摘 要:在中學(xué)數(shù)學(xué)的課堂教學(xué)中要以學(xué)生為主體,布魯納的認(rèn)知發(fā)現(xiàn)理論強(qiáng)調(diào)了學(xué)生的學(xué)習(xí)應(yīng)是主動(dòng)認(rèn)知的過(guò)程,本文從實(shí)例出發(fā),淺述何為發(fā)現(xiàn)學(xué)習(xí)以及在中學(xué)數(shù)學(xué)教學(xué)中運(yùn)用“發(fā)現(xiàn)法”教學(xué)的策略.
關(guān)鍵詞:發(fā)現(xiàn)學(xué)習(xí);高中數(shù)學(xué);教學(xué)
作者簡(jiǎn)介:劉奕爽(1988-),女,黑龍江伊春人,研究生在讀,中學(xué)二級(jí)教師,研究方向:中學(xué)教學(xué)(數(shù)學(xué)).
《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:高中數(shù)學(xué)課程以學(xué)生發(fā)展為本,落實(shí)立德樹(shù)人的根本任務(wù),培育科學(xué)精神和創(chuàng)新意識(shí),提升數(shù)學(xué)學(xué)科核心素養(yǎng).在數(shù)學(xué)的教學(xué)上,教師們的目光更是不止關(guān)注如何教會(huì)學(xué)生掌握基本數(shù)學(xué)知識(shí)、技能,更是關(guān)注如何發(fā)展學(xué)生們的四能,提升學(xué)生的數(shù)學(xué)學(xué)科素養(yǎng),培養(yǎng)學(xué)生成為更加全面的人.如何將冰冷美麗的數(shù)學(xué)知識(shí)進(jìn)行轉(zhuǎn)化,幫助學(xué)生們進(jìn)行火熱的思考,體會(huì)數(shù)學(xué)知識(shí)中蘊(yùn)涵數(shù)學(xué)思想,是每一個(gè)數(shù)學(xué)教育工作者都需要不斷思考探索的問(wèn)題.為了能達(dá)到上述所提到的期望,很多教育研究者不斷的研究、實(shí)踐,開(kāi)發(fā)了許多數(shù)學(xué)教學(xué)模式,也是當(dāng)下比較流行的教學(xué)模式,例如,問(wèn)題導(dǎo)學(xué)法、翻轉(zhuǎn)課堂、學(xué)案導(dǎo)學(xué)、探究性學(xué)習(xí)等等.其實(shí)質(zhì),都是為了將學(xué)生從被動(dòng)的接受學(xué)習(xí)中解放出來(lái),將課堂的學(xué)習(xí)從教師主體地位改變成以教師為主導(dǎo),學(xué)生為主體.其中的思想淵源可追述到布魯納的發(fā)現(xiàn)學(xué)習(xí)說(shuō),本文將從何為發(fā)現(xiàn)學(xué)習(xí),發(fā)現(xiàn)學(xué)習(xí)的作用,如何在課堂中以發(fā)現(xiàn)法為指導(dǎo)進(jìn)行教學(xué)等談一談筆者的看法.
一、發(fā)現(xiàn)學(xué)習(xí)的內(nèi)涵
布魯納提出,最有效的學(xué)習(xí)方法是由人們自己去發(fā)現(xiàn)知識(shí),這里的“發(fā)現(xiàn)”指的是用自己的頭腦及經(jīng)驗(yàn),親自去發(fā)現(xiàn)知識(shí)的一切方法.并不僅局限于人類(lèi)尚未知曉的事物,那些已經(jīng)存在的知識(shí),如果是由學(xué)生自己親自探索,感悟所得,也是一種發(fā)現(xiàn).布魯納指出,發(fā)現(xiàn)學(xué)習(xí)有以下四點(diǎn)作用:
1提高智能潛力
通過(guò)學(xué)習(xí)者提出解決問(wèn)題的探索模型,學(xué)習(xí)如何對(duì)信息進(jìn)行轉(zhuǎn)換和組織,學(xué)習(xí)者的收獲將超越這信息.也就是說(shuō),學(xué)生在探索的過(guò)程中,不只掌握了知識(shí)的本身,更是體會(huì)了相關(guān)概念發(fā)生、發(fā)展的過(guò)程,更好的感悟其中所蘊(yùn)涵的思想方法,將所學(xué)知識(shí)更容易的內(nèi)化為自己所有,融入自己的知識(shí)結(jié)構(gòu)體系中.例如,在學(xué)習(xí)兩角差的余弦公式cos(α-β)=cosαcosβ+sinαsinβ時(shí),如果教師只是簡(jiǎn)單的按照傳統(tǒng)方式,從三角函數(shù)線入手,以講授的形式告訴學(xué)生結(jié)論,學(xué)生難免會(huì)感覺(jué)晦澀難懂,容易造成機(jī)械的記公式,解題時(shí)也很難靈活運(yùn)用.而若在教師的引導(dǎo)下,幫助學(xué)生從向量的角度入手,主動(dòng)探究,大膽思考如何讓向量與三角函數(shù)結(jié)合,更多地參與到教學(xué)的活動(dòng)中,學(xué)生會(huì)更好的掌握相應(yīng)公式,體會(huì)其中的推理過(guò)程,并對(duì)后續(xù)兩角和差的正余弦、正切公式中的學(xué)習(xí)有極大的幫助.
