呂琴
【摘 要】本文以《直線與圓的位置關(guān)系(4)》為例,探索深度學(xué)習(xí)理念下深度課堂的構(gòu)建。深度課堂體現(xiàn)在知識(shí)理解深刻、對(duì)話交流深入、情感體驗(yàn)貼切、學(xué)科能力生長(zhǎng)等多個(gè)維度。構(gòu)建深度數(shù)學(xué)課堂,促進(jìn)學(xué)生深度學(xué)習(xí),激發(fā)學(xué)生學(xué)習(xí)熱情,鍛煉學(xué)生思維能力,發(fā)展學(xué)生數(shù)學(xué)核心素養(yǎng)。
【關(guān)鍵詞】深度課堂;數(shù)學(xué)能力;核心素養(yǎng)
一、教學(xué)目標(biāo)
1.知識(shí)目標(biāo):了解切線長(zhǎng)的定義,掌握切線長(zhǎng)定理,并利用它進(jìn)行有關(guān)的計(jì)算;在運(yùn)用切線長(zhǎng)定理的解題過(guò)程中,進(jìn)一步滲透方程的思想,熟悉用代數(shù)的方法解幾何題。
2.能力目標(biāo):經(jīng)歷畫圖、度量、猜想、證明等數(shù)學(xué)活動(dòng)過(guò)程,發(fā)展合情推理能力和初步的演繹推理能力,培養(yǎng)學(xué)生有條理地、清晰地闡述自己的觀點(diǎn)的能力。
3.素質(zhì)目標(biāo):初步學(xué)會(huì)從數(shù)學(xué)的角度提出問(wèn)題、理解問(wèn)題,并能運(yùn)用所學(xué)的知識(shí)和技能解決問(wèn)題,發(fā)展應(yīng)用意識(shí)。在解題中形成解決問(wèn)題的基本策略,體驗(yàn)問(wèn)題策略的多樣性,發(fā)展實(shí)踐能力與創(chuàng)新精神。
4.情感與態(tài)度目標(biāo):了解數(shù)學(xué)的價(jià)值,對(duì)數(shù)學(xué)有好奇心與求知欲,在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn),鍛煉克服困難的意志,建立自信心。
二、教學(xué)重點(diǎn)及難點(diǎn)
教學(xué)重點(diǎn):理解切線長(zhǎng)定理
教學(xué)難點(diǎn):應(yīng)用切線長(zhǎng)定理解決問(wèn)題
三、教學(xué)方法
教學(xué)方法采用引導(dǎo)發(fā)現(xiàn)法,輔之以討論法。本節(jié)課是概念、定理、解題的教學(xué),因此,要利用概念模式元、定理教學(xué)模式元、解題教學(xué)模式元的有機(jī)組合,完成本節(jié)課的教學(xué)。
四、教學(xué)過(guò)程
1.操作
經(jīng)過(guò)⊙O外一點(diǎn)P畫⊙O的切線,并思考過(guò)圓外一點(diǎn)可以畫圓的幾條切線?
【設(shè)計(jì)意圖】學(xué)生經(jīng)歷操作觀察的過(guò)程,可以直觀了解過(guò)圓外一點(diǎn)可以畫圓的兩條切線,也為引入“切線長(zhǎng)”和“切線長(zhǎng)定理”做好鋪墊。教學(xué)時(shí)學(xué)生先嘗試,然后老師再進(jìn)行示范。
概念:在經(jīng)過(guò)圓外一點(diǎn)的切線上,這一點(diǎn)和切點(diǎn)之間的線段的長(zhǎng)叫做這點(diǎn)到圓的切線長(zhǎng)。
根據(jù)概念,解決下面兩個(gè)問(wèn)題:
(1)如圖,PA和PB分別與⊙O相切于點(diǎn)A、B,點(diǎn)P到⊙O的切線長(zhǎng)可以用哪一條線段的長(zhǎng)來(lái)表示?(線段PA或線段PB)
(2)切線與切線長(zhǎng)的區(qū)別是什么?
