), and the use of sequencing technology for qualitative or quantitative analysis of organisms. Compared with traditional methods, eDNA technology is more high efficiency, high resolution and no damage in sampling. eDNA technology has been widely used since it came into being. Mainly used for biomonitoring, conservation biology (single and multispecies detection, abundance estimates), invasion biology (early species detection, passive surveillance) and environmental assessment. This article reviewed the sampling method, research progress, advantages and limitations of eDNA technology in the research of mollusks,and the research status of this method in the prevention and control of mollusks invasion, the protection of endangered species, the evaluation of biodiversity and biomass. At the same time, the application prospect of eDNA in mollusks resources was prospected, it can provide new technique and methods for the research and protection of mollusks biodiversity.
Key words Environmental DNA;Mollusks;Sampling method;Application;Research status
基金項(xiàng)目 國(guó)家重點(diǎn)研發(fā)計(jì)劃“藍(lán)色糧倉(cāng)”重點(diǎn)專(zhuān)項(xiàng)(2018YFD0900801)。
作者簡(jiǎn)介 陳金萍(1995—),女,江西上饒人,碩士研究生,研究方向:環(huán)境DNA水生生物。
*通信作者:周春花,副教授,博士,碩士生導(dǎo)師,從事種群遺傳研究;吳小平,教授,博士,博士生導(dǎo)師,從事生物多樣性研究。
收稿日期 2020-10-23
軟體動(dòng)物分布于淡水、海水、陸地上,在生態(tài)系統(tǒng)中扮演著極其重要的作用,如維持生態(tài)平衡、凈化水環(huán)境等。但是由于近年來(lái)城市工業(yè)的迅速發(fā)展,水域受到人為污染,而軟體動(dòng)物一般遷移性較差,一旦遭到水質(zhì)污染,較難回避。再加上外來(lái)物種入侵、氣候變化等加劇了軟體動(dòng)物所面臨的威脅[1]。而之前的傳統(tǒng)調(diào)查方法有一定的局限性,對(duì)環(huán)境有較大的破壞性[2],所以急需一種行之有效的方法——環(huán)境DNA(environmental DNA,eDNA)技術(shù)來(lái)檢測(cè)和管理軟體動(dòng)物資源。eDNA技術(shù)的最大優(yōu)勢(shì)就是非侵入性取樣,對(duì)目標(biāo)物種及周?chē)h(huán)境不造成傷害?,F(xiàn)在,禁漁政策已開(kāi)展,所以該技術(shù)對(duì)于研究水體中生物尤為重要。
eDNA是指從環(huán)境(如土壤、水體沉積物、糞便等)樣品中提取的DNA,因?yàn)閯?dòng)物會(huì)與外界進(jìn)行物質(zhì)交換,所以自身的皮毛、細(xì)胞組織、黏液等會(huì)在環(huán)境中保存一段或者很久時(shí)間,這樣就能提取DNA成功進(jìn)行遺傳檢測(cè)[3]。eDNA技術(shù)是指從環(huán)境樣品(土壤[4]、沉積物[5]、水體[6-8]等)中直接提取DNA片段后,利用測(cè)序技術(shù)對(duì)生物進(jìn)行定性或定量分析的方法[9]。近年來(lái),eDNA技術(shù)已應(yīng)用于不同生態(tài)系統(tǒng)的物種多樣性研究、資源生物量檢測(cè)、瀕危種和入侵種的檢測(cè);在國(guó)外,各種生物的檢測(cè)也用到該技術(shù),如兩棲類(lèi)[10-11]、魚(yú)類(lèi)[12-14]、腹足類(lèi)[15]等。筆者主要對(duì)eDNA技術(shù)在軟體動(dòng)物資源研究中的方法、優(yōu)勢(shì)以及局限、展望等進(jìn)行了綜述,以期為該類(lèi)生物多樣性的研究和保護(hù)提供新的技術(shù)和方法。
