尹加先
摘要:高考背景下的數(shù)學(xué)發(fā)展變革探討,需要吸收新課程理念,從內(nèi)容和方法上進(jìn)行變革,并讓其整體性質(zhì)保有一致性,這不但利于教學(xué)改革,更利于課程改革的整體性推進(jìn)。本文主要概述了高中數(shù)學(xué)的培養(yǎng)目標(biāo)以及課程改革的有效方法,希望學(xué)生能具有良好的數(shù)學(xué)學(xué)習(xí)態(tài)度,最終在高考中取得好的成績(jī)。
關(guān)鍵詞:新高考;高中數(shù)學(xué);發(fā)展變革
新高考背景下高中數(shù)學(xué)的發(fā)展研究,對(duì)數(shù)學(xué)教學(xué)有著積極意義,通過(guò)研究能了解到學(xué)生的哪些技能需要提高、哪些能力需要深化、哪些學(xué)習(xí)方法需要調(diào)整。而教師則在變革發(fā)展中了解到高考數(shù)學(xué)中對(duì)數(shù)學(xué)知識(shí)的緊密性更受到重視,也要重視實(shí)際應(yīng)用問題的考察,所以教師可以有意識(shí)的加大這方面的教學(xué)比重,最終讓學(xué)生的數(shù)學(xué)素養(yǎng)得到提升。
一、新高考背景下高中數(shù)學(xué)培養(yǎng)目標(biāo)和試卷設(shè)置概述
(一)提高知識(shí)與技能
新課標(biāo)當(dāng)中對(duì)于數(shù)學(xué)教學(xué)工作提出了新的要求,同時(shí)也賦予了其新的內(nèi)涵。對(duì)于基礎(chǔ)知識(shí)以及相應(yīng)技能的培養(yǎng)提出了更高的要求。例如,高中數(shù)學(xué)當(dāng)中增加了對(duì)于算法的教學(xué)工作,學(xué)生需要對(duì)數(shù)據(jù)處理掌握最基本的能力。同時(shí)還要求學(xué)生能夠掌握基礎(chǔ)性的統(tǒng)計(jì)知識(shí)。教學(xué)目標(biāo)上出現(xiàn)的變化,使得教學(xué)內(nèi)容變得更多,同時(shí)也使得課程設(shè)計(jì)變得更加簡(jiǎn)單。不會(huì)再出現(xiàn)由于人為原因而產(chǎn)生的對(duì)于學(xué)生掌握困難的知識(shí)點(diǎn)進(jìn)行教學(xué)刪減的問題。改革當(dāng)中的關(guān)鍵點(diǎn)便在于高考試卷當(dāng)中,將很多屬于選修的內(nèi)容也納入了考查范圍當(dāng)中,使得高考試卷更加符合新課標(biāo)的理念。在考查的具體方式當(dāng)中,主要分為了兩大點(diǎn):第一,將選修課程當(dāng)中的內(nèi)容做為必考內(nèi)容。第二,針對(duì)選修內(nèi)容,在出題時(shí)可以自由選擇[1]。
(二)考查應(yīng)用能力
新課標(biāo)要求高考在考查學(xué)生的想象能力、抽象能力以及推理和運(yùn)算能力的同時(shí),還對(duì)學(xué)生的數(shù)據(jù)處理能力也提出了考查要求。這部分內(nèi)容當(dāng)中,需要學(xué)生能夠有效地收集數(shù)據(jù),并對(duì)其進(jìn)行有效整理和分析處理。學(xué)生需要根據(jù)數(shù)據(jù),針對(duì)性地研究并解決相關(guān)問題。新課標(biāo)當(dāng)中對(duì)于統(tǒng)計(jì)學(xué)知識(shí)的重視程度明顯提高,其考查重點(diǎn)便是學(xué)生對(duì)于知識(shí)點(diǎn)的靈活運(yùn)用能力[2]。
二、課程改革需要符合國(guó)情、學(xué)情
(一)模塊設(shè)置不應(yīng)該是知識(shí)的堆砌 更要反應(yīng)數(shù)學(xué)文化的不息流變
現(xiàn)行課程標(biāo)準(zhǔn)最為人詬病的是,模塊知識(shí)安排的時(shí)候,課時(shí)安排上具有較重的拼湊痕跡。但是知識(shí)模塊的拼湊能讓數(shù)學(xué)的知識(shí)完整性受到破壞,有時(shí)候無(wú)論教師如何安排,知識(shí)點(diǎn)不銜接問題的出現(xiàn)是必然。例如,學(xué)習(xí)立體幾何古典概率前,沒有學(xué)習(xí)計(jì)數(shù)原理;立體幾何與空間向量分開會(huì)破壞知識(shí)的整體性。再者,模塊中的難度有所不同,特別是必修1的難度很大,會(huì)對(duì)剛?cè)雽W(xué)的學(xué)生造成較大的心理壓力。模塊教學(xué)分為36個(gè)學(xué)時(shí),會(huì)與實(shí)際授課所需學(xué)時(shí)不相符,進(jìn)而會(huì)讓課程安排的松緊度不一[3]。
