亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        高中數(shù)學(xué)直覺思維培養(yǎng)的案例分析

        2020-04-14 04:40:55黃啟賢
        關(guān)鍵詞:直覺思維案例分析高中數(shù)學(xué)

        黃啟賢

        【摘要】直覺是不經(jīng)過邏輯的、有意識的推理而識別或了解事物的能力[1].直覺思維是具有簡約性、創(chuàng)造性、自信力的一種心理現(xiàn)象,它在創(chuàng)造性思維活動的關(guān)鍵階段起著極為重要的作用.“直覺思維”是建立在已有認知與經(jīng)驗基礎(chǔ)上,跳過中間的邏輯思考環(huán)節(jié),對問題的結(jié)果快速做出有效的預(yù)判.培養(yǎng)高中數(shù)學(xué)的直覺思維主要有四個方面:重視系統(tǒng)教學(xué),構(gòu)建知識網(wǎng)絡(luò),有效的思維導(dǎo)圖訓(xùn)練,創(chuàng)設(shè)直覺思維的意境和動機誘導(dǎo),滲透數(shù)學(xué)的哲學(xué)觀及審美觀.本文通過直覺思維培養(yǎng)的案例分析,為課堂的實踐研究提供了可借鑒的方法.

        【關(guān)鍵詞】直覺思維,高中數(shù)學(xué),案例分析

        【基金項目】福建省莆田市教育科學(xué)“十三五”規(guī)劃2018年度立項課題《淺談數(shù)學(xué)直覺思維培養(yǎng)策略研究》(編號:PTJYKT18094).

        一、引 言

        直覺思維在藝術(shù)創(chuàng)作、科學(xué)研究、哲學(xué)等領(lǐng)域都起著重要或決定性的作用.數(shù)學(xué)作為一門思維的學(xué)科,對直覺思維的需求不言而喻.數(shù)學(xué)的直覺思維是從數(shù)學(xué)問題、數(shù)學(xué)現(xiàn)象等表征出發(fā),通過觀察、分析、思考,結(jié)合現(xiàn)有知識與經(jīng)驗,跳過其中的邏輯推理環(huán)節(jié),快速地給出解決問題的最優(yōu)方案.它是一種帶有跳躍性的思考方式.直覺思維決定著數(shù)學(xué)思維能力的高低.徐利治教授指出:數(shù)學(xué)直覺是可以后天培養(yǎng)的,實際上每個人的數(shù)學(xué)直覺也是不斷提高的[2].

        二、數(shù)學(xué)直覺思維的培養(yǎng)

        (一)重視系統(tǒng)教學(xué),構(gòu)建知識網(wǎng)絡(luò)

        沒有系統(tǒng)全面的學(xué)科知識作為前提,不可能迸發(fā)出直覺思維的火花.數(shù)學(xué)知識是具有系統(tǒng)性的,條理清晰、邏輯嚴謹?shù)南到y(tǒng)知識結(jié)構(gòu)是產(chǎn)生直覺思維的前提,而處理問題的經(jīng)驗累積是產(chǎn)生正確直覺的基本保證.在教學(xué)過程中要從學(xué)生的最近發(fā)展區(qū)出發(fā),從系統(tǒng)的角度構(gòu)建知識網(wǎng)絡(luò),著重解決知識網(wǎng)絡(luò)中“結(jié)點”的重、難點.通過知識網(wǎng)絡(luò)的構(gòu)建,讓學(xué)生明確知識的橫縱聯(lián)系,化“被動學(xué)習(xí)”為“主動探究”,讓數(shù)學(xué)知識在學(xué)生的頭腦中成為直觀的、有機的整體結(jié)構(gòu).

        不論知識網(wǎng)絡(luò)的搭建還是課堂的教學(xué),都應(yīng)站在系統(tǒng)角度,大至數(shù)學(xué)分支,小至一節(jié)課的內(nèi)容,都要厘清整體與局部的關(guān)系.讓學(xué)生在系統(tǒng)的視角下看問題,成為規(guī)律和結(jié)論的發(fā)現(xiàn)者,激發(fā)學(xué)生在未知領(lǐng)域的探究能力,以此達到直覺思維與邏輯思維的有機結(jié)合.

        案例1 “圖像及其變換”這一部分內(nèi)容的教學(xué)設(shè)計如下.