2使外部獎(jiǎng)賞向內(nèi)部動(dòng)機(jī)轉(zhuǎn)移
不可否認(rèn),外部的獎(jiǎng)賞在一定程度上,可以促進(jìn)學(xué)生的學(xué)習(xí),比如家長(zhǎng)對(duì)孩子成績(jī)提高將會(huì)得到相應(yīng)獎(jiǎng)勵(lì)的許諾;學(xué)校在期中、期末大會(huì)組織對(duì)優(yōu)秀生、進(jìn)步生開(kāi)展表彰大會(huì),并以此為榜樣激勵(lì)其他同學(xué)進(jìn)步等等.這樣的措施也往往收到了成效,但并不是絕對(duì)的,獎(jiǎng)勵(lì)可以在一定程度上激發(fā)學(xué)生學(xué)習(xí)的熱情,成為學(xué)生的動(dòng)力,但是當(dāng)這種刺激強(qiáng)化過(guò)度或目標(biāo)過(guò)高時(shí),學(xué)生往往會(huì)感到麻木,甚至?xí)霈F(xiàn)反效果.因?yàn)橥獠开?jiǎng)賞并不是學(xué)生去學(xué)習(xí)的決定因素.布魯納認(rèn)為,在教學(xué)中,通過(guò)學(xué)生獨(dú)立探究例子間的關(guān)系,學(xué)習(xí)了相關(guān)的知識(shí)概念,要比教師去講解分析原理,更能激發(fā)學(xué)生學(xué)習(xí)的熱情,更能讓學(xué)生從學(xué)習(xí)中獲得滿足感.即通過(guò)發(fā)現(xiàn)方法的學(xué)習(xí),可以更好的提高學(xué)生們的非智力因素,如情感、意志、興趣、性格、需要、動(dòng)機(jī)、目標(biāo)等等,俗話常說(shuō),興趣是最好的老師,只有學(xué)生自己產(chǎn)生內(nèi)部的學(xué)習(xí)動(dòng)機(jī),才會(huì)在學(xué)習(xí)上事半功倍.
3學(xué)會(huì)發(fā)現(xiàn)的最優(yōu)方法和策略
前面提到,在發(fā)現(xiàn)的學(xué)習(xí)中,學(xué)習(xí)者不僅會(huì)收獲所需學(xué)習(xí)的信息,更會(huì)超越這信息.學(xué)習(xí)者在學(xué)習(xí)的過(guò)程中,是對(duì)知識(shí)的探索,同時(shí)也是對(duì)經(jīng)驗(yàn)的積累.發(fā)現(xiàn)法學(xué)習(xí)的前期,可能會(huì)因?yàn)閷W(xué)習(xí)者本身知識(shí)及方法的局限,會(huì)使得學(xué)習(xí)過(guò)程相對(duì)單純的接受性學(xué)習(xí)的過(guò)程更為費(fèi)時(shí),但是探索的本身也是一種成長(zhǎng),一種積累.通過(guò)對(duì)方法的運(yùn)用及掌握,會(huì)更好的鍛煉學(xué)習(xí)者的思維,提高其發(fā)現(xiàn)問(wèn)題、提出問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力.
