陳雨彤
【摘要】普通高中數(shù)學課程標準中指出:高中數(shù)學教程務(wù)必做到以學生發(fā)展為中心,做到立德樹人,重點培養(yǎng)學生的科學精神與創(chuàng)新思維,并進一步提高其數(shù)學素養(yǎng).高中數(shù)學教程必須面向所有學生,確保每一名學生均能夠得到較為良好的數(shù)學教育,讓每個人均能夠在數(shù)學水平上得到較大提升.從一定意義上來說,高中數(shù)學教學是以發(fā)展學生數(shù)學學科核心素養(yǎng)(數(shù)學抽象、邏輯推理、數(shù)學建模、直觀想象、數(shù)學運算和數(shù)據(jù)分析)為重要導向的,營造出更為科學的教學情景,從而讓學生學會獨立思考,并逐漸形成創(chuàng)新思維,充分了解數(shù)學的本質(zhì).
【關(guān)鍵詞】新課標;高中數(shù)學;課堂教學;核心素養(yǎng)
隨著新課程標準的不斷深入,對每一位高中數(shù)學教師都提出了新的要求,接下來,筆者會重點針對怎樣開展新課標下的高中數(shù)學教學,提升學生數(shù)學核心素養(yǎng)展開深入分析與解讀,并表達個人的理解與觀點.
一、制訂合理的教學目標,凸顯數(shù)學學科核心素養(yǎng)
數(shù)學學科核心素養(yǎng)通常是在數(shù)學學習中逐漸產(chǎn)生的,并且是數(shù)學課程目標的重要體現(xiàn),對于學生更深入地了解數(shù)學知識,掌握數(shù)學內(nèi)涵有著較為重要的意義和價值.教師在設(shè)置教學目標的過程當中,應(yīng)當高度重視對于數(shù)學學科核心素養(yǎng)的培育,所有的教學工作均應(yīng)該以培育這一素養(yǎng)來展開,從而提高教學成效;要更加深入而全面地認識數(shù)學學科核心素養(yǎng)的基本內(nèi)涵與內(nèi)在要求;要依據(jù)相應(yīng)的教學任務(wù),將這一核心素養(yǎng)融入其中;要及時協(xié)調(diào)好核心素養(yǎng)和教學內(nèi)容間的具體聯(lián)系;要關(guān)注數(shù)學學科核心素養(yǎng)目標在教學過程中的可實現(xiàn)性,研究其融入教學內(nèi)容和教學過程的具體方式及載體,在此基礎(chǔ)上確定教學目標.
在實際教學過程中,教師不單單要高度重視每節(jié)課的教學任務(wù)與目標,還應(yīng)該重視各章節(jié)、各部分的教學目標與任務(wù).在制訂教學目標時,要明確學生數(shù)學學科核心素養(yǎng)發(fā)展的各個階段之間的聯(lián)系,合理設(shè)計各類課程的教學目標.例如,在“函數(shù)單調(diào)性”這一節(jié)的教學中,一是借助初等函數(shù)的圖像直觀理解函數(shù)單調(diào)性的含義,感悟函數(shù)的整體單調(diào)和部分區(qū)間單調(diào).通過代數(shù)求解(特別關(guān)注最大(?。┲岛凸拯c),驗證函數(shù)的單調(diào)性以及單調(diào)性與自變量變化區(qū)間的關(guān)系;用導函數(shù)進一步刻畫函數(shù)的單調(diào)性,把握函數(shù)單調(diào)性的本質(zhì)是變化趨勢.以知識的邏輯聯(lián)系為線索組織內(nèi)容,學生可以對函數(shù)單調(diào)性的認識逐漸深刻,表達逐漸清晰.二是以函數(shù)的其他性質(zhì)為線索.例如,考察初等函數(shù)的單調(diào)性與對稱性、周期性、最大(?。┲抵g的關(guān)系,分析這幾個性質(zhì)的共性與差異.學生可以通過比較函數(shù)的不同性質(zhì),進一步加深對函數(shù)概念的理解,通過數(shù)形結(jié)合,直觀把握函數(shù)圖像及其性質(zhì),同時可以通過生活中的具體實例,感受函數(shù)圖像、函數(shù)性質(zhì)在實際生活中的應(yīng)用,特別是求函數(shù)的最大、最小值,感受正是由于函數(shù)具備多種特性,才使其能夠發(fā)展為展現(xiàn)世界變化規(guī)律的重要載體與工具.
