亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        An Extremal Problem on Lagrangians of Hypergraphs

        2016-03-17 01:06:49
        湖南師范大學自然科學學報 2016年1期
        關(guān)鍵詞:猜想

        ?

        An Extremal Problem on Lagrangians of Hypergraphs

        YAOYu-ping1*

        (College of Mathematics and Econometrics, Hunan University, Changsha 410082, China)

        KeywordsLagrangians;FranklandFürediconjecture;colexorder

        ForasetVandapositiveintegerr,letV(r)denotethefamilyofallr-subsetsofV.Anr-uniformgraphorr-graphGconsistsofasetV(G)ofverticesandasetE(G)?V(G)(r)ofedges.Anedgee={a1,a2,…,ar}willbesimplydenotedbya1a2…ar.Anr-graphHisasubgraphofanr-graphG,denotedbyH?GifV(H)?V(G)andE(H)?E(G).Thecomplementofanr-graphGisdenotedbyGc.Acompleter-graphontverticesisalsocalledacliqueofordert.LetNbethesetofallpositiveintegers.Foranyintegern∈N, we denote the set {1, 2, 3, …,n} by [n]. Let [n](r)represent the completer-uniform graph on the vertex set [n].

        In [1], Motzkin and Straus provided the following simple expression for the Lagrangian of a 2-graph.

        TheobviousgeneralizationofMotzkinandStraus’resulttohypergraphsisfalsebecausetherearemanyexamplesofhypergraphsthatdonotachievetheirLagrangianonanypropersubhypergraph.Indeed,estimatingtheLagrangianofahypergraphismuchdifficult.Lagrangiansofhypergraphshasbeenprovedtobeausefultoolinhypergraphextremalproblems.Inmostapplications,anupperboundoftheLagrangiansofcertainclassofhypergraphsisneeded.FranklandFüredi[2]askedthefollowingquestion.Givenr≥3andm∈N, how large can the Lagrangian of anr-graph withmedges be? For distinctA,B∈N(r)wesaythatAislessthanBinthecolexorderifmax(AΔB)∈B,whereAΔB=(AB)∪(BA).LetCr,mbether-uniformhypergraphwithmedgesformedbytakingthefirstmsetsinthecolexorderofN(r). The following conjecture of Frankl and Füredi (if it is true) provides a solution to the question mentioned at the beginning.

        Conjecture 1 (Frankl and Füredi[2]) IfGis ar-graph withmedges, thenλ(G)≤λ(Cr,m).

        Definition2Anr-graphG=([n],E)isleft-compressedifj1j2…jr∈Eimpliesi1i2…ir∈Eprovidedip≤jpforeveryp,1≤p≤r.

        Wearegoingtoprovethefollowingresult.

        Theremainingproofofthispaperisorganizedasfollows.InSection1,wegivesomepremilinaryresults.InSection2,wegivetheproofofTheorem2.

        1Preliminaries

        (1)

        Remark1Anr-graphG=([n],E)isleft-compressedifandonlyifEji=forany1≤i

        ThefollowinglemmagivessomenecessaryconditionsofanoptimalweightingforG.

        (a) In Lemma 1, part (Ⅰ) implies that

        In particular, ifGis left-compressed, then

        for anyi,jsatisfying 1≤i

        (b) IfGis left-compressed, then for anyi,jsatisfying 1≤i

        (2)

        holds. IfGis left-compressed andEij=fori,jsatisfying 1≤i

        x1≥x2≥…≥xn≥0.

        (3)

        We will also give some useful results to apply the following results in the proof.

        Sunetal.in[7]provedthatλ(G)≤λ(C3,m)if|EΔE″|≤8.Later,Sunetalextendedtheresults,whichisTheorem3.

        2ProofofTheorem2

        ProofofTheorem2LetGbethe3-graphsatisfyingconditionsofTheorem5.If[t-1](3)?G,thenbyTheorem4,wehaveλ(G)≤λ(C3,m).Otherwise,wewillprovethefollowinglemmaswhichimplyTheorem2.

        Next,wewillgivetheproofofLemma4-7.Infact,theproofsofotherthreelemmasaresimilartotheproofofLemma4.Weomitthedetailsoftheproofofotherlemmasandwillgiveonlyanoutlineoftheproofs.InSection2.1,wegivetheproofofLemma4.InSection2.2-2.4,wegivetheoutlineoftheproofofLemma4-7,respectively.

        2.1ProofofLemma4

        xt+xt-1+xt-2+…+xt-2-i+1-x1≥0.

        (4)

        To verify (4), we have

        (5)

        Let us continue our proof. We divide the proof into two cases:a=0 anda≥1.

        By Remark 2,

        (6)

        So

        (7)

        (8)

        (9)

        Then

        (10)

        (11)

        (13)

        Note that

        (14)

        where

        (15)

        and

        (16)

        (17)

        (18)

        (19)

        (20)

        By (4) (14), (18) and (20), we have

        (21)

        Therefore,λ(C3,m)≥λ(G′)≥λ(G).

        2.2OutlineoftheproofofLemma5

        We divide the prove into two parts:p=3 andp>3.

        PartⅠp=3,thenwehavej+1≥i.Wedividetheproveintotwocases: j≥2andj=1.

