魏曉紅
[摘 要] 主要介紹數(shù)學教改中對模塊化教學的反思。整個教學改革以實際應用為目的,以專業(yè)需求為導向,以自主學習為特色,對施工專業(yè)課本中所有數(shù)學知識做了系統(tǒng)梳理后整理成切實可用的模塊,并分析了這種方式在教學實踐中的利弊。
[關 鍵 詞] 職業(yè)教育;施工專業(yè);模塊化教學;自主學習;職業(yè)能力
[中圖分類號] G712 [文獻標志碼] A [文章編號] 2096-0603(2018)02-0170-02
一、模塊化教學概念
模塊化教育模式以“MES”和“CBE”兩種流派比較具有代表性。我國對模塊化教學的研究和實踐早于“項目化”教學,大概從20世紀90年代已經(jīng)開始進行探索。MES(Modules of Employable Skills,模塊式技能培訓),是20世紀70年代初由國際勞工組織研究開發(fā)出來的以現(xiàn)場教學為主,以技能培訓為核心的一種教學模式。它是以崗位任務為依據(jù)確定模塊,以從事某種職業(yè)的實際崗位工作的完成程序為主線,可稱之為“任務模塊”。CBE(Competency Based Education,能力本位教育),主要以加拿大、美國等為代表。它是以執(zhí)行能力為依據(jù)確定模塊,以從事某種職業(yè)應當具備的認知能力和活動能力為主線,可稱之為"能力模塊"。兩種流派的共性是都強調(diào)實用性和能力化。其區(qū)別是CBE是從職業(yè)普遍規(guī)律和需求出發(fā),側(cè)重于職業(yè)基礎通用能力;MES是從職業(yè)具體崗位工作規(guī)范出發(fā),側(cè)重于職業(yè)崗位工作能力。
二、模塊化教學目的
(一)有效的教學整合
將教學目標、內(nèi)容、方法、手段、學科知識、課程資源、教學等相關因素、教學要素有機整合、相互滲透、縱橫向上,才能實現(xiàn)整體聯(lián)動、全面配備、兩倍半努力的教學效果。這種融合是一種教育思想,是課程改革的重要理念,是實現(xiàn)科學教學的理想,是培養(yǎng)學生綜合素質(zhì)的教學策略。
在教學中,必須從整體出發(fā),把教學計劃作為一個整體來安排,即在相對規(guī)定的時間內(nèi),對學科教學內(nèi)容進行系統(tǒng)的學習。它由主題教學內(nèi)容、教學目標、各種教學方法的運用、各種課程的選擇、教學步驟的合理安排等幾個方面構成,構成了一個完整的教學過程。
(二)受教育者進步或發(fā)展
教育者是進步還是發(fā)展,是教學有效性的唯一標志。教書不是有益的,并不意味著教育者沒有完成任務或認真地教書,不是認真的,而是指受過良好教育的人已經(jīng)學會或?qū)W得好。如果教育者不想學習,就沒有收獲,即使教育者很難教,也沒有有效的教學活動。在模塊教學中,要堅持以學生活動為中心,在設計中必須以學生為主體。
為了實現(xiàn)這個指標我們做好了以下三個堅持:
1.堅持以主題活動方式進行課程計劃設計。教學設計中是以一個一個主題來開展教與學的過程的,這些主題來源于每個教師自己“模塊庫”中的一個個“模塊”。而這些主題大多數(shù)是經(jīng)過檢驗的,有的是經(jīng)過了多次優(yōu)化后的。
2.堅持為學生的學習提供足夠的教學資源。教師在學生活動中是合作者、參與者、服務者和資源提供者,教師在教學活動中,盡最大努力為學生的自主學習、合作學習和探究學習提供足夠的資源,滿足學生學習所需。
3.堅持目標與目標體系合理。每節(jié)課有明確的學習目標,組成每節(jié)課的主題有自己的目標,這樣一個目標體系要符合學生的心理特點和可能性,使學生在一定的努力下能達成相關目標,達到學習效果。
三、專業(yè)課程中數(shù)學模塊的設計
經(jīng)過多年的教學總結(jié),筆者將施工專業(yè)課中的數(shù)學模塊做了總結(jié),整個工作有詳盡的工作流程:材料收集—提取數(shù)學知識點—獲取知識點綱要—整理成數(shù)學模塊—編寫數(shù)學模塊教學大綱—確定教學內(nèi)容。作者將模塊劃分出了重點模塊、次重點模塊以及普通模塊,確保教給學生有用的數(shù)學。