        (1)回顧學(xué)習(xí)過的函數(shù)并分類.設(shè)計意圖:關(guān)注新舊知識的銜接,加強知識的縱向聯(lián)系,為知識的擴展延續(xù)做鋪墊.

        (2)回顧函數(shù)圖像的作法,以及不同作法的應(yīng)用場景.設(shè)計意圖:通過知識的回顧整理,讓知識更具條理化,構(gòu)建知識網(wǎng)絡(luò).

        (3)探究圖像變換的方式有哪些.設(shè)計意圖:層層推進,將知識網(wǎng)絡(luò)逐步織起來.

        (3)探究各個類型函數(shù)在不同的變換作用下得到的圖像.設(shè)計意圖:從特殊到一般,創(chuàng)造機會讓學(xué)生直觀感知不同變換的本質(zhì).

        (4)從抽象函數(shù)的角度探究圖像變換的共性.設(shè)計意圖:從定量到定性,著力解決知識網(wǎng)絡(luò)中“結(jié)點”的重、難點,為“織一張更大的網(wǎng)”留下伏筆.

        (5)應(yīng)用提升.設(shè)計意圖:處理問題的經(jīng)驗累積是產(chǎn)生正確直覺的基本保證.

        學(xué)生的學(xué)習(xí)過程是在最近發(fā)展區(qū)展開的,被自己的直覺所驅(qū)動,從分類到變換,從變換到結(jié)論,從定量到定性,再到應(yīng)用提升.每一個環(huán)節(jié),在系統(tǒng)的視角下,立足于直覺思維的驅(qū)動,從而得到能有效地促進形成直覺思維的知識體系.

        (二)有效的思維導(dǎo)圖訓(xùn)練

        有效的思維導(dǎo)圖訓(xùn)練,讓直覺思維有了源頭,思維邏輯更具脈絡(luò)化,有理有據(jù),直覺思維與邏輯思維的有機結(jié)合,能有效地進行邏輯判斷并選取最優(yōu)解決策略.思維導(dǎo)圖能將邏輯思維及發(fā)散性思維用圖形語言表達,它是簡單高效的思維工具.思維導(dǎo)圖的優(yōu)越特性,不僅是發(fā)散思維的形象化,同時也具有拓展性、可編輯性、再創(chuàng)造性.把思維導(dǎo)圖引入到數(shù)學(xué)的教學(xué)課堂,它所具備的優(yōu)越特性可有效地培養(yǎng)學(xué)生的直覺思維,讓直覺思維的培養(yǎng)更具直觀性與可操作性.

        案例2 解三角形問題的思維導(dǎo)圖的初步整理.

        (1)用到的工具:正弦定理、余弦定理、面積公式.

        (2)正弦定理的用途:邊角互化,將未知作為要素,“兩邊+兩角”的用正弦定理,邊化角,用角的范圍求目標函數(shù)范圍.

        (3)余弦定理的用途:邊角互化,將未知作為要素,“三邊+一角”的用余弦定理,角化邊,用均值不等式求目標函數(shù)最值.

        (4)三角形分割成兩部分:對兩互補角同時使用余弦定理.

        (5)求范圍類型:ab,a+b,S,a2+b2,周長.

        (6)sin(A+B)=sinC,cos(A+B)=-cosC.

        (三)創(chuàng)設(shè)直覺思維的意境和動機誘導(dǎo)

        數(shù)學(xué)課堂要踐行課改理念,轉(zhuǎn)變教學(xué)觀念,讓學(xué)生參與課堂.教師應(yīng)鼓勵學(xué)生的發(fā)散性思維,及時地肯定學(xué)生的設(shè)想,因勢利導(dǎo),解除學(xué)生心中的困惑,讓學(xué)生充分享受直覺思維所帶來的獲得感.例如,可根據(jù)課堂的類型進行合理的教學(xué)設(shè)計,培養(yǎng)學(xué)生的知識遷移能力和歸類猜想能力,促進直覺思維的養(yǎng)成.

