亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        An Extremal Problem on Lagrangians of Hypergraphs

        2016-03-17 01:06:49
        湖南師范大學自然科學學報 2016年1期
        關(guān)鍵詞:猜想

        ?

        An Extremal Problem on Lagrangians of Hypergraphs

        YAOYu-ping1*

        (College of Mathematics and Econometrics, Hunan University, Changsha 410082, China)

        KeywordsLagrangians;FranklandFürediconjecture;colexorder

        ForasetVandapositiveintegerr,letV(r)denotethefamilyofallr-subsetsofV.Anr-uniformgraphorr-graphGconsistsofasetV(G)ofverticesandasetE(G)?V(G)(r)ofedges.Anedgee={a1,a2,…,ar}willbesimplydenotedbya1a2…ar.Anr-graphHisasubgraphofanr-graphG,denotedbyH?GifV(H)?V(G)andE(H)?E(G).Thecomplementofanr-graphGisdenotedbyGc.Acompleter-graphontverticesisalsocalledacliqueofordert.LetNbethesetofallpositiveintegers.Foranyintegern∈N, we denote the set {1, 2, 3, …,n} by [n]. Let [n](r)represent the completer-uniform graph on the vertex set [n].

        In [1], Motzkin and Straus provided the following simple expression for the Lagrangian of a 2-graph.

        TheobviousgeneralizationofMotzkinandStraus’resulttohypergraphsisfalsebecausetherearemanyexamplesofhypergraphsthatdonotachievetheirLagrangianonanypropersubhypergraph.Indeed,estimatingtheLagrangianofahypergraphismuchdifficult.Lagrangiansofhypergraphshasbeenprovedtobeausefultoolinhypergraphextremalproblems.Inmostapplications,anupperboundoftheLagrangiansofcertainclassofhypergraphsisneeded.FranklandFüredi[2]askedthefollowingquestion.Givenr≥3andm∈N, how large can the Lagrangian of anr-graph withmedges be? For distinctA,B∈N(r)wesaythatAislessthanBinthecolexorderifmax(AΔB)∈B,whereAΔB=(AB)∪(BA).LetCr,mbether-uniformhypergraphwithmedgesformedbytakingthefirstmsetsinthecolexorderofN(r). The following conjecture of Frankl and Füredi (if it is true) provides a solution to the question mentioned at the beginning.

        Conjecture 1 (Frankl and Füredi[2]) IfGis ar-graph withmedges, thenλ(G)≤λ(Cr,m).

        Definition2Anr-graphG=([n],E)isleft-compressedifj1j2…jr∈Eimpliesi1i2…ir∈Eprovidedip≤jpforeveryp,1≤p≤r.

        Wearegoingtoprovethefollowingresult.

        Theremainingproofofthispaperisorganizedasfollows.InSection1,wegivesomepremilinaryresults.InSection2,wegivetheproofofTheorem2.

        1Preliminaries

        (1)

        Remark1Anr-graphG=([n],E)isleft-compressedifandonlyifEji=forany1≤i

        ThefollowinglemmagivessomenecessaryconditionsofanoptimalweightingforG.

        (a) In Lemma 1, part (Ⅰ) implies that

        In particular, ifGis left-compressed, then

        for anyi,jsatisfying 1≤i

        (b) IfGis left-compressed, then for anyi,jsatisfying 1≤i

        (2)

        holds. IfGis left-compressed andEij=fori,jsatisfying 1≤i

        x1≥x2≥…≥xn≥0.

        (3)

        We will also give some useful results to apply the following results in the proof.

        Sunetal.in[7]provedthatλ(G)≤λ(C3,m)if|EΔE″|≤8.Later,Sunetalextendedtheresults,whichisTheorem3.

        2ProofofTheorem2

        ProofofTheorem2LetGbethe3-graphsatisfyingconditionsofTheorem5.If[t-1](3)?G,thenbyTheorem4,wehaveλ(G)≤λ(C3,m).Otherwise,wewillprovethefollowinglemmaswhichimplyTheorem2.

        Next,wewillgivetheproofofLemma4-7.Infact,theproofsofotherthreelemmasaresimilartotheproofofLemma4.Weomitthedetailsoftheproofofotherlemmasandwillgiveonlyanoutlineoftheproofs.InSection2.1,wegivetheproofofLemma4.InSection2.2-2.4,wegivetheoutlineoftheproofofLemma4-7,respectively.

        2.1ProofofLemma4

        xt+xt-1+xt-2+…+xt-2-i+1-x1≥0.

        (4)

        To verify (4), we have

        (5)

        Let us continue our proof. We divide the proof into two cases:a=0 anda≥1.

        By Remark 2,

        (6)

        So

        (7)

        (8)

        (9)

        Then

        (10)

        (11)

        (13)

        Note that

        (14)

        where

        (15)

        and

        (16)

        (17)

        (18)

        (19)

        (20)

        By (4) (14), (18) and (20), we have

        (21)

        Therefore,λ(C3,m)≥λ(G′)≥λ(G).

        2.2OutlineoftheproofofLemma5

        We divide the prove into two parts:p=3 andp>3.

        PartⅠp=3,thenwehavej+1≥i.Wedividetheproveintotwocases: j≥2andj=1.