4幫助信息的保持和檢索
學(xué)生們?cè)趯W(xué)習(xí)的過(guò)程中也總會(huì)有這樣的體驗(yàn),往往一個(gè)知識(shí)點(diǎn)教師講了幾遍,在當(dāng)時(shí)似乎學(xué)會(huì)了,但是不久,又不清楚其中的方法.也就是學(xué)生常說(shuō)的“上課老師講的時(shí)候都聽(tīng)懂了,可是做題的時(shí)候又不會(huì)”.這說(shuō)明所學(xué)的知識(shí)并沒(méi)有真正被學(xué)生內(nèi)化,構(gòu)建到自己的知識(shí)體系中.簡(jiǎn)單的說(shuō),人們總是對(duì)自己感興趣的領(lǐng)域更為擅長(zhǎng).發(fā)現(xiàn)法學(xué)習(xí)的本身,更容易激發(fā)學(xué)生的熱情,幫助學(xué)生從厭學(xué)變?yōu)楹脤W(xué).使得知識(shí)的掌握更加容易,記憶更為深刻,運(yùn)用也更為靈活.
二、發(fā)現(xiàn)法在數(shù)學(xué)教學(xué)中的策略
布魯納認(rèn)為,教師需要把知識(shí)轉(zhuǎn)換成一種適應(yīng)正在發(fā)展的形式,以表征系統(tǒng)發(fā)展順序作為教學(xué)設(shè)計(jì)的模式,讓學(xué)生進(jìn)行發(fā)現(xiàn)學(xué)習(xí).也就是說(shuō),教師需要安排好教學(xué)環(huán)節(jié),教學(xué)的設(shè)計(jì)要符合學(xué)生的最近發(fā)展區(qū).
1創(chuàng)設(shè)合適的問(wèn)題情景
問(wèn)題情景有助于誘導(dǎo)學(xué)生的思維,激發(fā)學(xué)生的學(xué)習(xí)興趣,引導(dǎo)學(xué)生在問(wèn)題的刺激下進(jìn)行思考、探索.例如,在《方程的根與函數(shù)的零點(diǎn)》這一節(jié),教材上的安排方式是從一元二次方程的根與相應(yīng)二次函數(shù)圖像入手,探討根與函數(shù)圖像與x軸交點(diǎn)之間的聯(lián)系,進(jìn)而引出零點(diǎn)的概念.但這樣的引入方式過(guò)于平談,很難激起學(xué)生的興趣.并且在理解方程的根與函數(shù)的零點(diǎn)概念本質(zhì)上不夠透徹,以及對(duì)于為什么要去學(xué)習(xí)零點(diǎn)不夠理解.筆者在教學(xué)中嘗試從斐波那切的故事入手,以問(wèn)題為導(dǎo)向,提出類(lèi)似084x=05,lnx+2x=0這樣的方程如何求解,幫助學(xué)生聯(lián)想方程與函數(shù)的關(guān)系,進(jìn)而引出課題.這符合學(xué)生的認(rèn)識(shí)規(guī)律,也體現(xiàn)了相應(yīng)函數(shù)思想的應(yīng)用意識(shí).
同時(shí),在問(wèn)題情景的設(shè)問(wèn)中,要注意引導(dǎo)學(xué)生去發(fā)現(xiàn)問(wèn)題、提出問(wèn)題.情景的選擇也可以貼近學(xué)生的生活,更容易引出學(xué)生的共鳴.例如在《直線與平面平行的判定》這一節(jié)的引入中,筆者并沒(méi)有按照一般的復(fù)習(xí)導(dǎo)入式,直接提出如何判斷線面平行,而是選取從生活實(shí)例出發(fā),要求學(xué)生從現(xiàn)實(shí)生活中抽象出線面平行的關(guān)系,并以晾衣桿與地面平行為例,追問(wèn)如果晾衣桿與地面不平行,是否還具有實(shí)用價(jià)值,并引導(dǎo)學(xué)生思考如何保證晾衣桿與地面平行,由學(xué)生自己提問(wèn)題,如何判斷線面平行.這樣的設(shè)計(jì)更是有助于培養(yǎng)學(xué)生的數(shù)學(xué)抽象素養(yǎng)以及發(fā)現(xiàn)問(wèn)題、提出問(wèn)題的能力.