1 eDNA技術(shù)在軟體動(dòng)物研究中的取樣方法
1.1 ?eDNA水樣的采集及處理
eDNA技術(shù)中采樣是極為重要的一步。水樣主要來(lái)源于實(shí)驗(yàn)室水箱、池塘、溪流、湖泊和海洋等。水樣采集方法可分為沉淀法和過(guò)濾法。沉淀法適用于少量水樣采集,采樣量通常為15 mL[10,16];過(guò)濾法適用于流水或靜水的大型無(wú)脊椎動(dòng)物,需要大量水樣[3],在軟體類(lèi)的研究中,每個(gè)樣點(diǎn)的采水量一般為1~2 L [12,17-18]。濾膜的種類(lèi)有很多,研究表明,不同的濾膜具有不同的 DNA 回收率,其中使用混合纖維濾膜或硝酸纖維素濾膜的DNA回收效果最佳[19]。濾膜有很多種孔徑,對(duì)于清澈的溪流和海水,0.45 μm孔徑最合適[16]。
1.2 樣品DNA提取
eDNA提取主要有CTAB提取法、試劑盒提取法等。CTAB提取法是將水樣加至33 mL的無(wú)水乙醇和1.5 mL的3 mol/L醋酸鈉,再加入一定量的CTAB緩沖液、蛋白酶K緩沖液、一定比例的苯酚∶氯仿∶異戊醇,其中經(jīng)過(guò)離心等步驟。試劑盒提取法是指先用真空泵抽濾有DNA的濾膜,再用試劑盒提取,純化DNA,把雜質(zhì)去除。提取軟體動(dòng)物環(huán)境DNA的試劑盒的種類(lèi)有很多,提取雙殼類(lèi)的DNA一般采用Qiagen DNeasy Blood and Tissue Kits,提取蝸牛的DNA采用Omega Bio-tek E.Z.N.Mollusc DNA試劑盒[20]。
1.3 eDNA分析
分析包括引物設(shè)計(jì)、PCR、高通量測(cè)序。①針對(duì)不同的目標(biāo)物種選取DNA基因片段(軟體動(dòng)物環(huán)境DNA研究通常用的是線粒體DNA片段,通常有16S rRNA[20-21]、18S rRNA[5]、COI[22-23])來(lái)設(shè)計(jì)引物,用Primer 5、QPrimer、Primer-BLAST等軟件來(lái)設(shè)計(jì),一般來(lái)說(shuō),ecoPrimer軟件更常用,因?yàn)樗梢曰緷M足環(huán)境DNA引物的要求[24]。②PCR擴(kuò)增,在eDNA分析方法中,PCR的類(lèi)型非常多,如普通PCR[25-26]、定量PCR[22、27-28]、巢式PCR、數(shù)字PCR[6]等,最常用的是普通PCR、定量PCR(qPCR)[29]。③高通量測(cè)序及數(shù)據(jù)處理,先進(jìn)行去噪,即除去低質(zhì)量的序列,這些序列包括嵌合體/長(zhǎng)度過(guò)短/重復(fù)的序列;聚類(lèi)分析,即根據(jù)序列相似度進(jìn)行歸類(lèi),獲得可操作分類(lèi)單元(operational taxonomic units,OTUs),每個(gè)OTUs應(yīng)該只包含一個(gè)物種的序列;物種分類(lèi)學(xué)注釋?zhuān)堰@些OTUs在數(shù)據(jù)庫(kù)中進(jìn)行比對(duì);數(shù)據(jù)分析,如α-多樣性分析、物種豐度分析、差異顯著性統(tǒng)計(jì)檢驗(yàn)分析等。
2 環(huán)境DNA技術(shù)在軟體動(dòng)物資源研究中的應(yīng)用
2.1 軟體動(dòng)物瀕危種和入侵種的檢測(cè)
eDNA技術(shù)應(yīng)用較廣,特別是對(duì)于瀕危軟體動(dòng)物,因?yàn)闉l危物種密度很低,傳統(tǒng)方法(蚌耙、采泥器等)難以監(jiān)測(cè)到,eDNA技術(shù)避免了這些問(wèn)題。針對(duì)瀕危物種檢測(cè),需要設(shè)計(jì)一些特異性引物,既要保證瀕危物種能被檢測(cè)到,又要保證其他的尤其是親緣關(guān)系較近的物種不會(huì)被檢測(cè)到。研究者大多都是利用COI基因片段來(lái)擴(kuò)增[30]。目前,通過(guò)eDNA分析檢測(cè)方法已經(jīng)實(shí)現(xiàn)了對(duì)淡水珍珠蚌種群[22]、珠母珍珠蚌( Margaritifera margaritifera ?L.)[31]、淡水蚌( Lampsilis fasciola、Ligumia nasuta、Ptychobranchus fasciolaris、Quadrula quadrula )[32]等物種的檢測(cè),證實(shí)了環(huán)境 DNA 監(jiān)測(cè)方法在瀕危物種和稀有物種的監(jiān)測(cè)中頗具潛力。
