丁欣
【摘要】社會(huì)經(jīng)濟(jì)發(fā)展,企業(yè)對(duì)于人才的需求并不局限于專業(yè)知識(shí)與能力,更加注重人才的創(chuàng)新能力,創(chuàng)新型人才成為當(dāng)前市場(chǎng)競(jìng)爭(zhēng)中企業(yè)實(shí)力競(jìng)爭(zhēng)的動(dòng)力,該背景下,新課程改革標(biāo)準(zhǔn)明確教學(xué)培養(yǎng)學(xué)生創(chuàng)造性思維。而在初中數(shù)學(xué)教學(xué)匯總中,教師更要重視學(xué)生創(chuàng)造性思維的培養(yǎng),因?yàn)閿?shù)學(xué)具有較強(qiáng)的邏輯性與抽象性,要求學(xué)生具備一定的創(chuàng)造性思維與能力。文章針對(duì)初中數(shù)學(xué)教學(xué)中學(xué)生創(chuàng)造性思維培養(yǎng)展開分析。
【關(guān)鍵詞】初中數(shù)學(xué)? 創(chuàng)造性思維? 教學(xué)培養(yǎng)
【中圖分類號(hào)】G633.6 ? 【文獻(xiàn)標(biāo)識(shí)碼】A 【文章編號(hào)】2095-3089(2020)12-0125-02
初中數(shù)學(xué)大綱中有明確指出學(xué)生思維能力的培養(yǎng)是數(shù)學(xué)能力的核心,體現(xiàn)出教師在教學(xué)中不僅要傳授數(shù)學(xué)知識(shí),還要培養(yǎng)、發(fā)展學(xué)生思維能力。初中是學(xué)生學(xué)習(xí)生涯中最重要的學(xué)習(xí)階段,特別是創(chuàng)新思維與發(fā)散性思維培養(yǎng)的關(guān)鍵時(shí)期。所以,初中數(shù)學(xué)教學(xué)中,教師要注重培養(yǎng)學(xué)生創(chuàng)造性思維,進(jìn)而促進(jìn)學(xué)生綜合全面發(fā)展,為其未來數(shù)學(xué)學(xué)習(xí)有效進(jìn)行奠定良好基礎(chǔ)。
一、教學(xué)方式的多樣性
教學(xué)方式多樣性作為初中生創(chuàng)造性思維培養(yǎng)的途徑之一,具體為教師靈活運(yùn)用各種教學(xué)方法,如分組教學(xué)、競(jìng)賽以及探討等方式,為學(xué)生營造良好的課堂氛圍,進(jìn)而調(diào)動(dòng)學(xué)生積極性。實(shí)踐證明,輕松、活躍的課堂氛圍下,學(xué)生創(chuàng)造性思維更容易被激發(fā)。而小組討論中學(xué)生思維產(chǎn)生碰撞,相互吸取自身所需的知識(shí)內(nèi)容[1]。學(xué)習(xí)活動(dòng)在探索過程中,學(xué)生求知、探索欲望增強(qiáng),為學(xué)生創(chuàng)造性思維培養(yǎng)與發(fā)展奠定基礎(chǔ)。如教師在教到關(guān)于四邊形的教學(xué)時(shí),首先為學(xué)生介紹四種四邊形,分比為矩形、菱形、正方形以及四邊形展開教學(xué)。教師可對(duì)它們的共同點(diǎn)展開分析,然后仔細(xì)觀察矩形——正方形,四邊形——菱形之間的對(duì)轉(zhuǎn)關(guān)系。教師要多鼓勵(lì)學(xué)生自己動(dòng)手操作,主動(dòng)歸納總結(jié)知識(shí),組織學(xué)生以小組合作模式共享知識(shí),并對(duì)兩組四邊形之間的關(guān)系進(jìn)行總結(jié),進(jìn)而提高數(shù)學(xué)課堂教學(xué)質(zhì)量,并且提高學(xué)生合作能力與實(shí)踐能力。
二、正確理解數(shù)學(xué)概念,為學(xué)生創(chuàng)新思維培養(yǎng)奠定基礎(chǔ)
