閆珊珊 耿惠
【摘要】基質(zhì)金屬蛋白酶(MMPs)是自然界的一類蛋白酶,主要作用為維持膠原基質(zhì)的完整性。參與多種生理和病理過程,生理狀態(tài)下主要作用為降解細(xì)胞外基質(zhì),促進(jìn)細(xì)胞增殖、遷移和分化,并在細(xì)胞凋亡、血管生成、組織修復(fù)和免疫反應(yīng);病理狀態(tài)下可能與腫瘤細(xì)胞的生長(zhǎng)和轉(zhuǎn)移、心血管疾病和炎癥疾病等息息相關(guān)。在本篇綜述中,大致總結(jié)了基質(zhì)金屬蛋白酶的分類、結(jié)構(gòu)和生理病理功能,為進(jìn)一步的研究MMPs提供依據(jù)。
【關(guān)鍵詞】基質(zhì)金屬蛋白酶;細(xì)胞外基質(zhì);腫瘤轉(zhuǎn)移
【中圖分類號(hào)】R722.1 【文獻(xiàn)標(biāo)識(shí)碼】A 【DOI】10.12332/j.issn.2095-6525.2021.02.290
19世紀(jì)60年代,有學(xué)者第一次提出來基質(zhì)金屬蛋白酶(MMPs)的概念[1]。從那時(shí)起,基質(zhì)金屬蛋白酶的研究領(lǐng)域經(jīng)歷了廣泛而深刻的研究。到現(xiàn)在為止,人基質(zhì)金屬蛋白酶家族包含28個(gè)鋅依賴性內(nèi)肽酶成員,屬于梅津菌素超家族[2]。MMPs是大量分泌的蛋白質(zhì),根據(jù)酶序列排列對(duì)MMPs進(jìn)行分類[3-5]。MMPs的基本蛋白質(zhì)結(jié)構(gòu)由前肽、催化域和類血球蛋白結(jié)構(gòu)域組成[6]。前肽結(jié)構(gòu)域長(zhǎng)約80個(gè)氨基酸,負(fù)責(zé)將MMPs維持在非活性狀態(tài)[7-8]。催化結(jié)構(gòu)域由170個(gè)氨基酸組成。C末端的類血粘蛋白結(jié)構(gòu)域含有近200個(gè)氨基酸,并通過一個(gè)富含脯氨酸的柔性鉸鏈區(qū)連接到許多基質(zhì)金屬蛋白酶的催化結(jié)構(gòu)域上[4]。
MMPs活性的轉(zhuǎn)錄調(diào)控包括MMPs基因表達(dá)、轉(zhuǎn)錄穩(wěn)定性、啟動(dòng)子多態(tài)性和表觀遺傳改變[9]?;|(zhì)金屬蛋白酶(MMPs)作為膠原酶的作用仍然是其最重要的生理功能。在正常生理?xiàng)l件下,對(duì)維持組織的異質(zhì)性至關(guān)重要,還可能影響細(xì)胞表面的生物活性分子,調(diào)節(jié)各種細(xì)胞和信號(hào)通路[10]。病理狀態(tài)下,MMPs 參與腫瘤細(xì)胞的生長(zhǎng)和轉(zhuǎn)移、缺氧性疾病的病理過程[11]。
基質(zhì)金屬蛋白酶參與許多生物學(xué)過程,是心血管疾病、急性炎癥反應(yīng)、肌肉損傷和癌癥的重要生物標(biāo)志物。隨著研究的深入,基質(zhì)金屬蛋白酶家族每個(gè)成員都表現(xiàn)出其特有的生物學(xué)結(jié)構(gòu)、作用機(jī)制及對(duì)參與到機(jī)體的發(fā)生、發(fā)展的各個(gè)方面。我們現(xiàn)代醫(yī)學(xué)的進(jìn)步目的就是為了精準(zhǔn)醫(yī)學(xué),因每個(gè)個(gè)體的異質(zhì)性,所以MMPs在不同情況下可能會(huì)產(chǎn)生不一樣的化學(xué)反應(yīng)。因此,基質(zhì)金屬蛋白酶的研究還尚在路上。
參考文獻(xiàn):
[1]GROSS, J. & LAPIERE, C. M. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc. Natl. Acad. Sci. U.S A. 1962;48:1014–22.
[2]Vandenbroucke, R. E. & Libert, C. Is there new hope for therapeutic matrixmetalloproteinase inhibition? Nat. Rev. Drug Discov.2014(13): 904–927.
[3]Hadler-Olsen, E., Winberg, J.-O. & Uhlin-Hansen, L. Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol.2013(34):2041–2051.
[4]Brinckerhoff, C. E. & Matrisian, L. M. Matrix metalloproteinases: a tail of a frog that became a prince. Nat. Rev. Mol. Cell Biol.2002(3): 207–214.
[5]Fanjul-Fernández, M., Folgueras, A. R., Cabrera, S. & López-Otín, C. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim. Biophys. Acta 1803,2010:3–19.
[6]Bourboulia, D. & Stetler-Stevenson, W. G. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Semin. Cancer Biol.2010;20: 161–168.
[7]Van Wart, H. E. & Birkedal-Hansen, H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci. 1990;87:5578–5582.
[8]Hu, J., Van den Steen, P. E., Sang, Q. X. & Opdenakker, G. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 6.2007:480–498.
[9]Yu, X. F. & Han, Z. C. Matrix metalloproteinases in bone marrow: roles of gelatinases in physiological hematopoiesis and hematopoietic malignancies. Histol. Histopathol. 2006;21:519–531.
[10]Garcia-Irigoyen O, Latasa MU, Carotti S, et al. Matrix metalloproteinase 10 contributes to hepatocarcinogenesis in a novel crosstalk with the stromal derived factor 1/C-X-Cchemokine receptor 4 axis[J]. Hepatology.2015;62(1):166–178.
[11]Mauris J, Woodward AM, Cao Z, Panjwani N, Argueso P. M.Molecular basis for MMP-9induction and disruption of epithelial cell-cell contacts by galectin-3. [J] Cell Sci.2014;127(14):3141–3148.
通訊作者:耿惠,青海大學(xué)附屬醫(yī)院。