目前外來(lái)物種的入侵情況日趨嚴(yán)重,當(dāng)外來(lái)物種入侵時(shí),它們對(duì)原本的生態(tài)平衡破壞較大,使生態(tài)系統(tǒng)結(jié)構(gòu)不完善,從而對(duì)本地物種的種類(lèi)和數(shù)量產(chǎn)生影響[10]。但是在入侵早期階段,外來(lái)物種的數(shù)量不多,很難發(fā)現(xiàn),一旦發(fā)現(xiàn)時(shí),就已經(jīng)造成了危害,而eDNA技術(shù)使入侵物種的早期檢測(cè)成為可能,如Egan等[33]、Ardura等[34]在太平洋里海地區(qū)監(jiān)測(cè)到了斑馬貽貝( Dreissena polymorpha ),并遏制它進(jìn)一步傳播;Clusa等[35]、Goldberg等[15]監(jiān)測(cè)了新西蘭泥螺( Potamopyrgus antipodarum )早期入侵;同樣,Blackman等[36]設(shè)計(jì)特異性的引物來(lái)檢測(cè) Dreissena rostriformis bugensis 和D.polymorpha 這2種入侵蚌在現(xiàn)場(chǎng)試驗(yàn)中的降解速率,從而可以初步判斷它們?nèi)肭謺r(shí)間;除此之外,在入侵早期就有效遏制的還有金貽貝( Limnoperna fortunei )[37]。
除了能在早期檢測(cè)到入侵物種之外,eDNA分析技術(shù)還能判斷它們的入侵程度,Pearrubia等[38]對(duì)伊比利亞半島水域的扁貽貝( Dreissena rostriformis )進(jìn)行了定量分析,判斷了該蚌的入侵程度;Ardura等[39]在波羅的海發(fā)現(xiàn)北美楔蛤( Rangia cuneata )已經(jīng)蔓延到了整個(gè)歐洲;Clusa等[40]檢測(cè)河蜆( Corbicula fluminea )、背角無(wú)齒蚌( Sinanodonta woodiana )等貝類(lèi)在伊比利亞河流的分布情況,發(fā)現(xiàn)其種群在擴(kuò)張;Klymus等[20]檢測(cè)雙殼綱和腹足綱某些類(lèi)群的入侵程度,結(jié)果表明eDNA方法可以顯著加強(qiáng)入侵物種的識(shí)別能力。eDNA技術(shù)還可以檢測(cè)到物種是如何入侵的,如歐洲泥螺( Peringia ulvae )[41],通過(guò)壓艙水入侵新環(huán)境。近年來(lái)利用eDNA對(duì)瀕危物種進(jìn)行檢測(cè)的研究越來(lái)越多[42],而對(duì)于入侵物種的研究一直是熱門(mén)問(wèn)題,eDNA對(duì)瀕危物種和入侵物種檢測(cè)的有效性已經(jīng)得到一定的證明,它能突破傳統(tǒng)方法的局限性[15],并且檢測(cè)的效果與傳統(tǒng)方法一致或略高于傳統(tǒng)方法[2,43-44]。
2.2 軟體動(dòng)物物種多樣性檢測(cè)
物種多樣性的檢測(cè)方法有很多,這些方法通常是為特定的生物群體設(shè)計(jì)的,隨著eDNA技術(shù)愈加成熟,將它應(yīng)用于軟體動(dòng)物物種多樣性研究成為一種新潮流。軟體動(dòng)物是淡水生態(tài)系統(tǒng)的一個(gè)重要組成部分,它們對(duì)環(huán)境變化很敏感,當(dāng)生境條件下降時(shí),軟體動(dòng)物往往是第一個(gè)被清除的動(dòng)物,因此它們可以作為生態(tài)系統(tǒng)的物種多樣性的檢測(cè)指標(biāo)。Deiner等[45]研究采樣和提取方法如何影響淡水生物多樣性,以蚌類(lèi) (Unio tumidus 等4種生物)為目標(biāo),檢測(cè)這些物種eDNA的檢出率來(lái)判斷哪種采樣和提取方法最好,結(jié)果發(fā)現(xiàn)過(guò)濾和PCI((酚-氯仿-異戊醇)提取法效果最好;Prié等[21]分別對(duì)蚌目和簾蛤目設(shè)計(jì)了eDNA通用引物16S rRNA來(lái)檢測(cè)雙殼類(lèi)的生物多樣性,并且與傳統(tǒng)方法進(jìn)行比較,結(jié)果發(fā)現(xiàn)eDNA分析的物種檢出率更高??傊?,環(huán)境DNA分析技術(shù)為生物多樣性研究提供新的工具[46]。
2.3 軟體動(dòng)物生物量檢測(cè)