整合現(xiàn)有模塊,能讓高中階段學(xué)生的認(rèn)知水平得到發(fā)展,也能讓課堂效率有所提升,讓學(xué)生最終能形成了邏輯性較強(qiáng)的知識(shí)鏈條。
(二)內(nèi)容取舍上 引入現(xiàn)代化知識(shí)
很多傳統(tǒng)教學(xué)內(nèi)容在多年的教學(xué)工作當(dāng)中,已經(jīng)證實(shí)了其易于被學(xué)生掌握的特點(diǎn),學(xué)生通過(guò)對(duì)這些知識(shí)的學(xué)習(xí),能夠掌握正確的數(shù)學(xué)解題思想,同時(shí)也能夠形成正確的數(shù)學(xué)觀,對(duì)于學(xué)生的長(zhǎng)遠(yuǎn)發(fā)展以及數(shù)學(xué)學(xué)習(xí)都有很大的好處。這些傳統(tǒng)教學(xué)當(dāng)中的優(yōu)秀內(nèi)容需要在現(xiàn)階段予以保留。
例如,在學(xué)習(xí)數(shù)列與函數(shù)極限相關(guān)知識(shí)點(diǎn)時(shí),便是以極限的概念做為基礎(chǔ),否則便不能有效地將函數(shù)變化展示出來(lái),即使是常見函數(shù)的表達(dá)上,都無(wú)法判斷出水平和豎直漸近線的存在與否。再如:祖暅原理的探究與發(fā)現(xiàn)內(nèi)容,現(xiàn)在便可以做為正文出現(xiàn)。球體的表面積以及體積相關(guān)內(nèi)容的教學(xué),其重點(diǎn)內(nèi)容應(yīng)當(dāng)從公式的應(yīng)用方法教學(xué)轉(zhuǎn)移到利用祖暅原理進(jìn)行推導(dǎo),并以此為切入點(diǎn),對(duì)求和思想進(jìn)行細(xì)分。從而做好后續(xù)教學(xué)工作中,定積分內(nèi)容的鋪墊。再如,在學(xué)習(xí)圓錐曲線第二定義,以及統(tǒng)一方程相關(guān)內(nèi)容時(shí),也需要從探究與發(fā)現(xiàn)中跳出來(lái),回歸到正常教學(xué)內(nèi)容當(dāng)中。這些對(duì)于學(xué)生的數(shù)學(xué)觀的有效建立非常有利。很多學(xué)生在將來(lái)進(jìn)入大學(xué)之后,會(huì)選擇學(xué)習(xí)商業(yè)類學(xué)科,因此在教材當(dāng)中,應(yīng)當(dāng)將排列組合以及二項(xiàng)式定理相關(guān)內(nèi)容進(jìn)行恢復(fù)[4]。
我們將傳統(tǒng)高考試卷與新課標(biāo)試卷進(jìn)行簡(jiǎn)單對(duì)比,便能夠發(fā)現(xiàn)新課標(biāo)試卷當(dāng)中有很多地方非常的新穎,其重點(diǎn)都集中在了對(duì)學(xué)生能力的考查,要求學(xué)生能夠全面發(fā)展。也即是對(duì)于學(xué)生解決問題的能力考查力度有所提高。這便使得能力考查力度得以提高,不再完全考查知識(shí)點(diǎn)掌握能力[5]。
結(jié)束語(yǔ):
高考是學(xué)生人生的重要轉(zhuǎn)折點(diǎn),但高中數(shù)學(xué)教師應(yīng)將應(yīng)試教育放置在適當(dāng)?shù)奈恢?,不要為了考試而考試。通過(guò)減輕學(xué)生負(fù)擔(dān),恢復(fù)課堂教學(xué)真正的生機(jī)和活力。與此同時(shí),統(tǒng)一教學(xué)進(jìn)度,縮短高考的復(fù)習(xí)時(shí)間,使教師能在課堂上有充足的時(shí)間展示理性教學(xué)內(nèi)容。
參考文獻(xiàn):
[1]王曉艷,張一生.變革學(xué)習(xí)方式,促進(jìn)個(gè)體發(fā)展——高中數(shù)學(xué)教學(xué)方式與學(xué)習(xí)方式變革研究 [J].中國(guó)科教創(chuàng)新導(dǎo)刊.2012(05):12-13
[2]張光林.高中數(shù)學(xué)新課程創(chuàng)新與變革方向研究——以解三角形教學(xué)為例[J].數(shù)理化學(xué)習(xí)(教研版).2016(11):10-11
[3]馮強(qiáng).小組合作學(xué)習(xí)模式在高中數(shù)學(xué)教學(xué)中的應(yīng)用研究[J].數(shù)理化學(xué)習(xí)(教育理論版).2012(05):12-13
[4]馮雪瑞.適應(yīng)新時(shí)代的高中數(shù)學(xué)教育新模式[J].考試周刊.2016(11):10-11
[5]肖英華.新課程理念下高中數(shù)學(xué)教學(xué)策略分析[J].語(yǔ)數(shù)外學(xué)習(xí)(數(shù)學(xué)教育).2016(11):10-11