        2.3OutlineoftheProofofLemma6

        PartⅠp=3.Wedividethisproveintotwocases: i=1andi≥2.

        PartⅡp≥4.Wedivideourproofintotwocases: p=4, a=0andp≥5ora≥1.

        Case1p=4, a=0.Ifj=1,thenwehavei=1ori=2.Wedividethisproveintothreesubcases: j≥2; j=1, i=1; j=1, i=2.

        2.4OutlineofproofLemma7

        References:

        [1]MOTZKINTS,STRAUSEG.MaximaforgraphsandanewproofofatheoremofTurán[J].CanadJMath, 1965,17(1):533-540.

        [2]FRANKLP,FüREDIZ.Extremalproblemswhosesolutionsaretheblow-upsofthesmallWitt-designs[J].JCombinTheorSerA, 1989,52(5):129-147.

        [3]TALBOTJ.Lagrangiansofhypergraphs[J].CombinProbabComput, 2002,11(2):199-216.

        [4]PENGY,ZHAOC.AMotzkin-Straustyperesultfor3-uniformhypergraphs[J].JGraphsComb, 2013,29(3):681-694.

        [5]FRANKLP,R?DLV.Hypergraphsdonotjump[J].Combinatory, 1989,4(2-3):149-159.

        [6]TANGQS,PENGY,ZHANGXD, et al.Someresultsonlagrangiansofhypergraphs[J].DiscAppMath, 2013,166(3):222-238.

        [7]SUNYP,TANGQS,ZHAOC, et al.Onthelargestgraph-lagrangianof3-graphswithfixednumberofedges[J].JOptimizTheorAppl, 2013,163(1):57-79.

        (編輯HWJ)

        極值問題——超圖的拉格朗日

        姚宇萍*,彭岳建

        (湖南大學數(shù)學與計量經(jīng)濟學院,湖南 長沙410082)

        摘要設G=([t],E)是一個有m條邊的左壓的3-一致超圖,其中,并設[t-2](3)?G.本文證明,如果按同余字典序排列中最小元素是(t-p-i)(t-p)并且,則有λ(G)≤λ(C3,m).

        關(guān)鍵詞拉格朗日;Frankl and Füredi 猜想;同余字典序

        中圖分類號O157.5

        文獻標識碼A

        文章編號1000-2537(2015)06-0068-08

        *通訊作者,E-mail:yupingyao1989@163.com, PENG Yue-jian2

        基金項目:National Natural Science Foundation of China (No.11271116)

        收稿日期:2015-01-27

        DOI:10.7612/j.issn.1000-2537.2016.01.012

        猜你喜歡
        猜想
        重視初中學生直覺思維能力的培養(yǎng)
        考試周刊(2017年2期)2017-01-19 15:27:01
        繪本閱讀:學生言語智慧飛越的踏板
        數(shù)學課程中的創(chuàng)造教育淺議
        未來英才(2016年20期)2017-01-03 13:32:19
        合理猜想,有效驗證
        培養(yǎng)數(shù)學意識增強學生自主探究能力研究
        成才之路(2016年34期)2016-12-20 20:29:27
        培養(yǎng)學生猜想能力 營造高效物理課堂
        文理導航(2016年32期)2016-12-19 21:46:45
        數(shù)學教學中提升學生自主探究能力研究
        成才之路(2016年36期)2016-12-12 13:56:32
        讓“演示實驗”不僅僅止于演示
        小學生空間觀念培養(yǎng)微探
        “猜想與假設”在小學各年段有不同的要求
        考試周刊(2016年46期)2016-06-24 14:22:47
        成人国产精品免费视频| 国产成人精品一区二区三区av| 国内自拍色第一页第二页| 无码人妻丰满熟妇区五十路| 日韩精品视频在线观看无| 国产精品国产精品国产专区不卡 | 精品国产一区二区三区av免费| 四川丰满妇女毛片四川话| 午夜精品一区二区三区在线观看| 国产免费资源高清小视频在线观看 | 久青青草视频手机在线免费观看| 亚洲av色av成人噜噜噜| 日韩乱码中文字幕在线| 亚洲人成电影在线播放| 久久永久免费视频| 久久伊人中文字幕有码久久国产| 亚洲一区二区三区2021| 久久国产精品99精品国产| xxxx国产视频| 精品国产一品二品三品| 国产午夜亚洲精品国产成人av| 极品老师腿张开粉嫩小泬| 欧美人与动牲猛交xxxxbbbb| 中文字幕在线亚洲一区二区三区| 青青草久热手机在线视频观看 | 欧美日韩a级a| 亚洲综合精品一区二区| 亚洲美女毛多水多免费视频| 东北老女人高潮大喊舒服死了| 北条麻妃毛片在线视频| 国产av一区网址大全| 亚洲av日韩一区二区| 在线观看免费人成视频| 亚洲人成人一区二区三区 | 蜜桃视频成年人在线观看| 欧美牲交a欧美牲交aⅴ免费下载| 亚洲精品无码久久久久| 亚洲国产福利精品一区二区| 国产少妇一区二区三区| 特黄 做受又硬又粗又大视频| 国产欧美亚洲精品a|