初中數(shù)學(xué)知識(shí)邏輯性、抽象性較強(qiáng),要求學(xué)生具備一定的數(shù)學(xué)思維,想要培養(yǎng)學(xué)生具備正確的數(shù)學(xué)思維,要求其對(duì)數(shù)學(xué)概念正確理解,然后根據(jù)自身掌握的定理、公式等進(jìn)行問題推算、論證。而在理解與掌握概念與定理時(shí),使用的文字符合與語言符合必須準(zhǔn)確,才能讓推理更加嚴(yán)密,步步有據(jù)是正確思維的前提[2]。學(xué)生沒有對(duì)數(shù)學(xué)概念正確理解,其思維會(huì)產(chǎn)生混亂。當(dāng)前數(shù)學(xué)教材更加注重對(duì)學(xué)生語言理解能力與表達(dá)能力的培養(yǎng),嚴(yán)格要求學(xué)生對(duì)定義、概念的表述,以此提高學(xué)生語言理解力與表達(dá)能力。教師則可以以此為切入點(diǎn),投入更多精力,鞏固、夯實(shí)學(xué)生基礎(chǔ)知識(shí),為創(chuàng)造性思維奠定堅(jiān)實(shí)基礎(chǔ)。
三、精心提問,培養(yǎng)學(xué)生創(chuàng)造性思維
1.逆向思維訓(xùn)練
數(shù)學(xué)教學(xué)中如果在一個(gè)問題上無法找到突破口時(shí),應(yīng)該轉(zhuǎn)換角度,從其他角度入手,打破常規(guī)思維,逆向間接求解。由于數(shù)學(xué)中存在很多證明性問題,該種思維可充分解決該類型問題,數(shù)學(xué)教學(xué)中,教師要針對(duì)性的設(shè)計(jì)逆向性思維問題,引導(dǎo)學(xué)生轉(zhuǎn)變思維、觀察以及分析角度,讓學(xué)生體會(huì)到逆向思維的優(yōu)勢(shì)。如教師提出問題:“證明三角形中至少有一個(gè)角不大于60°,假設(shè)三角形所有角都大于60°,并將三角相加,得出結(jié)論為大于180°,就與數(shù)學(xué)定理相違背,同時(shí)支持原結(jié)論”。
2.集中性與發(fā)散性思維訓(xùn)練
集中性與發(fā)散性思維存在于創(chuàng)造性思維中。集中性思維具體是指通過對(duì)已有信息的利用,并按照常規(guī)單一模式,計(jì)算得出正確答案。發(fā)散性思維則是利用某個(gè)知識(shí)點(diǎn)并沿著不同方向展開思考、探索,進(jìn)而得出多種解決問題的方案。這二者是相輔相成的,發(fā)散性思維的起點(diǎn)與歸宿就是集中性思維,數(shù)學(xué)教學(xué)中應(yīng)有機(jī)會(huì)結(jié)合二者,才能發(fā)揮出它們的作用。教師應(yīng)有意識(shí)的引導(dǎo)學(xué)生解決發(fā)散性題型,并對(duì)其進(jìn)行一題多變、多解的訓(xùn)練,培養(yǎng)學(xué)生創(chuàng)造性思維。
3.批判性思維訓(xùn)練
批判性思維訓(xùn)練具體表現(xiàn)為學(xué)生對(duì)自我解題思路的分析,并對(duì)得出結(jié)論進(jìn)行重新審核,批判性思維在數(shù)學(xué)解題中的運(yùn)用實(shí)現(xiàn)了對(duì)解題思路與結(jié)果的完善,并找到新方法、新思路。教師教學(xué)全過程都可以利用批判性思維進(jìn)行科學(xué)分析,打破傳統(tǒng)教學(xué)模式。數(shù)學(xué)教學(xué)中,對(duì)于改錯(cuò)題以及判斷題教師都可以有意識(shí)的為學(xué)生設(shè)置,以此發(fā)展學(xué)生批判性思維。
四、結(jié)語
數(shù)學(xué)是一門創(chuàng)造性學(xué)科。人們?nèi)粘I钆c數(shù)學(xué)息息相關(guān)。初中數(shù)學(xué)教學(xué)中重視學(xué)生創(chuàng)造性思維能力的培養(yǎng),充分發(fā)揮學(xué)生課堂主體地位,激發(fā)其求知、探索欲望。而教師就要靈活運(yùn)用多種教學(xué)方式,為學(xué)生展開課題訓(xùn)練,提高學(xué)生學(xué)習(xí)主動(dòng)性與積極性,才能在提高學(xué)生成績(jī)的同時(shí),提升其數(shù)學(xué)素養(yǎng)與數(shù)學(xué)思維,最終促進(jìn)學(xué)生綜合全面發(fā)展。
參考文獻(xiàn):
[1]孫奎元.數(shù)學(xué)教學(xué)中學(xué)生創(chuàng)造性思維的培養(yǎng)[J].現(xiàn)代教育,2012(09):57-58.
[2]陳艷霞.中學(xué)數(shù)學(xué)教學(xué)中學(xué)生創(chuàng)造性思維的培養(yǎng)[J].才智,2012(11):145.