教師要明確數(shù)學教學目標的制訂對推動課堂教學的重要意義.教學目標的制訂要根據(jù)學生的實際情況,要以考慮學生之間的差異為前提,制訂滿足全體學生的教學目標.教師要深入分析和把握教材內(nèi)容,同時深入學生群體,了解他們的學習情況,注重個體差異,多進行教學反饋來實現(xiàn)目標,完善課堂教學的目標和方法,學生在明確課堂教學目標的基礎(chǔ)上,才會激發(fā)學習興趣,提高學習動力,從而提高數(shù)學成績.
二、創(chuàng)設(shè)問題情境,激發(fā)學生的學習興趣
新課標明確提出,情境創(chuàng)設(shè)和問題設(shè)計要有利于發(fā)展數(shù)學學科核心素養(yǎng),要能夠充分掌握數(shù)學的本質(zhì)內(nèi)涵,進而在情景教學過程中提出一些更具創(chuàng)見性的問題,讓學生去分析和解決,在這一過程中逐漸提升其數(shù)學學科核心素養(yǎng).例如,可以通過數(shù)學實驗來創(chuàng)設(shè)問題情境,在講解“直線的傾斜角和斜率”這一知識點時,課前可以讓學生測量家里或者學校的樓梯的寬度及高度,計算樓梯的坡度來刻畫樓梯的傾斜程度,類比得到直線的傾斜程度.這能讓學生動手實驗操作,經(jīng)歷知識構(gòu)建的過程,從而加深對知識的理解.例如,在停車距離問題中,可以根據(jù)現(xiàn)實問題,構(gòu)建停車距離數(shù)學模型,并根據(jù)模型得到的結(jié)果,就行車安全提出建議.在這個過程中,以生活中的實例為背景,創(chuàng)設(shè)問題情境,讓學生親身經(jīng)歷數(shù)學建模的過程.再如在“指數(shù)函數(shù)”教學中,教師可具體結(jié)合學生在博物館參觀動物化石與歷史文物的經(jīng)歷,為他們設(shè)置一系列問題,比如:在參觀過程中,我們會看到每一個動物化石與歷史文物旁邊均標有年代信息,那么問題來了,考古研究者是怎樣推測出其所處年代的?針對這一問題,教師可以引出指數(shù)函數(shù)的定義.
設(shè)計合適的教學情境、提出合適的數(shù)學問題是有挑戰(zhàn)性的,也為教師的實踐創(chuàng)新提供了平臺.這也要求教師不斷學習、探索、研究、實踐,提升自己的數(shù)學素養(yǎng),了解數(shù)學知識之間、數(shù)學與生活、數(shù)學與其他學科的聯(lián)系,設(shè)計出符合學生認知特點,并且有助于進一步提高其數(shù)學學科核心素養(yǎng)的經(jīng)典案例,在案例解讀與分析過程中讓學生感受數(shù)學的魅力,并逐漸形成數(shù)學思維.在課堂教學中創(chuàng)設(shè)出合適的教學情景,提出合理的問題情境,能夠讓學生在參與活動的同時體驗數(shù)學知識的奧秘,這樣通過數(shù)學活動得到的知識學生更容易接收、掌握.
在課堂教學中,教師要結(jié)合各種生活中的數(shù)學問題設(shè)置新穎的問題,利用多種學科中和數(shù)學相關(guān)的素材,設(shè)置問題情境,開展豐富的課堂活動,激發(fā)學生的求知欲,使學生在輕松、民主的環(huán)境中學習,提高學生的數(shù)學核心素養(yǎng),從而激發(fā)學生的學習興趣.
三、把握教學內(nèi)容,促進數(shù)學學科核心素養(yǎng)的連續(xù)性、階段性發(fā)展
從一定層面上來說,數(shù)學學科核心素養(yǎng)的發(fā)展是具備階段性特征的.因此,教師務(wù)必始終堅持以數(shù)學學科核心素養(yǎng)為重要導向,重點針對函數(shù)、幾何代數(shù)、概率與統(tǒng)計等內(nèi)容進行詳細講解和分析,從而進一步明確這一核心素養(yǎng)在發(fā)展過程中所呈現(xiàn)出的階段性與連續(xù)性,幫助學生從整體層面入手去全面了解課程內(nèi)容,并提高自身的數(shù)學素養(yǎng).