eDNA對(duì)物種進(jìn)行定量分析主要是檢測(cè)物種存在與否,進(jìn)而來(lái)判斷其生物量[18],然而估計(jì)物種生物量較復(fù)雜,雖然有部分研究表明,水體中環(huán)境DNA 的濃度與目標(biāo)物種的生物量呈正相關(guān)[11,13],如Carlsson等[27]研究發(fā)現(xiàn)在愛(ài)爾蘭的某條河,珍珠蚌( Margaritifera margaritifera )數(shù)量最多的地方eDNA濃度也最高,并且預(yù)測(cè)了該屬種群數(shù)量;Miralles等[26]在伊比利亞北部的某河研究發(fā)現(xiàn)侏儒貽貝( Xenostrobus securis )數(shù)量與eDNA的PCR產(chǎn)物量呈正相關(guān)??傊?,eDNA的濃度受到很多條件(溫度、紫外線、微生物群落、DNA降解速率等[7,16])的影響,所以eDNA濃度與生物量之間的關(guān)系很復(fù)雜,既然這兩者關(guān)系不好推測(cè),那么有的研究者通過(guò)建立蚌類(lèi)eDNA的下游傳輸模型來(lái)量化eDNA濃度與目標(biāo)物種密度之間的聯(lián)系[28,47]??傊芯空咭恢敝铝τ谘芯恳惶譭DNA濃度與生物量關(guān)系的模型,魚(yú)類(lèi)[12-13]就有成功的例子,并且準(zhǔn)確度較高。但是軟體動(dòng)物的生物量監(jiān)測(cè)有一定的困難,因此eDNA技術(shù)進(jìn)行軟體動(dòng)物生物量的檢測(cè)還需探索。
3 eDNA分析技術(shù)在軟體動(dòng)物研究中的優(yōu)勢(shì)與局限
eDNA分析技術(shù)在軟體動(dòng)物研究中的優(yōu)勢(shì)如下:①省時(shí)、省力,監(jiān)測(cè)效率高;②不會(huì)對(duì)生態(tài)系統(tǒng)或目標(biāo)物種造成任何干擾,減少了外來(lái)物種和病原體的入侵風(fēng)險(xiǎn);③允許在事先不知道哪些物種存在于水體中的情況下進(jìn)行檢測(cè);④突破環(huán)境限制、有效性限制;⑤引物有通用性,可以用于全球生物多樣性評(píng)估[43];⑥試驗(yàn)操作較簡(jiǎn)單,不依賴(lài)于分類(lèi)專(zhuān)家的專(zhuān)業(yè)知識(shí)來(lái)鑒定物種。
盡管如此,eDNA技術(shù)仍存在一些局限,如eDNA不能區(qū)分活的和死的生物;不能區(qū)分本地的DNA和異地的DNA;不能獲得目標(biāo)生物體的大小、發(fā)育階段和性別的信息;不容易準(zhǔn)確估計(jì)調(diào)查物種的數(shù)量、密度和生物量信息;不能區(qū)分雜種和母系物種[43]。
4 展望
eDNA已成為闡明生態(tài)學(xué)和進(jìn)化過(guò)程中的有力工具[48]。近年來(lái)eDNA技術(shù)發(fā)展很快,但在軟體動(dòng)物中的研究起步稍晚。eDNA技術(shù)不僅能用于監(jiān)測(cè)瀕危種和入侵種、評(píng)估生物量,還可以檢測(cè)種群遺傳[49]、評(píng)估水生生態(tài)系統(tǒng)的生境[50]等。我國(guó)的生物多樣性豐富度在全球首屈一指,但是用eDNA技術(shù)對(duì)軟體動(dòng)物的多樣性研究非常有限,究其原因一是軟體動(dòng)物的數(shù)據(jù)庫(kù)不是很全面,二是研究者對(duì)軟體動(dòng)物的重要性認(rèn)識(shí)不夠,三是適合軟體動(dòng)物環(huán)境DNA研究的引物尚不成熟。所以我國(guó)要加強(qiáng)軟體動(dòng)物的研究。國(guó)外eDNA技術(shù)研究軟體動(dòng)物主要是研究入侵種和瀕危種,對(duì)于軟體動(dòng)物生物多樣性和資源量監(jiān)測(cè)報(bào)道極其有限。那么今后需要加強(qiáng)物種多樣性和資源量的檢測(cè),因?yàn)檫@對(duì)保護(hù)軟體動(dòng)物種質(zhì)資源、生態(tài)環(huán)境的修復(fù)具有重要意義。當(dāng)然,要用eDNA方法來(lái)評(píng)估物種多樣性,首要就是設(shè)計(jì)針對(duì)動(dòng)物類(lèi)群的通用水環(huán)境DNA引物,因?yàn)槟壳巴ㄓ靡锎蠖嗍菙U(kuò)增動(dòng)物組織提取的DNA,所以是否能用來(lái)檢測(cè)水環(huán)境DNA還需要探索。
參考文獻(xiàn)
[1] 蔡友瓊,喬慶林,徐捷.我國(guó)貝類(lèi)衛(wèi)生現(xiàn)狀及貝類(lèi)凈化概況[J].漁業(yè)現(xiàn)代化,2002,29(6):7-9.