        在相鄰或相近的知識點處,學(xué)生樂于用已掌握的知識作為工具去探究新的知識,這就是知識遷移的能力.遷移在數(shù)學(xué)的學(xué)習(xí)中起著重要的作用,知識的遷移一般在新知識的學(xué)習(xí)與解題探究上較為常見.在知識的遷移過程中,鍛煉了數(shù)學(xué)的直覺思維,優(yōu)化了知識結(jié)構(gòu)與方法體系.如,在學(xué)習(xí)“等比數(shù)列”這一章節(jié)的過程中,可通過等比數(shù)列與等差數(shù)列的類比,類比等差數(shù)列的結(jié)論與性質(zhì),如等差數(shù)列的通項公式及變形、等差中項及應(yīng)用、等差數(shù)列的單調(diào)性、前n項的和等,進而學(xué)習(xí)等比數(shù)列的相關(guān)內(nèi)容.

        歸納猜想是直覺思維的一種重要形式.數(shù)學(xué)問題研究經(jīng)常采用“先猜后證”的策略.數(shù)學(xué)的猜想是以扎實的基礎(chǔ)知識為根本,以寶貴的經(jīng)驗累積為依據(jù).一個數(shù)學(xué)問題出現(xiàn)時,可鼓勵學(xué)生從多角度探究并猜測問題的結(jié)論,這樣有助于直覺思維的培養(yǎng).

        案例3 在正方體ABCD-A1B1C1D1中,E是棱CC1的中點,F(xiàn)是側(cè)面BCC1B1內(nèi)的動點,且A1F∥平面D1AE,求A1F與平面BCC1B1所成角的正切值構(gòu)成的集合.

        本題需猜測與驗證同步進行,需要學(xué)生直覺思維的參與.考查的是線面所成角的正切值的范圍,即為斜線與射影所成角的范圍.由此引發(fā)探究斜足的軌跡是什么.接下來通過面面平行可得線面平行這一性質(zhì)定理,來探索斜線即斜足的軌跡.而面面平行可通過兩交線分別與另一平面平行得證.最終可得斜足的軌跡即為BB1與B1C1中點的連線.

        本題的解題過程分析較為繁雜,考查內(nèi)容所涉及的面比較廣,通過執(zhí)果索因的方式逐級逆推,要求學(xué)生有較強的邏輯思維與直覺思維,總體難度中.培養(yǎng)數(shù)學(xué)直覺思維就是創(chuàng)設(shè)教學(xué)情境,引導(dǎo)學(xué)生以已有的知識作為依據(jù),去大膽地猜測聯(lián)想.

        (四)滲透數(shù)學(xué)的哲學(xué)觀及審美觀

        直覺思維是在對研究對象的整體認知的基礎(chǔ)上產(chǎn)生的,而哲學(xué)觀點有助于對事物本質(zhì)性的探索與思考指引方向.數(shù)學(xué)中的哲學(xué)觀包括數(shù)學(xué)的對立統(tǒng)一、運動變化、化歸轉(zhuǎn)化、特殊與一般等.例如,立體幾何中的空間對稱問題,垂徑定理解決與球有關(guān)的問題,圓錐曲線的統(tǒng)一性質(zhì),函數(shù)、方程、不等式之間的化歸與轉(zhuǎn)化、從函數(shù)的角度看待數(shù)列問題等,這些都通過“哲學(xué)觀”這條暗線關(guān)聯(lián)在一起,構(gòu)成了數(shù)學(xué)這一整體.學(xué)生依托數(shù)學(xué)的哲學(xué)觀,借助直覺思維,把知識由“點”拓展延伸到“線”到“面”.

        數(shù)學(xué)美是數(shù)學(xué)直覺的本質(zhì),提高審美能力有利于培養(yǎng)數(shù)學(xué)事物間所有存在著的和諧關(guān)系及秩序的直覺意識.理解數(shù)學(xué)的美有利于數(shù)學(xué)直覺思維的形成.狄拉克于1931年從數(shù)學(xué)對稱的角度考慮,大膽地提出了反物質(zhì)的假說.很多數(shù)學(xué)發(fā)現(xiàn)都是在感受數(shù)學(xué)美的基礎(chǔ)上發(fā)現(xiàn)的,在教學(xué)中,要從領(lǐng)略、呈現(xiàn)數(shù)學(xué)美的角度出發(fā),從數(shù)學(xué)定理、數(shù)學(xué)公式、數(shù)學(xué)邏輯、數(shù)學(xué)思想方法中感受數(shù)學(xué)的對稱美、簡潔美、統(tǒng)一美、奇異美、重要美、比例美等.如,在正、余弦定理的探究過程,可從對稱美、統(tǒng)一美的角度引發(fā)學(xué)生思考、探索.另外,一些數(shù)學(xué)問題的研究,可以通過對問題的特殊情形的研究,逐漸加深對其了解,發(fā)現(xiàn)特點,探尋規(guī)律,形成一般結(jié)論.這就是數(shù)學(xué)的美所帶來的認知上的促進.

