一、教材分析
這節(jié)課是在初中學(xué)習(xí)的銳角三角函數(shù)的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)任意角的三角函數(shù)。任意角的三角函數(shù)通常是借助直角坐標(biāo)系來定義的。三角函數(shù)的定義是本章教學(xué)內(nèi)容的基本概念和重要概念,也是學(xué)習(xí)后續(xù)內(nèi)容的基礎(chǔ),更是學(xué)好本章內(nèi)容的關(guān)鍵。因此,要重點(diǎn)地體會、理解和掌握三角函數(shù)的定義。
二、學(xué)生情況分析
本課時(shí)研究的是任意角的三角函數(shù),學(xué)生在初中階段曾研究過銳角三角函數(shù),其研究范圍是銳角;其研究方法是幾何的,沒有坐標(biāo)系的參與;其研究目的是為解直角三角形服務(wù)。以上三點(diǎn)都是與本課時(shí)不同的,因此在教學(xué)過程中要發(fā)展學(xué)生的已有認(rèn)知經(jīng)驗(yàn),發(fā)揮其正遷移。
三、教學(xué)目標(biāo)
知識與能力:借助單位圓理解意角的三角函數(shù)(正弦、余弦、正切)的定義。(能根據(jù)任意角的三角函數(shù)的定義求出具體的角的各三角函數(shù)值。)
過程與方法:在學(xué)習(xí)的過程中,培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的思路。
情感態(tài)度與價(jià)值觀:讓學(xué)生積極參與知識的形成過程,經(jīng)歷知識的“發(fā)現(xiàn)”過程,獲得發(fā)現(xiàn)的“經(jīng)驗(yàn)”。
四、教學(xué)重點(diǎn)、難點(diǎn)分析
重點(diǎn):理解任意角三角函數(shù)(正弦、余弦、正切)的定義。
難點(diǎn):通過坐標(biāo)求任意角的三角函數(shù)值。
五、教學(xué)方法與策略
教學(xué)過程中采用學(xué)生自主探索、動(dòng)手實(shí)踐、合作交流、師生互動(dòng),教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生參與、揭示本質(zhì)、經(jīng)歷過程。根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認(rèn)知特點(diǎn),本節(jié)課采用“啟發(fā)探索、講練結(jié)合”的方法組織教學(xué)。
六、教學(xué)過程
問題1:現(xiàn)在請你回憶初中學(xué)過的銳角三角函數(shù)的定義,并思考一個(gè)問題:如果將銳角置于平面直角坐標(biāo)系中,如何用直角坐標(biāo)系中角的終邊上的點(diǎn)的坐標(biāo)表示銳角三角函數(shù)呢?
設(shè)計(jì)意圖:將已有知識坐標(biāo)化,分化難點(diǎn)。用新的觀點(diǎn)再認(rèn)識學(xué)生的已有知識經(jīng)驗(yàn),發(fā)揮其正遷移作用,同時(shí)使本課時(shí)的學(xué)習(xí)與學(xué)生的已有知識經(jīng)驗(yàn)緊密聯(lián)系,使知識有一個(gè)熟悉的起點(diǎn),扎實(shí)的固著點(diǎn)。)
預(yù)計(jì)的回答:學(xué)生可以回憶出初中學(xué)過的銳角三角函數(shù)的定義,但是在用坐標(biāo)語言表述時(shí)可能會出現(xiàn)困難——即使將角置于坐標(biāo)系中但是仍然習(xí)慣用三角形邊的比值表示銳角三角函數(shù),需要教師引導(dǎo)學(xué)生將之轉(zhuǎn)換為用終邊上的點(diǎn)的坐標(biāo)表示銳角三角函數(shù)。
問題2:回憶弧度制中1弧度角的幾何解釋,它是借助于單位圓給出的,能否從中得到啟示將上述定義的形式化簡,化簡的依據(jù)是什么?寫出最簡單的形式。
設(shè)計(jì)意圖:引入單位圓。深化對單位圓作用的認(rèn)識,用數(shù)學(xué)的簡潔美引導(dǎo)學(xué)生進(jìn)行研究,為定義的拓展奠定基礎(chǔ)。該問題與問題1結(jié)合,分步推進(jìn),降低難度,基本尊重教材的處理方式。
預(yù)計(jì)的困難:由于學(xué)生只接觸過一次單位圓,對它所能起的作用只有一般的了解,所以需要教師的引導(dǎo)。也可以引導(dǎo)學(xué)生從形式上對上述定義化簡,使得分母為1,之后通過分母的幾何意義將之與單位圓結(jié)合起來。
單位圓中定義銳角三角函數(shù):點(diǎn)P的坐標(biāo)為(x,y),那么銳角α的三角函數(shù)可以用坐標(biāo)表示為:
[sina=MPOP=y],[cosa=OMOP=x],[tana=MPOM=yx]。
問題3:大家現(xiàn)在能不能給出任意角的三角函數(shù)的定義。
設(shè)計(jì)意圖:引導(dǎo)學(xué)生在借助單位圓定義銳角三角函數(shù)的基礎(chǔ)上,進(jìn)一步給出任意角三角函數(shù)的定義。
有學(xué)生給出任意角三角函數(shù)的定義,教師進(jìn)行整理。
例1:(P12) 例2:(P12)
學(xué)生練習(xí):P15 練習(xí)1、2。
小結(jié):任意角的三角函數(shù)的定義。
作業(yè):P20 A組 1、2。
作者簡介
陳琳(1983—),女,回族,安徽人,碩士研究生,西藏民族大學(xué)附屬中學(xué),高中數(shù)學(xué)。