陳麗紅 方文波
摘 要:通過(guò)分析當(dāng)前高等數(shù)學(xué)教學(xué)時(shí)所面對(duì)的教育信息化現(xiàn)狀,PPT課件輔助高等數(shù)學(xué)教學(xué)時(shí)的優(yōu)勢(shì)以及一些不足,采用高等數(shù)學(xué)圖形系統(tǒng)(MathGS)進(jìn)行高等數(shù)學(xué)教學(xué)的一些嘗試,突出多媒體的交互性功能,增強(qiáng)課件制作的實(shí)效性,把現(xiàn)代教育技術(shù)引入到高等數(shù)學(xué)教學(xué)中,教師可以借助現(xiàn)代教育技術(shù)搜集、加工、處理和傳遞高等數(shù)學(xué)教學(xué)信息,讓學(xué)生感受到和體會(huì)到現(xiàn)代教育技術(shù)在高等數(shù)學(xué)中的優(yōu)勢(shì)。
關(guān)鍵詞:高等數(shù)學(xué) 高等數(shù)學(xué)圖形系統(tǒng)(MathGS) 教學(xué)教育信息化
中圖分類(lèi)號(hào):G642 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1674-098X(2015)02(a)-0125-02
隨著信息技術(shù)的飛速發(fā)展,教育信息化在世界范圍內(nèi)已受到各國(guó)政府的高度重視。我國(guó)政府于2010年7月正式發(fā)布了《國(guó)家中長(zhǎng)期教育改革和發(fā)展規(guī)劃綱要(2010—2020年)》[1],教育部于2012年3月正式發(fā)布了《教育信息化十年發(fā)展規(guī)劃(2010—2020年)》。在這兩個(gè)綱領(lǐng)性文件中明確指出:加快教育信息基礎(chǔ)設(shè)施的建設(shè),把教育信息化納入國(guó)家信息化發(fā)展的整體戰(zhàn)略,基本建成覆蓋城鄉(xiāng)各級(jí)各類(lèi)學(xué)校的數(shù)字化教育服務(wù)體系,促進(jìn)教育內(nèi)容,教學(xué)手段和方法的現(xiàn)代化[2]。
在高等學(xué)校中,高等數(shù)學(xué)是理工科、財(cái)經(jīng)類(lèi)等專(zhuān)業(yè)的一門(mén)重要基礎(chǔ)課,它對(duì)培養(yǎng)學(xué)生的抽象思維能力、邏輯推理能力、空間想象能力和科學(xué)計(jì)算能力等都可以起到很大的幫助,這一點(diǎn)是其他課程無(wú)法替代的。而這門(mén)課學(xué)習(xí)的好壞直接關(guān)系到后續(xù)專(zhuān)業(yè)課程的學(xué)習(xí)。因此,如何讓學(xué)生更加有效的學(xué)習(xí)高等數(shù)學(xué),使學(xué)生可以靈活的運(yùn)用數(shù)學(xué)知識(shí)、數(shù)學(xué)思維解決實(shí)際問(wèn)題是大學(xué)數(shù)學(xué)教育工作者一直以來(lái)追求的目標(biāo)。
以現(xiàn)代教育技術(shù)為主導(dǎo)的現(xiàn)代教育技術(shù)觀應(yīng)該是全方位的,重視硬件建設(shè)的同時(shí)也應(yīng)該重視軟件建設(shè)。信息技術(shù)和網(wǎng)絡(luò)技術(shù)的飛速發(fā)展,為高等數(shù)學(xué)的教學(xué)帶來(lái)了極大的活力[3]。由于信息資源日益突出的重要性,高等數(shù)學(xué)這門(mén)課程也不再是預(yù)先規(guī)定好的凝固不變的知識(shí)結(jié)構(gòu),而是不斷變動(dòng),不斷更新的教育媒體,把整個(gè)教學(xué)過(guò)程應(yīng)看作是一個(gè)信息系統(tǒng)在運(yùn)作。