        2.3OutlineoftheProofofLemma6

        PartⅠp=3.Wedividethisproveintotwocases: i=1andi≥2.

        PartⅡp≥4.Wedivideourproofintotwocases: p=4, a=0andp≥5ora≥1.

        Case1p=4, a=0.Ifj=1,thenwehavei=1ori=2.Wedividethisproveintothreesubcases: j≥2; j=1, i=1; j=1, i=2.

        2.4OutlineofproofLemma7

        References:

        [1]MOTZKINTS,STRAUSEG.MaximaforgraphsandanewproofofatheoremofTurán[J].CanadJMath, 1965,17(1):533-540.

        [2]FRANKLP,FüREDIZ.Extremalproblemswhosesolutionsaretheblow-upsofthesmallWitt-designs[J].JCombinTheorSerA, 1989,52(5):129-147.

        [3]TALBOTJ.Lagrangiansofhypergraphs[J].CombinProbabComput, 2002,11(2):199-216.

        [4]PENGY,ZHAOC.AMotzkin-Straustyperesultfor3-uniformhypergraphs[J].JGraphsComb, 2013,29(3):681-694.

        [5]FRANKLP,R?DLV.Hypergraphsdonotjump[J].Combinatory, 1989,4(2-3):149-159.

        [6]TANGQS,PENGY,ZHANGXD, et al.Someresultsonlagrangiansofhypergraphs[J].DiscAppMath, 2013,166(3):222-238.

        [7]SUNYP,TANGQS,ZHAOC, et al.Onthelargestgraph-lagrangianof3-graphswithfixednumberofedges[J].JOptimizTheorAppl, 2013,163(1):57-79.

        (編輯HWJ)

        極值問題——超圖的拉格朗日

        姚宇萍*,彭岳建

        (湖南大學數(shù)學與計量經(jīng)濟學院,湖南 長沙410082)

        摘要設G=([t],E)是一個有m條邊的左壓的3-一致超圖,其中,并設[t-2](3)?G.本文證明,如果按同余字典序排列中最小元素是(t-p-i)(t-p)并且,則有λ(G)≤λ(C3,m).

        關(guān)鍵詞拉格朗日;Frankl and Füredi 猜想;同余字典序

        中圖分類號O157.5

        文獻標識碼A

        文章編號1000-2537(2015)06-0068-08

        *通訊作者,E-mail:yupingyao1989@163.com, PENG Yue-jian2

        基金項目:National Natural Science Foundation of China (No.11271116)

        收稿日期:2015-01-27

        DOI:10.7612/j.issn.1000-2537.2016.01.012

        猜你喜歡
        猜想
        重視初中學生直覺思維能力的培養(yǎng)
        考試周刊(2017年2期)2017-01-19 15:27:01
        繪本閱讀:學生言語智慧飛越的踏板
        數(shù)學課程中的創(chuàng)造教育淺議
        未來英才(2016年20期)2017-01-03 13:32:19
        合理猜想,有效驗證
        培養(yǎng)數(shù)學意識增強學生自主探究能力研究
        成才之路(2016年34期)2016-12-20 20:29:27
        培養(yǎng)學生猜想能力 營造高效物理課堂
        文理導航(2016年32期)2016-12-19 21:46:45
        數(shù)學教學中提升學生自主探究能力研究
        成才之路(2016年36期)2016-12-12 13:56:32
        讓“演示實驗”不僅僅止于演示
        小學生空間觀念培養(yǎng)微探
        “猜想與假設”在小學各年段有不同的要求
        考試周刊(2016年46期)2016-06-24 14:22:47
        亚洲女同成av人片在线观看 | 在线不卡中文字幕福利| 在线观看的a站免费完整版| 色婷婷激情在线一区二区三区| 大陆少妇一区二区三区| 妺妺跟我一起洗澡没忍住| 中国老妇女毛茸茸bbwbabes| 国产人成亚洲第一网站在线播放| 日本一道高清在线一区二区| 日本精品视频一区二区三区四区| 夜夜躁狠狠躁日日躁视频| 无码精品国产va在线观看| 欧美成人高清手机在线视频| 亚洲成人av一区二区麻豆蜜桃| 国产成人一区二区三区影院| 亚洲一区二区三区内裤视| 亚洲国产成人久久综合下载| 精品国产免费Av无码久久久| 日日麻批视频免费播放器| 成人免费自拍视频在线观看| 无码成人aaaaa毛片| 国产午夜视频免费观看| 精品国产日韩亚洲一区在线| 国产精品久久久亚洲| 久久精品久久久久观看99水蜜桃 | 国产香蕉一区二区三区在线视频| 精品视频999| 俺来也三区四区高清视频在线观看 | 日本公妇在线观看中文版| 日本少妇按摩高潮玩弄| 亚洲午夜经典一区二区日韩| 午夜影视免费| 国产大陆亚洲精品国产| 欧美在线成人免费国产| 久久日本视频在线观看| 777米奇色8888狠狠俺去啦| 国产日韩亚洲欧洲一区二区三区| 国产成人自拍视频视频| 18国产精品白浆在线观看免费| 少妇高潮惨叫久久久久久| 日韩人妻高清福利视频|