尹曉宇
[摘 要]借助思維導圖科學、完整地呈現(xiàn)數(shù)學思維的全過程,讓學生在原有認知結構中融入新的知識,形成新舊知識相互聯(lián)系.同時,幫助學生厘清解題思路,提高學生解決綜合問題的能力.
[關鍵詞]思維導圖;深度學習;平面向量;復習
[中圖分類號]? ? G633.6? ? ? ? [文獻標識碼]? ? A? ? ? ? [文章編號]? ? 1674-6058(2021)05-0019-02
思維導圖是一種思維工具,它以圖解的形式和網(wǎng)狀的結構儲存、組織、優(yōu)化、輸出信息,一般從中心主題開始進行思維發(fā)散,建立與其相關的一級主題,一級主題下又包含若干二級主題,以此類推,建立起樹狀結構.思維導圖,在創(chuàng)建過程中還可以使用圖片顏色、線條粗細等變化建立聯(lián)系。
學生在復習階段,通過畫思維導圖可以將知識點按照不同層次呈現(xiàn)出來,通過縱橫的串聯(lián)、對比、差異分析等方式形成系統(tǒng)、清晰的知識脈絡,加深對知識的理解,從而提高學習的效率.學生在回憶、反思和練習提升階段,利用思維導圖進行學習,前后對比、摸索研究知識的特點,能觸類旁通.
一、思維導圖對深度學習的價值
深度學習具有以下幾個主要特征.在學習態(tài)度上,學習者對所學知識持有懷疑、批判的態(tài)度,這是深入思考的前提;在學習方法上,學習者能夠整合知識,將新知識納入已有的知識體系中,形成完整的知識鏈條;在學習動力上,學習者有強烈的促進自身發(fā)展的需求,有積極向上的內驅力.數(shù)學學習中,解題思路的優(yōu)化,就是深度學習的具體體現(xiàn).
思維導圖能夠為學生提供思考的方向.學生在畫思維導圖構建新的知識網(wǎng)絡時,必然要在相關的已有知識進行信息檢索,從已有的知識結構中獲取相應的信息,分辨不同的觀點、看法,建立新舊知識網(wǎng)絡的關聯(lián),形成新的思維導圖,進而促使自己的認知得到提高.在高中數(shù)學學習過程中,通過繪制、修改和應用思維導圖可以有效促進學生數(shù)學深度學習.
高中數(shù)學的教學任務十分繁重,教師必須要通過有限的課堂活動引導學生全面熟悉、掌握各個數(shù)學知識,且要客觀分析高考數(shù)學的命題方向,引導學生完成相應的解題任務,從中總結有效的解題方法.平時教學,教師一直在趕教學進度,忽視了思維總結、教學反思,因此導致學生的數(shù)學思維結構呈現(xiàn)出碎片化、零散的狀態(tài),最直接的表現(xiàn)便是學生無法靈活遷移應用所學知識,解題思路固化.面對這一現(xiàn)實問題,借助思維導圖可以完整展現(xiàn)數(shù)學知識結構,由此引導學生掌握各個知識點的內在聯(lián)系,可以很好地優(yōu)化學生的思路,使其實現(xiàn)深度學習.因此,教師要嘗試利用思維導圖來優(yōu)化數(shù)學教學效果.
二、借助思維導圖促進學生數(shù)學深度學習的案例(片段節(jié)選)
(一)教學內容
高三復習微專題《平面向量的數(shù)量積解題策略》.
(二)教學目標
1.熟練掌握解決向量數(shù)量積問題的基本方法:定義法、投影法、基底法、坐標法.
2.理解極化恒等式的定義與幾何意義以及極化恒等式在平面向量數(shù)量積中的應用.
3.通過繪制思維導圖,比較出平面向量數(shù)量積問題不同解題思路的優(yōu)劣.
(三)教學重難點
重點:理解和運用基底法、坐標法解決向量數(shù)量積問題.
難點:運用極化恒等式解決向量數(shù)量積問題.
(四)教學主要流程
教學片段一:
先引導學生對向量知識模塊的基本概念進行梳理和回顧(如圖1).
設計意圖:通過學生回憶知識點,逐漸繪制出平面向量知識概念的思維導圖.以思維導圖的形式展現(xiàn)平面向量的知識網(wǎng)絡,為學生提供運用思維導圖記筆記的方法.
原本的課堂小結設計方式是以傳統(tǒng)的條目形式,對平面圖形中的向量數(shù)量積問題基本解題策略進行歸納:1.特殊化,2.定義法,3.投影法,4.基底法,5.坐標法,6.極化恒等式.這樣的總結方式中規(guī)中矩,雖然全面,但是不利于學生的記憶和選擇.于是筆者嘗試改用思維導圖的方式進行呈現(xiàn),讓學生進行闡述,不拘泥于順序,引出一條思維鏈即可進行深度的挖掘和方法總結,最后一條條的思維鏈就建立起來了.
教學片段二
平面圖形中的向量數(shù)量積問題基本解題策略思維導圖(如圖2):
設計意圖:以思維導圖進行課堂小結,展現(xiàn)思考的過程.一級結構為題目,二級結構為題目中的條件指向的方法,三級結構為該方法的解題思路和主要步驟.這樣的方式能讓學生比較各種方法的特征和優(yōu)劣,能夠快速結合題目的類型選擇合適的方法解題,促進學生的深度學習.
教師同樣可利用思維導圖優(yōu)化課堂總結,通過思維導圖整理一節(jié)課的重點知識、各個知識點的內在關聯(lián)、新舊知的內在聯(lián)系等.
三、借助思維導圖促進數(shù)學深度學習的思考
思維導圖是一種思維方式的呈現(xiàn),不是一種固定的模式.在教學過程中,思維導圖的形式層級不是一下子就畫出來的,是在教學過程中,邊教學邊繪制的,逐漸形成一個思維的網(wǎng)絡.在這過程中,學生表現(xiàn)出極大的熱情,充分調動學生學習的積極性和主動性,提高學生的課堂參與度,促使學生產(chǎn)生深入學習的欲望.目前,高中數(shù)學教學領域正在全面提倡培養(yǎng)學生自主學習能力,需要教師主動調整師生關系、互動形式,調動學生的主觀能動性.在此過程中,為了減少學生的無效學習行為,教師可利用思維導圖引導、監(jiān)督學生實現(xiàn)自主學習.
思維導圖也有助于學生發(fā)現(xiàn)知識網(wǎng)絡上的短板,及時查漏補缺.課前以思維導圖的形式回顧基本知識概念,如果學生在哪一個點上思考不下去了,那么此處就是思維的“斷點”,就需要及時補上.
總之,在高中數(shù)學教學過程中利用思維導圖來促進學生的深度學習是十分重要的,教師要客觀分析思維導圖的制作方法,自覺將其運用到自己的教學中去.
[? ?參? ?考? ?文? ?獻? ?]
[1]? 劉北平.思維導圖在高中數(shù)學教學的實踐研究[D].武漢:華中師范大學,2018.
[2]? 劉慧年.思維導圖在高中數(shù)學教學中的應用研究[J].成才之路,2018(12):34.
(責任編輯 黃桂堅)