現(xiàn)代教育技術(shù)引入到高等數(shù)學(xué)教學(xué)中,高等數(shù)學(xué)授課教師可以借助現(xiàn)代教育技術(shù)搜集、加工、處理和傳遞高等數(shù)學(xué)教學(xué)信息,學(xué)生可以借助現(xiàn)代教育技術(shù)查詢、探索、接受和加工高等數(shù)學(xué)教學(xué)信息,高等數(shù)學(xué)授課教師要讓學(xué)生感受到和體會(huì)到現(xiàn)代教育技術(shù)在高等數(shù)學(xué)中的優(yōu)勢(shì)。同時(shí),也讓學(xué)生逐漸熟悉和掌握現(xiàn)代教育技術(shù)環(huán)境下的新型學(xué)習(xí)模式和學(xué)習(xí)方法。學(xué)生所要學(xué)習(xí)的高等數(shù)學(xué)不僅僅是以課本為載體的信息,聲音、圖像等多元化的信息也作為教學(xué)內(nèi)容引入到高等數(shù)學(xué)課堂教學(xué)中[4]。
在高等數(shù)學(xué)中,空間解析幾何是學(xué)生最不容易理解的知識(shí)之一。很多學(xué)生缺乏空間想象能力,對(duì)課本上的空間解析幾何圖形理解差,對(duì)于常用的柱面、旋轉(zhuǎn)面及二次曲面的圖形特點(diǎn)掌握不好,而這些知識(shí)的熟練掌握對(duì)學(xué)好后面的多元函數(shù)微分學(xué)與積分學(xué)等知識(shí)是必不可少的。目前許多講授高等數(shù)學(xué)的老師在講這一章時(shí)大多采用黑板、粉筆加上PPT課件教學(xué),這樣可以通過(guò)一些圖形或者動(dòng)畫(huà)使學(xué)生理解起來(lái)較為容易。但是PPT的動(dòng)畫(huà)制作需要花費(fèi)老師的大量時(shí)間,大多數(shù)只是單向演示型,教師只能播放事先做好的圖片或動(dòng)畫(huà),不可能把所有圖形都準(zhǔn)備好,即使都做好了,也不可能都在課堂上演示,而且對(duì)于學(xué)生理解或不理解的內(nèi)容不太好選擇,最關(guān)鍵的是做好之后在課堂上不能隨著教學(xué)需要實(shí)時(shí)更改,比如說(shuō)函數(shù)發(fā)生了變化,圖形應(yīng)該相應(yīng)發(fā)生變化等等之類(lèi)。由于這些都是事先做好而不能及時(shí)了解學(xué)生的需求,因而難以滿足師生互動(dòng)或人機(jī)互動(dòng)的教學(xué)要求。有些老師用MATLAB或CAJ畫(huà)圖來(lái)解決這一問(wèn)題,但并不是每個(gè)教授高等數(shù)學(xué)的老師都會(huì)使用MATLAB或CAJ這些軟件,因此不具有全面性。
我們這里在處理這些內(nèi)容時(shí)采用方文波老師研制的高等數(shù)學(xué)圖形系統(tǒng)(MatheGS)輔助教學(xué),力圖使同學(xué)們?cè)趯W(xué)習(xí)這一些內(nèi)容時(shí)能夠覺(jué)得生動(dòng)形象。高等數(shù)學(xué)圖形系統(tǒng)不需安裝,可直接在Windows下運(yùn)行;系統(tǒng)小巧,可拷入U(xiǎn)盤(pán),攜帶方便;使用簡(jiǎn)單,不需編程,用戶只需具備高中及以上的數(shù)學(xué)知識(shí)和掌握基本的Windows操作即能使用;能繪制任何曲線(包括顯式曲線和隱式曲線)和曲面(包括顯式曲面和隱式曲面);用戶在繪圖時(shí),系統(tǒng)提供了兩種函數(shù)確定模式:選擇函數(shù)和輸入函數(shù);在選擇函數(shù)模式中,將常見(jiàn)的曲線和曲面的方程內(nèi)植在系統(tǒng)中,用戶只需單擊這些函數(shù)方程即可實(shí)現(xiàn)繪圖,以節(jié)省時(shí)間。在輸入函數(shù)模式中,用戶可自行輸入函數(shù)進(jìn)行繪圖?,F(xiàn)在以旋轉(zhuǎn)曲面為例具體說(shuō)明一下。
比如說(shuō)我們要畫(huà)一個(gè)圓錐面就可以在選擇函數(shù)里首先選擇直線方程然后確定參數(shù)繞x軸旋轉(zhuǎn)繪圖,選擇動(dòng)畫(huà)出現(xiàn)圖1效果圖。