(切線是一條與圓相切的直線;切線長(zhǎng)是指切線上某一點(diǎn)與切點(diǎn)間的線段的長(zhǎng)。)
【設(shè)計(jì)意圖】此處通過(guò)學(xué)生思考得出結(jié)論,再次加深學(xué)生對(duì)概念的理解,也使學(xué)生了解切線長(zhǎng)與切線的關(guān)系。教學(xué)時(shí)教師在板書定義之后,通過(guò)對(duì)話交往,引導(dǎo)學(xué)生把對(duì)概念的感性認(rèn)識(shí)上升到理性認(rèn)識(shí),然后在圖形中進(jìn)行識(shí)別,從而認(rèn)識(shí)概念的本質(zhì)特征,理解概念的外延。在對(duì)話中,教師以民主的精神、平等的作風(fēng)、寬容的態(tài)度、真摯的愛(ài)心和悅納的情懷對(duì)待學(xué)生,在相互傾聽、接受和共享中獲得知識(shí),使教學(xué)相長(zhǎng)。同時(shí)由這個(gè)結(jié)論教師適時(shí)引出探索。
2.探索
(1)度量線段PA和PB的長(zhǎng)度;
(2)猜想:線段PA和PB之間的關(guān)系;
(3)尋找證明猜想的途徑;
(4)還能得出哪些結(jié)論?并把它們歸類。
【設(shè)計(jì)意圖】定理教學(xué)的方式是學(xué)生自主探索,相互交流相結(jié)合。首先出示探索步驟的前2個(gè),等學(xué)生猜想出結(jié)論后,再明確僅憑觀察、度量、猜想并不能說(shuō)明結(jié)論的正確性,還需證明結(jié)論的正確性,同時(shí)激勵(lì)學(xué)生尋找證明猜想的途徑。之后,再讓學(xué)生探索更多的結(jié)論。隨著一環(huán)緊扣一環(huán)的探索問(wèn)題的深入,學(xué)生通過(guò)自主地發(fā)現(xiàn)問(wèn)題、信息搜集與處理、表達(dá)與交流等探索活動(dòng),深度學(xué)習(xí)深度思考,獲得知識(shí)、技能,以及積極的、深層次的體驗(yàn),從而促進(jìn)學(xué)生探究能力的發(fā)展。
(5)運(yùn)用圖形運(yùn)動(dòng)的方法證實(shí)結(jié)論。
【設(shè)計(jì)意圖】在圓的許多重要性質(zhì)中,圓的對(duì)稱性(軸對(duì)稱、中心對(duì)稱及旋轉(zhuǎn)不變性)是最基本的性質(zhì),這里運(yùn)用圖形運(yùn)動(dòng)的方法對(duì)“切線長(zhǎng)定理”進(jìn)行證實(shí),強(qiáng)化學(xué)生對(duì)圓的對(duì)稱性的認(rèn)識(shí)。
3.歸納
線段相等:PA=PB;? ? ?OA=OB;
角相等:∠APO=∠BPO;? ∠AOP=∠BOP;
垂直關(guān)系:OA⊥PA;? ? OB⊥PB;
三角形全等:△OAP≌△OBP。
【設(shè)計(jì)意圖】培養(yǎng)學(xué)生總結(jié)歸納概括能力及表達(dá)能力,把知識(shí)納入系統(tǒng),便于學(xué)生存儲(chǔ)、提取和應(yīng)用。
定理:過(guò)圓外一點(diǎn)所畫的圓的兩條切線長(zhǎng)相等。
切線長(zhǎng)定理為證明線段相等提供了新的方法。
你會(huì)寫出定理的符號(hào)語(yǔ)言嗎?
數(shù)學(xué)符號(hào)語(yǔ)言:∵PA、PB分別是⊙O的切線,點(diǎn)A、B分別為切點(diǎn),∴PA=PB,
【設(shè)計(jì)意圖】數(shù)學(xué)符號(hào)語(yǔ)言能使定理的本質(zhì)含義變得更清晰更直觀,課堂上注重?cái)?shù)學(xué)符號(hào)語(yǔ)言的教學(xué),有助于培養(yǎng)和提高學(xué)生的數(shù)學(xué)符號(hào)意義獲得能力。
4.鞏固
(1)如圖,PA、PB是⊙O的切線,切點(diǎn)分別為A、B,過(guò)劣弧AB上一點(diǎn)C作⊙O的切線分別交PA、PB于點(diǎn)M、N,寫出圖中所有相等的線段? ? 。
若PA=12cm,則△PMN的周長(zhǎng)等于? cm。
(2)已知如圖,PA、PB分別與⊙O相切于點(diǎn)A、B,PO與⊙O相交于點(diǎn)D,且PA=4cm,PD=2cm。求半徑OA的長(zhǎng)。
(3)如圖,在以點(diǎn)O為圓心的兩個(gè)同心圓中,大圓的弦AB、AC分別與小圓相切于點(diǎn)D、E。AB與AC相等嗎?為什么?
【設(shè)計(jì)意圖】及時(shí)鞏固所學(xué)知識(shí),利用定理進(jìn)行有關(guān)的計(jì)算和證明。在第(2)題中進(jìn)一步滲透方程思想,熟悉用代數(shù)的方法解決幾何題。
5.小結(jié)
(1)通過(guò)本節(jié)課的實(shí)踐、探索、交流,你有哪些收獲?
【設(shè)計(jì)意圖】課堂小結(jié)有利于學(xué)生掌握本節(jié)的重點(diǎn)內(nèi)容,培養(yǎng)學(xué)生總結(jié)歸納的能力和語(yǔ)言表達(dá)能力。
(2)連結(jié)兩個(gè)切點(diǎn)AB交OP于點(diǎn)C,又能得出什么結(jié)論?
【設(shè)計(jì)意圖】在課堂探索結(jié)束之時(shí),鼓勵(lì)學(xué)生繼續(xù)進(jìn)行課后探索。以“課雖盡,思不止”之效,誘發(fā)學(xué)生深入探究的積極性,引起學(xué)生課后的回味和思索,并深化課堂教學(xué)內(nèi)容。
【參考文獻(xiàn)】
[1]鞠文燦.追求“深度學(xué)習(xí)”的課堂時(shí)間樣本[J].江蘇教育研究,263期
[2]劉瑞紅.基于深度學(xué)習(xí)發(fā)展數(shù)學(xué)核心素養(yǎng)的教學(xué)探索[J].求學(xué),2019(4),14-17
(蘇州工業(yè)園區(qū)星澄學(xué)校,江蘇 蘇州 215000)