[2] LIM N K M,TAY Y C,SRIVATHSAN A,et al.Nextgeneration freshwater bioassessment:eDNA metabarcoding with a conserved metazoan primer reveals speciesrich and reservoirspecific communities[J].Royal society open science,2016,3(11):1-12.
[3] 陳煉,吳琳,劉燕,等.環(huán)境DNA metabarcoding及其在生態(tài)學(xué)研究中的應(yīng)用[J].生態(tài)學(xué)報(bào),2016,36(15):4573-4582.
[4] CALATA F I C,CARANGUIAN C Z,MENDOZA J E M,et al.Analysis of environmental DNA and edaphic factors for the detection of the snail intermediate host ?Oncomelania hupensis quadrasi [J].Pathogens,2019,8(4):1-24.
[5] FONSECA V G,CARVALHO G R,SUNG W,et al.Secondgeneration environmental sequencing unmasks marine metazoan biodiversity[J].Nature communications,2010,1(1):1-8.
[6] HU X X.Development of genetic tools to detect three New Zealand indigenous freshwater mussels in environmental DNA[D].Hamilton,New Zealand:The University of Waikato,2017:82-90.
[7] MCHLER E,OSATHANUNKUL M,ALTERMATT F,et al.Shedding light on eDNA:Neither natural levels of UV radiation nor the presence of a filter feeder affect eDNAbased detection of aquatic organisms[J].PLoS One,2018,13(4):1-15.
[8] HOSLER D M.Where is the body? Dreissenid mussels,raw water testing,and the real value of environmental DNA[J].Management of biological invasions,2017,8(3):335-341.
[9] 單秀娟,李苗,王偉繼.環(huán)境DNA(eDNA)技術(shù)在水生生態(tài)系統(tǒng)中的應(yīng)用研究進(jìn)展[J].漁業(yè)科學(xué)進(jìn)展,2018,39(3):23-29.
[10] FICETOLA G F,MIAUD C,POMPANON F,et al.Species detection using environmental DNA from water samples[J].Biology letters,2008,4(4):423-425.
[11] HARPER L R,HANDLEY L L,HAHN C,et al.Generating and testing ecological hypotheses at the pondscape with environmental DNA metabarcoding:A case study on a threatened amphibian[J].Environmental DNA,2019,2(2):1-47.
[12] TAKAHARA T,MINAMOTO T,YAMANAKA H,et al.Estimation of fish biomass using environmental DNA[J].PLoS One,2012,7(4):1-8.
[13] NEVERS M B,BYAPPANAHALLI M N,MORRIS C C,et al.Environmental DNA(eDNA):A tool for quantifying the abundant but elusive round goby( Neogobius melanostomus )[J].PLoS One,2018,13(1):1-22.