例如,在“三角函數(shù)”教學中,要整體把握三角函數(shù)的定義、三角函數(shù)的圖像與性質(zhì),要充分滲透數(shù)形結(jié)合的思想,利用函數(shù)圖像的直觀性研究函數(shù)的性質(zhì),同時,還可以綜合運用函數(shù)性質(zhì)展示函數(shù)圖像,這不僅有助于學生深入了解函數(shù)性質(zhì),還能夠促使其養(yǎng)成數(shù)形結(jié)合的思維模式.此外,同角三角函數(shù)的基本關(guān)系與誘導公式也是較為關(guān)鍵的教學內(nèi)容,其中,證明三角恒等式、化簡三角函數(shù)式等均需要應(yīng)用這些知識.教師要把握知識之間的聯(lián)系,將數(shù)學思想滲透在教學中,充分提升學生的數(shù)學學科核心素養(yǎng).
數(shù)學建模與數(shù)學探究是進一步提升學生數(shù)學學科核心素養(yǎng)的重要方式,在培育其核心素養(yǎng)的過程中發(fā)揮著較為重要的作用.所以,教師應(yīng)當合理開展數(shù)學建模活動和數(shù)學探究活動,讓學生在參與活動的過程中發(fā)現(xiàn)、分析并解決問題,進而逐漸養(yǎng)成條理明晰的解題思維,在以后遇到數(shù)學問題的時候能夠獨立、快速地予以解決.
數(shù)學文化應(yīng)融入數(shù)學教學活動.例如解析幾何教學可滲透數(shù)形結(jié)合的思想,在學習中可以向?qū)W生介紹一點數(shù)學史.17世紀笛卡爾借助坐標系建立起平面上的點和數(shù)之間的對應(yīng)關(guān)系,使得用方程表示曲線變成可能,解析幾何的出現(xiàn)將空間形式的研究轉(zhuǎn)化為數(shù)量關(guān)系的研究,如兩點間的距離.如果兩點的坐標(x1,y1)和(x2,y2)給定,則兩點間的距離就表示為代數(shù)式√(x2-x1)2+(y2-y1)2,于是將兩點間距離的測量問題轉(zhuǎn)化為求代數(shù)式的值的問題.笛卡爾創(chuàng)立了坐標系,才使得負數(shù)有了幾何解釋.數(shù)學史、數(shù)學文化的滲透,讓學生充分認識數(shù)學的發(fā)展脈絡(luò)與演變流程,知曉數(shù)學知識在科技領(lǐng)域、社會發(fā)展過程中的關(guān)鍵性作用,從而進一步提升學生的科學精神、應(yīng)用意識和人文素養(yǎng).將數(shù)學文化融入教學,能夠充分調(diào)動學生參與數(shù)學學習的積極性與熱情,讓其更加深入地了解數(shù)學,進而逐漸形成數(shù)學思維.
四、引導學生自我反思,重視教與學,促進學生學會學習
教師應(yīng)當將工作的重點放在引導學生理解課本知識,并提高其成績水平上來.要想做到這一點,教師要及時調(diào)整教學模式,并進一步豐富教學內(nèi)容,讓整個教學過程變得更加靈活、輕松.同時,教師還應(yīng)引導學生及時對所學知識進行反思,可通過設(shè)置疑惑性問題、開放性問題等引導學生自我反思.例如已知橢圓x28+y22=1,直線過橢圓的右焦點F2,且與橢圓交于A,B兩點,試補充一個條件,求弦AB所在直線的方程.學生通過積極思考,小組討論,給出了很多補充條件,并且給出了解題過程.學生給出的條件如下:①AB=4,②直線的傾斜角為60°,③點A的橫坐標為1,④弦AB的中點的橫坐標為12,⑤AF2∶BF2=1∶2,⑥OA⊥OB,⑦S△AOB=2等.通過這種開放性的問題,引導學生積極思考,探索知識之間的聯(lián)系,對弦長公式、直線方程、韋達定理等知識點進行回顧與反思,激發(fā)了學生的學習興趣.
