魏俊林
【摘要】復習課是小學數(shù)學教學中的一種基本課型.復習課不應該是簡單的重復,而是應該引領學生對相關知識有更新、更深、更全的認識.實踐證明,運用思維導圖能夠切實提升小學高年級數(shù)學復習課的效率.本文將以相關理論為指導,以有關案例為支撐,淺顯論述運用思維導圖提升小學高年級數(shù)學復習效率的有效做法.
【關鍵詞】思維導圖;提升;小學;高年級數(shù)學;復習效率
【基金項目】本文為甘肅省教育科學“十三五”規(guī)劃2018年度課題(課題立項號:GS[2018]GHB3298《思維導圖在小學高年級數(shù)學復習中的運用策略研究》階段性研究成果之一).
根據(jù)艾賓浩斯遺忘曲線相關理論,我們可以得知:對所學知識,學生如果不去及時復習鞏固的話,那么,久而久之,這些知識就會被學生忘得一干二凈.讓學生復習所學知識,并不是簡單地重復,而是對舊知的升華,即對舊知有一個新的認識、深的理解以及透的感悟等.
正因為復習之重要性,所以復習課也就成為小學高年級數(shù)學教學中的一種基本課型.部分小學數(shù)學教師誤以為:小學數(shù)學復習課就是讓學生圍繞某一知識點再背一背概念、再做一做練習等.殊不知,正是因為這些小學數(shù)學教師對復習課認識上的偏差,所以才導致小學高年級數(shù)學復習課效率不如人意.
復習課應該是對數(shù)學概念的再認識、對數(shù)學知識的再建構、對解題方法的再探究等.思維導圖,一種革命性的思維方式,在提升小學數(shù)學復習課效率方面有著顯著的作用.下面筆者將淺顯論述思維導圖在小學數(shù)學復習課中的有效運用的一些案例.
一、運用思維導圖復習數(shù)學概念能夠化抽象為形象
用文字表述的數(shù)學概念是抽象的,而用思維導圖展現(xiàn)的數(shù)學概念則是形象逼真的.在初次學習數(shù)學概念的時候,大部分教師會讓學生通過分析概念中的文字去理解數(shù)學概念.因為受到學生認知水平的現(xiàn)實差異,所以如果教師讓學生通過分析文字去理解數(shù)學概念的話,部分認知水平處于中下位置的學生,他們對數(shù)學概念的理解仍然不夠深入、不夠透徹.正因為如此,復習課也就有了存在的必要性.這部分學生在復習課中能夠對相關數(shù)學概念進行再認識、再理解.
運用思維導圖能夠將原本抽象的數(shù)學概念變得更加形象化.因此,教師可以運用思維導圖引導學生更深、更透徹地理解相關數(shù)學概念.
“小數(shù)乘法的意義”是人教版小學數(shù)學五年級上冊中的一部分內容.在復習這部分內容的時候,教師可以引導學生借助于思維導圖形象逼真地理解“小數(shù)乘法的意義”.相比于抽象的文字而言,圖文并茂的思維導圖能夠更加清晰地向學生展示小數(shù)乘法的意義.
由此可見,教師引領學生運用思維導圖復習數(shù)學概念能夠化抽象為形象,進而提升復習課的效率.
二、運用思維導圖解答應用題目能夠化復雜為簡單
讓學生運用數(shù)學知識解決現(xiàn)實生活中的各種問題是發(fā)展學生核心素養(yǎng)的基本內容之一.數(shù)學應用題就是引領學生運用數(shù)學知識解決相關問題的一類題目.為了能夠準確地解答數(shù)學應用題,學生必須清晰地梳理出數(shù)學應用題目中的數(shù)量關系.在大部分情況下,學生只是根據(jù)文字的表述去梳理各種數(shù)量關系.
不可否認,通過理解文字梳理應用題中的各種數(shù)量關系是最為直接有效的方法之一.但是,因為部分學生文字理解能力相對比較弱,所以在復習過程中教師極有必要讓學生換一種方式去分析應用題中的數(shù)量關系.思維導圖自然是一種不錯的選擇.
仍然以“小數(shù)的乘法”這節(jié)復習課為例.教師在復習課中出示了這樣一道應用題:為了節(jié)約用電,某小區(qū)規(guī)定每戶居民每月用電量50度以內,每度按0.52元收費,超過50度的部分按0.62元收費.劉老師家本月用電75度,請你幫忙算一下劉老師本月應繳納多少元電費?運用線段、圓形以及箭頭等基本圖形可以將這道應用題的數(shù)量關系清晰地展示出來.當這道應用題的數(shù)量關系清晰梳理出來之后,學生就可以準確列出算式了.
顯而易見,在分析數(shù)學應用題數(shù)量關系的過程中,如果學生逐漸學會了運用思維導圖,那么,應用題中的數(shù)量關系就會一目了然.這樣一來,學生解答應用題的整個過程也就會由復雜變得簡單.
三、運用思維導圖梳理數(shù)學知識能夠化零星為系統(tǒng)
數(shù)學知識環(huán)環(huán)相扣、緊密相連.在學習數(shù)學知識的過程中,教師如果讓學生脫離整體,聚焦個體去學習相關知識,那么,學生對相關知識的認識和理解是不夠全面的.
因此,為了幫助學生建構起完整嚴密的數(shù)學知識體系,教師必須引領學生進行系統(tǒng)復習.通過系統(tǒng)復習,學生就可以找準各部分數(shù)學知識之間的聯(lián)系點,將零零星星的數(shù)學知識聯(lián)系成一個脈絡清晰的知識框架.竊以為,思維導圖的運用能夠幫助學生將原本零零星星的數(shù)學知識內化為一套系統(tǒng)的知識.
在“小數(shù)乘法”的這節(jié)復習課中,教師可以指引學生將“小數(shù)乘法的意義、算理、計算法則以及靈活取積的近似值”等相關知識繪制成一張思維導圖.憑借這張思維導圖,學生就可以從宏觀上對小數(shù)乘法相關知識有一個新的認識.與此同時,與小數(shù)乘法相關的知識體系也就會逐漸建構起來.
實踐證明,運用思維導圖能夠讓學生更加清晰地認識到各部分知識之間的互相聯(lián)系,能夠幫助學生系統(tǒng)梳理原本零零星星的數(shù)學知識,還能夠發(fā)展學生的思維能力.而隨著學生思維能力的發(fā)展,又會反過來促進學生數(shù)學核心素養(yǎng)的發(fā)展.
總而言之,將思維導圖恰如其分地運用到小學數(shù)學復習課中,能夠讓學生對數(shù)學概念有更深、更透、更全的認識理解;能夠讓學生對應用題目有更好、更巧、更準的解答方法;能夠讓學生對數(shù)學知識有更高、更新、更多的整體認識.而這一切,都會對數(shù)學復習課教學效率的提升起到促進作用.
【參考文獻】
[1]趙敏.利用思維導圖提高小學數(shù)學復習課的效率[J].小學科學(教師版),2015(8):102.
[2]李天飛.思維導圖在小學數(shù)學復習課中的應用[J].甘肅教育,2017(4):108.