2以問(wèn)題為導(dǎo)向的探究活動(dòng)
教師是教學(xué)的組織者、合作者和引導(dǎo)者,在概念定理的學(xué)習(xí)中,應(yīng)讓學(xué)生自主的去體驗(yàn)、嘗試,發(fā)現(xiàn)概念發(fā)生、發(fā)展的過(guò)程.學(xué)生可以獨(dú)立思考也可以合作探討交流,而教師要設(shè)計(jì)好合理的教學(xué)內(nèi)容,問(wèn)題,做好學(xué)生學(xué)習(xí)的引路者.例如在學(xué)習(xí)《簡(jiǎn)單空間幾何體結(jié)構(gòu)特征》這一節(jié),筆者在教學(xué)的過(guò)程中準(zhǔn)備了不同幾何體的模型,引導(dǎo)學(xué)生完成對(duì)多面體和旋轉(zhuǎn)體的分組后,要求學(xué)生從點(diǎn)、線、面的角度出發(fā)進(jìn)行探究,從而得出棱柱、棱錐、棱臺(tái)的定義.以小組為單位進(jìn)行探究并由小組代表展示所得成果.學(xué)生在探究活動(dòng)中對(duì)知識(shí)的理解與記憶更加深刻,同時(shí)也培養(yǎng)了學(xué)生們的合作交流意識(shí).
在學(xué)習(xí)《直線與平面平行的判定》這一節(jié)時(shí),為了讓學(xué)生更好的感知線面平行的條件,筆者設(shè)計(jì)了讓學(xué)生通過(guò)折紙,觀察折痕所在直線與邊緣所在直線是否平行,邊緣所在直線與平面是否平行這樣的環(huán)節(jié),引導(dǎo)學(xué)生大膽提出滿足線面平行判定的條件的猜想,并通過(guò)“折一折”“畫(huà)一畫(huà)”這樣的操作環(huán)節(jié)引導(dǎo)學(xué)生探究和思考.設(shè)計(jì)有效的問(wèn)題進(jìn)行追問(wèn),強(qiáng)化學(xué)生對(duì)定理的理解,培養(yǎng)學(xué)生直觀感知、空間想象能力.
3總結(jié)回顧反思
這里的反思指兩個(gè)方面:一方面,在“發(fā)現(xiàn)法”指導(dǎo)下的數(shù)學(xué)課堂學(xué)習(xí)中,一定要重視組織學(xué)生對(duì)所學(xué)知識(shí)的回顧與反思,可以由學(xué)生來(lái)敘述本節(jié)課所學(xué)習(xí)的概念以及思想方法,教師對(duì)其進(jìn)行補(bǔ)充和總結(jié).這一方面是對(duì)一節(jié)課所學(xué)知識(shí)重、難點(diǎn)的回顧,同時(shí)也是對(duì)探索知識(shí)過(guò)程的再認(rèn)識(shí),對(duì)其中所蘊(yùn)涵思想方法的一個(gè)升華,對(duì)思維過(guò)程的反思幫助學(xué)生積累發(fā)現(xiàn)學(xué)習(xí)的經(jīng)驗(yàn),同時(shí)幫助學(xué)生對(duì)所學(xué)知識(shí)盡快內(nèi)化為自己所有.另一方面,教師也要及時(shí)對(duì)自己的教學(xué)過(guò)程、教學(xué)設(shè)計(jì)進(jìn)行反思,教學(xué)安排是否符合學(xué)生的發(fā)展規(guī)律,問(wèn)題情景設(shè)置是否合理,是否激發(fā)了學(xué)生的興趣.引導(dǎo)學(xué)生探究的環(huán)節(jié),問(wèn)題的設(shè)置難易是否適中,是否有可實(shí)踐性和操作性.
總之,在數(shù)學(xué)課堂的教學(xué)中,要以學(xué)生為主體,幫助學(xué)生由被動(dòng)的接受變?yōu)橹鲃?dòng)的學(xué)習(xí),這就需要我們將“發(fā)現(xiàn)學(xué)習(xí)”的方法理念,融入到教學(xué)中.在運(yùn)用“發(fā)現(xiàn)法”教學(xué)的過(guò)程中一定要關(guān)注學(xué)生是否處于主動(dòng)地位,是否參與到教學(xué)的過(guò)程中,是否體會(huì)到知識(shí)發(fā)生發(fā)展的過(guò)程.在教學(xué)中要以知識(shí)為載體,以問(wèn)題為導(dǎo)向,給學(xué)生充足的時(shí)間和空間,讓學(xué)生自主探究,在學(xué)中發(fā)現(xiàn),在發(fā)現(xiàn)中學(xué).
參考文獻(xiàn):
[1]陳琦,劉儒德當(dāng)代教育心理學(xué)[M].北京:北京師范大學(xué)版社,2007(04):164-165.
[2]中華人民共和國(guó)教育部普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017版)[M].北京:人民教育出版社,2018.
[3]許翔,許京鋒發(fā)現(xiàn)法及其在高中數(shù)學(xué)教學(xué)中應(yīng)用研究[J].數(shù)學(xué)教學(xué)通訊,2018(03):39-56.