教師還要注意加強學習方法的指導,幫助學生養(yǎng)成良好的數(shù)學學習習慣、思維習慣,理解概念,把握本質(zhì),數(shù)形結(jié)合,明晰算理,理清知識的來龍去脈,建立知識之間的關(guān)聯(lián).在課堂教學中,不能僅限于概念、公式、定理、性質(zhì)的講解,而應(yīng)引導學生自主探究、經(jīng)歷知識的形成過程,通過生活中的實例使學生了解數(shù)學與實際生活之間的聯(lián)系.教師要注重解題方法、解題思路的講解、滲透,培養(yǎng)學生敢于質(zhì)疑的精神、獨立思考的習慣.教師應(yīng)充分結(jié)合學生的個性特征,根據(jù)其個體差異引導學生進行更加高效的學習,真正做到針對性教學.
自我反思是學生學習能力發(fā)展的一種方式和手段.教師要注重引導學生反思,引導學生反思是否養(yǎng)成良好的自主學習的習慣,引導學生反思自己在合作學習中的表現(xiàn),引導學生反思自己的學習方法是否合理有效等.教師在注重自己的教學反思的同時要教給學生反思的方法,讓學生在反思中發(fā)現(xiàn),在反思中成長,從而提高學習效率.
五、重視信息技術(shù)的運用,實現(xiàn)信息技術(shù)與數(shù)學課程的深度融合
隨著互聯(lián)網(wǎng)技術(shù)的飛速發(fā)展與廣泛應(yīng)用,數(shù)學教學與信息技術(shù)之間的聯(lián)系也變得越來越密切,并且為數(shù)學教學提供了更多可供參考的資料,在提高教學成效方面發(fā)揮了較為重要的作用.在數(shù)學教學過程中,信息技術(shù)的廣泛運用可以讓教學內(nèi)容與形式變得更為豐富多元,可以優(yōu)化教學內(nèi)容,優(yōu)化教學過程,從而順利實現(xiàn)教學目標.信息技術(shù)的運用還能夠為學習與教學活動提供重要的活動平臺,提供更為豐富的教學資源.所以,教師在實際教學過程中應(yīng)當合理應(yīng)用信息技術(shù),及時調(diào)整與優(yōu)化教學模式,引導學生提升學習效率和成效.例如在講解“函數(shù)y=Asin(ωx+φ)的圖像”這節(jié)知識點時,可利用幾何畫板畫圖,分別通過具體函數(shù)探究A,ω,φ的變化對正弦函數(shù)圖像的影響,從圖像上點的變化規(guī)律歸納得出圖像的變化規(guī)律,利用信息技術(shù)展示函數(shù)的圖像的變化,由特殊到一般,讓學生歸納總結(jié)得到函數(shù)y=Asin(ωx+φ)的圖像.
教師應(yīng)該將先進的信息技術(shù)運用到數(shù)學課程教學當中去,讓其真正成為提高教學成效的重要工具.教師在教學設(shè)計中要充分考慮信息技術(shù)的選擇和使用,使它更好地為數(shù)學教學服務(wù),以進一步提升教學效果.比如,綜合運用計算機技術(shù)生動形象地展現(xiàn)出函數(shù)圖像以及幾何圖形的演化過程;利用計算機探究算法,進行較大規(guī)模的計算;搜集更多且更準確的數(shù)據(jù)資料,并繪制相應(yīng)的統(tǒng)計量表等.事實上,信息技術(shù)在教學活動中的運用并非為了取代傳統(tǒng)教學工作,而是為了優(yōu)化教學模式,進而幫助教師更好地組織數(shù)學課堂教學,加強學生對數(shù)學的理解和更為直觀的體驗.
恰當而有效地發(fā)揮信息技術(shù)的力量進行教學,能夠促進教學方式的逐步改革,充分調(diào)動學生參與數(shù)學學習的熱情與主動性,培育其創(chuàng)新思維,并逐步增強其動手實踐能力,真正提高學生的學習效率.
總而言之,高中數(shù)學課堂教學的形式是多種多樣的,也是生動活潑且高效的,作為教師,也應(yīng)結(jié)合新課改要求,不斷創(chuàng)新教學模式,提升學生的創(chuàng)新能力,著力培養(yǎng)綜合型的素質(zhì)人才.