        三、結(jié) 語

        直覺思維是數(shù)學(xué)素養(yǎng)的重要組成.通過培養(yǎng)直覺思維可形成更敏銳的觀察力、想象力及邏輯思考能力,學(xué)生要養(yǎng)成站在系統(tǒng)的角度思考問題,制訂解決策略.數(shù)學(xué)課堂要滲透數(shù)學(xué)的哲學(xué)觀與審美觀,從系統(tǒng)的角度分析問題、思考問題,整體上把握章節(jié)知識,為學(xué)生創(chuàng)設(shè)直覺思維的意境與動機誘導(dǎo),充分調(diào)動學(xué)生的參與熱情,化“被動接受”為“主動探究”,學(xué)生在未知領(lǐng)域的探究過程中充分享受到直覺思維所帶來的成功,才會意識到直覺思維的價值.

        【參考文獻】

        [1]趙思林,朱德全.試論數(shù)學(xué)直覺思維的培養(yǎng)策略[J].數(shù)學(xué)教育學(xué)報,2010(1):23-26.

        [2]徐利治.徐利治談數(shù)學(xué)哲學(xué)[M].大連:大連理工大學(xué)出版社,2008.

        猜你喜歡
        直覺思維案例分析高中數(shù)學(xué)
        產(chǎn)品設(shè)計中的直覺思維分析
        戲劇之家(2016年23期)2016-12-20 22:37:08
        九年級數(shù)學(xué)教學(xué)中學(xué)生直覺思維能力的培養(yǎng)
        人間(2016年31期)2016-12-17 21:17:26
        當代銅版畫創(chuàng)作過程中靈感思維對其的影響
        父親缺失案例分析
        冷庫建筑火災(zāi)特點及調(diào)查方法研究
        科技資訊(2016年18期)2016-11-15 20:46:09
        初中數(shù)學(xué)教學(xué)中學(xué)生直維能力的培養(yǎng)
        人間(2016年28期)2016-11-10 22:34:41
        高校圖書館閱讀推廣案例分析
        科技視界(2016年21期)2016-10-17 19:32:37
        高中數(shù)學(xué)數(shù)列教學(xué)中的策略選取研究
        考試周刊(2016年77期)2016-10-09 10:58:31
        調(diào)查分析高中數(shù)學(xué)課程算法教學(xué)現(xiàn)狀及策略
        考試周刊(2016年76期)2016-10-09 08:54:54
        基于新課程改革的高中數(shù)學(xué)課程有效提問研究
        考試周刊(2016年76期)2016-10-09 08:20:33
        亚洲国产国语在线对白观看| 国产精品毛片一区二区三区| av无码av在线a∨天堂app| 国产乱子伦农村xxxx| av日本一区不卡亚洲午夜| 少妇高潮精品正在线播放| 青青草视频在线观看网| 精品无码av一区二区三区不卡| 国产日韩欧美一区二区东京热| 在线涩涩免费观看国产精品| 色婷婷综合中文久久一本| 日韩精品久久久一区| AV中文字幕在线视| 国产熟女露脸大叫高潮| 国产一区亚洲二区三区极品| 亚洲精品一区二区国产精华液| 美女无遮挡免费视频网站| 国产精品美女久久久浪潮av| 国产精品综合久久久久久久免费| 日本熟妇高潮爽视频在线观看| 亚洲免费在线视频播放| 欲香欲色天天天综合和网| 国产色秀视频在线播放| 伊人一道本| 五月激情狠狠开心五月| 精品女厕偷拍视频一区二区区| 亚洲国产一二三精品无码| 中文字幕无码日韩专区免费| 福利在线国产| 人妻中文字幕一区二区二区 | 国产精品18久久久久网站 | 日韩av激情在线观看| 一本一道av无码中文字幕 | 永久免费观看的毛片手机视频 | 青青草国产手机观看视频| 无码国内精品久久人妻| 亚洲欧美日韩综合久久| 亚洲国产精品午夜电影| 丰满人妻一区二区三区精品高清| 伊人久久大香线蕉av色婷婷色| 午夜男女很黄的视频|