[14] HAYAMI K,SAKATA M K,INAGAWA T,et al.Effects of sampling seasons and locations on fish environmental DNA metabarcoding in dam reservoirs[J].Ecology and evolution,2020,10(12):5354-5367.
[15] GOLDBERG C S,SEPULVEDA A,RAY A,et al.Environmental DNA as a new method for early detection of New Zealand mudsnails( Potamopyrgus antipodarum )[J].Freshwater science,2013,32(3):792-800.
[16] THOMSEN P F,KIELGAST J,IVERSEN L L,et al.Monitoring endangered freshwater biodiversity using environmental DNA[J].Molecular ecology,2012,21(11):2565-2573.
[17] REES H C,MADDISON B C,MIDDLEDITCH D J,et al.REVIEW:The detection of aquatic animal species using environmental DNAA review of eDNA as a survey tool in ecology[J].Journal of applied ecology,2014,51(5):1450-1459.
[18] JERDE C L,MAHON A R,CHADDERTON W L,et al.“Sightunseen” detection of rare aquatic species using environmental DNA[J].Conservation letters,2011,4(2):150-157.
[19] MAJANEVA M,DISERUD O H,EAGLE S H C,et al.Environmental DNA filtration techniques affect recovered biodiversity[J].Scientific reports,2018,8:1-11.
[20] KLYMUS K E,MARSHALL N T,STEPIEN C A.Environmental DNA(eDNA)metabarcoding assays to detect invasive invertebrate species in the Great Lakes[J].PLoS One,2017,12(5):1-24.
[21] PRI V,VALENTINI A,LOPESLIMA M,et al.Environmental DNA metabarcoding for freshwater bivalves biodiversity assessment:Methods and results for the Western Palearctic(European subregion)[J].Hydrobiologia,2020(1):1-20.
[22] CURRIER C A,MORRIS T J,WILSON C C,et al.Validation of environmental DNA(eDNA)as a detection tool for atrisk freshwater pearly mussel species(Bivalvia:Unionidae)[J].Aquatic conservation:Marine & freshwater ecosystems,2018,28(3):545-558.
[23] AMBERG J J,MERKES C M.Environmental DNA Mapping of Zebra Mussel Populations[R].U.S.:Upper Midwest Environmental Sciences Center,2016.
[24] RIAZ T,SHEHZAD W,VIARI A,et al.ecoPrimers:Inference of new DNA barcode markers from whole genome sequence analysis[J].Nuclc acids research,2011,39(21):1-11.
[25] 劉軍,趙良杰,凡迎春,等.魚(yú)類(lèi)環(huán)境DNA研究中通用引物的篩選驗(yàn)證[J].淡水漁業(yè),2016,46(1):9-17.
[26] MIRALLES L,DOPICO E,DEVLODELVA F,et al.Controlling populations of invasive pygmy mussel( Xenostrobus securis )through citizen science and environmental DNA[J].Marine pollution bulletin,2016,110(1):127-132.
[27] CARLSSON J E L,EGAN D,COLLINS P C,et al.A qPCR MGB probe based eDNA assay for European freshwater pearl mussel( Margaritifera margaritifera ?L.)[J].Aquatic conservation:Marine & freshwater ecosystems,2017,27(6):1341-1344.
[28] SHOGREN A J,TANK J L,EGAN S P,et al.Riverine distribution of mussel environmental DNA reflects a balance among density,transport,and removal processes[J].Freshwater biology,2019,64(8):1467-1479.
[29] THOMSEN P F,WILLERSLEV E.Environmental DNAAn emerging tool in conservation for monitoring past and present biodiversity[J].Biological conservation,2015,183:4-18.
[30] CHO A,MORRIS T,WILSON C,et al.Development of speciesspecific primers with potential for amplifying eDNA from imperilled freshwater unionid mussels[J].Genome,2016,59(12):1141-1149.
[31] STOECKLE B C,KUEHN R,GEIST J.Environmental DNA as a monitoring tool for the endangered freshwater pearl mussel( Margaritifera margaritifera ?L.):A substitute for classical monitoring approaches?[J].Aquatic conservation:Marine and freshwater ecosystems,2016,26(6):1120-1129.
[32] CURRIER C A.Detection of four atrisk freshwater pearly mussel species(Bivalvia:Unionoida:Unionidae)from environmental DNA(eDNA)[D].Peterborough:Trent University,2017:33-99.