如果學(xué)生覺(jué)得圓錐面太簡(jiǎn)單,可以考慮再換一個(gè)稍微復(fù)雜一點(diǎn)的旋轉(zhuǎn)曲面如旋轉(zhuǎn)拋物面,在選擇函數(shù)里選擇方程確定參數(shù)繞x軸旋轉(zhuǎn)繪圖,選擇動(dòng)畫(huà)出現(xiàn)圖2效果圖。
對(duì)于單葉雙曲面這個(gè)圖形從旋轉(zhuǎn)曲面的角度來(lái)看,學(xué)生還很容易接受。但大多同學(xué)不理解為什么單葉雙曲面會(huì)是一個(gè)直紋面,以及雙曲拋物面也是一個(gè)直紋面?這個(gè)可以在課堂上直接用高等數(shù)學(xué)圖形系統(tǒng)給學(xué)生演示,讓他們直觀的看見(jiàn)一條直線繞另一條直線旋轉(zhuǎn)也可以得到單葉雙曲面。如圖3所示。
運(yùn)用高等數(shù)學(xué)圖形系統(tǒng)(MatheGS)系統(tǒng),可以在課堂上隨時(shí)修改參數(shù)的值,觀察圖形的變化,起到一種立竿見(jiàn)影的效果。還可以根據(jù)教學(xué)需要更改函數(shù),觀察不同的曲線所形成的曲面,直觀、具體,使學(xué)生更加容易掌握這一類(lèi)知識(shí)。
在高等數(shù)學(xué)中函數(shù)展開(kāi)成冪級(jí)數(shù)也是學(xué)生不容易理解的內(nèi)容之一,特別是當(dāng)函數(shù)滿足一定條件時(shí)可以用多項(xiàng)式逼近函數(shù),這個(gè)可以直接用定理來(lái)計(jì)算,但怎么會(huì)是這樣的結(jié)論學(xué)生無(wú)法直接理解。這時(shí)我們可以用高等數(shù)學(xué)圖形系統(tǒng)(MatheGS)里面的函數(shù)逼近來(lái)直觀的展示一下逼近的效果。可以從低階多項(xiàng)式逼近,到高階多項(xiàng)式逼近,具體多少階多項(xiàng)式逼近可以在課堂上即刻選擇,作圖,讓學(xué)生觀察在逼近過(guò)程中圖形的變化,更形象、生動(dòng),從而達(dá)到學(xué)生理解并牢固掌握這一內(nèi)容的目的。
在高等數(shù)學(xué)中,對(duì)教師來(lái)講把積分的定義用分割、近似、求和、取極限這幾步來(lái)做講清楚還是有些難度的,用高等數(shù)學(xué)圖形系統(tǒng)(MatheGS)輔助講解將有助于學(xué)生更好地理解這一部分內(nèi)容。例如用里面的求曲邊梯形的面積來(lái)闡述定積分的定義,可以通過(guò)任意加大分割的次數(shù)來(lái)讓學(xué)生理解:為什么分割越細(xì)矩形面積越接近曲邊梯形的面積,可以更好地理解取極限的意義。
最后這個(gè)系統(tǒng)對(duì)電腦,對(duì)老師沒(méi)有多的附加要求,只要是教授高等數(shù)學(xué)的老師都可以直接運(yùn)用。我們這里只是借助幾個(gè)例子來(lái)說(shuō)明一下在《高等數(shù)學(xué)》這一門(mén)課的教學(xué)中可以更廣泛的采用多種信息手段以達(dá)到讓學(xué)生掌握知識(shí)點(diǎn)的目的。
參考文獻(xiàn)
[1] 《國(guó)家中長(zhǎng)期教育改革和發(fā)展規(guī)劃綱要(2010—2020年)》[Z].
[2] 《教育信息化十年發(fā)展規(guī)劃(2010—2020年)》[Z].
[3] 張穎,吳建華.高等數(shù)學(xué)多媒體輔助教學(xué)的實(shí)踐與思考[J].高等數(shù)學(xué)研究,2006,9(4):111-112.
[4] 嚴(yán)露.關(guān)于大學(xué)高等數(shù)學(xué)教學(xué)改革的探討[J].現(xiàn)代閱讀,2012(9):19.
[5] 杜彥娟.高等數(shù)學(xué)課堂自主探究式教學(xué)模式的研究[J].煤炭技術(shù),2013,32(1):255-256.
[6] 李銘洋,曹萍萍.MATLAB在高等數(shù)學(xué)實(shí)驗(yàn)中的應(yīng)用[J].沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào):社會(huì)科學(xué)版,2009,11(6):722-725.