[33] EGAN S P,BARNES M A,HWANG C T,et al.Rapid invasive species detection by combining environmental DNA with light transmission spectroscopy[J].Conservation letters,2013,6(6):402-409.
[34] ARDURA A,ZAIKO A,BORRELL Y J,et al.Novel tools for early detection of a global aquatic invasive,the zebra mussel ?Dreissena polymorpha [J].Aquatic conservation:Marine and freshwater ecosystems,2017,27(1):165-176.
[35] CLUSA L,ARDURA A,GOWER F,et al.An easy phylogenetically informative method to trace the globally invasive ?Potamopyrgus ?mud snail from Rivers eDNA[J].PLoS One,2016,11(10):1-16.
[36] BLACKMAN R C,BENUCCI M,DONNELLY R C,et al.Simple,sensitive and speciesspecific assays for detecting quagga and zebra mussels( Dreissena rostriformis bugensis ?and ?D.polymorpha )using environmental DNA[J].Management of biological invasions,2020,11(2):218-236.
[37] XIA Z Q,ZHAN A B,GAO Y C,et al.Early detection of a highly invasive bivalve based on environmental DNA(eDNA)[J].Biological invasions,2018,20(2):437-447.
[38] PEARRUBIA L,ALCARAZ C,DE VAATE A B,et al.Validated methodology for quantifying infestation levels of dreissenid mussels in environmental DNA(eDNA)samples[J].Scientific reports,2016,6(1):1-9.
[39] ARDURA A,ZAIKO A,MARTINEZ J L,et al.eDNA and specific primers for early detection of invasive speciesA case study on the bivalve ?Rangia cuneata ,currently spreading in Europe[J].Marine environmental research,2015,112:48-55.
[40] CLUSA L,MIRALLES L,BASANTA A,et al.eDNA for detection of five highly invasive molluscs.A case study in urban rivers from the Iberian Peninsula[J].PLoS One,2017,12(11):1-14.
[41] ARDURA A,ZAIKO A,MARTINEZ J L,et al.Environmental DNA evidence of transfer of North Sea molluscs across tropical waters through ballast water[J].Journal of molluscan studies,2015,81(4):495-501.
[42] SENAPATI D,BHATTACHARYA M,KAR A,et al.Environmental DNA(eDNA):A promising biological survey tool for aquatic species detection[J].Proceedings of the zoological society,2019,72(3):211-228.
[43] VALENTINI A,TABERLET P,MIAUD C,et al.Nextgeneration monitoring of aquatic biodiversity using environmental DNA metabarcoding[J].Molecular ecology,2016,25(4):929-942.
[44] DYSTHE J C,RODGERS T,F(xiàn)RANKLIN T W,et al.Repurposing environmental DNA samplesdetecting the western pearlshell( Margaritifera falcata )as a proof of concept[J].Ecology and evolution,2018,8(5):2659-2670.
[45] DEINER K,WALSER J C,MCHLER E,et al.Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA[J].Biological conservation,2015,183:53-63.
[46] BLACKMAN R C,HNFLING B,LAWSONHANDLEY L.The use of environmental DNA as an early warning tool in the detection of new freshwater invasive nonnative species[J].CAB reviews,2018,13:1-15.
[47] SANSOM B J,SASSOUBRE L M.Environmental DNA(eDNA)shedding and decay rates to model freshwater mussel eDNA transport in a river[J].Environmental science & technology,2017,51(24):14244-14253.
[48] GARLAPATI D,CHARANKUMAR B,RAMU K,et al.A review on the applications and recent advances in environmental DNA(eDNA)metagenomics[J].Reviews in environmental science and bio/technology,2019,18:389-411.
[49] MOHAMMEDGEBA K,SHEIR S K,ELAZIZ HAMED E A,et al.Molecular and morphological signatures for extreme environmental adaptability of the invasive mussel ?Brachidontes pharaonis (Fischer,1870)[J/OL].Molecular and cellular probes,2020,53[2020-05-25].https://doi.org/10.1016/j.mcp/2020.101594.
[50] LIU Q,ZHANG Y,WU H,et al.A review and perspective of eDNA application to eutrophication and HAB control in freshwater and marine ecosystems[J].Microorganisms,2020,8(3):1-15.