整個模塊體系中,幾何的比重超過代數(shù),原因在于此專業(yè)對圖形和幾何體的面積、體積計算有一定要求。比如在《建筑結(jié)構基礎與識圖》中牽涉投影的知識:建筑工程制圖中,均采用平行投影中的正投影來進行表現(xiàn),平行投影形成的直觀圖則能比較精確地反映原來物體的形狀和特征,因此更多應用于工程制圖或技術圖樣,其成圖原理即數(shù)學中的三視圖?!督ㄖこ逃嬃颗c計價》中計算建筑物的建筑面積牽涉基本圖形的周長和面積計算、弧長和扇形面積計算;土石方工程的計算中有長方體的體積,放坡的圓形基坑的計算牽涉圓臺的體積,振沖灌注碎石的計算中有圓柱體體積、四棱臺體積的計算等。這些都是數(shù)學中立體幾何的知識,本人將其系統(tǒng)整理出來作為重點模塊給予詳細的知識和應用訓練。
次重點的模塊是解釋幾何和三角函數(shù),比如在《建筑工程測量》中要求對地面點位進行確定,其中包括平面位置的確定和高程位置的確定,牽涉在平面直角坐標系中計算兩點間的距離的概念;地形圖應用的基本內(nèi)容里,需要利用坐標系的相關知識確定距離、方位角;地形圖的應用中又提及坡度的相關計算,即解析幾何中的傾斜角;修筑水壩時,為了使水壩堅固耐用,需要使水壩面與水平面成適當?shù)慕嵌?,這就是解釋幾何中的平面與平面所成的角。《土木工程力學基礎》中多次用到常見的銳角三角函數(shù)值,《建筑結(jié)構基礎與識圖》中平面力的投影,力矩和力偶中也有銳角三角函數(shù)的應用,《建筑工程測量》中有關銳角三角函數(shù)在閉合導線的坐標計算,距離測量和直線定向牽涉坡度和解直角三角形,附合導線坐標計算中有解直角三角形的簡單應用,地形圖的應用和傾斜觀測中也提及坡度的相關計算。
余下的模塊比較零散,歸結(jié)為普通模塊。例如《土木工程力學基礎》中的力學基礎,主要用到向量的知識,其中包括向量的概念、共線向量、正交分解、加減法的平行四邊形法則、三角形法則;平面力系的合成與分解則是平面投影的知識和銳角三角函數(shù)的應用;求彎矩的最大值用到二次函數(shù)的最值,要求對簡單的二次函數(shù)用公式法或配方法找出其最大或者最小值。《施工組織設計》在流水施工中涉及不等式的內(nèi)容,對工期要求要在一個合理的范圍內(nèi),主要是一元一次不等式和均值定理的應用。
四、模塊教學中的案例舉例
以模塊教學中的解釋幾何第一講為例,我們在課中會涉及直線的傾斜角這個知識點,是為坡度問題服務的。坡度在建筑中是個經(jīng)??吹讲⑶乙笥嬎愕闹R,比如設計大壩的坡度、樓梯的坡度、路基的坡度。我們在上課時首先提出坡角和坡度這個問題,與專業(yè)課的緊密關聯(lián)引起學生思考的興趣,但教師不予以解答。接下來拋出問題:某山坡的坡角坐標(0,0),在坡上測得一點A(20,100),求此山坡的坡度,再次明確這一模塊的目的。
在接下來教師和學生一起解決這個問題的過程中,可以借助多媒體的圖像演示,使學生對這個專業(yè)知識點在數(shù)學上的解釋得到強化,進而給出直線的斜率和傾斜角的知識。鞏固了概念并且找到了聯(lián)系的紐帶以后,我們開始主要內(nèi)容——斜率和坡度的講述。結(jié)合如下實例:
某大壩的橫截面如圖,迎水坡的坡度i1=1 ∶ ,(1)求迎水坡坡角;若大壩高CF為30米,堤面寬CD為3米,背水坡坡度i2=1 ∶ 1。(2)求整個大壩底AB的寬度。
在實例中學生看到自己熟悉的名詞:迎水坡和背水坡,于是給他們一定的時間討論問題如何解決,教師不給予干涉。在他們有自己的想法后,師生再一起給出這道例題詳盡的解答。解答過程中強調(diào)專業(yè)問題的解決依賴于數(shù)學知識的應用,在無形中提高他們應用數(shù)學的能力。
課的后半部分結(jié)合建筑的圖形給出一系列關于坡度的練習,由易到難,符合人的思考習慣又給基礎好的學生留出思考的空間。整個課堂設計突出學生的主體地位,突出數(shù)學課為專業(yè)課服務的宗旨,突出數(shù)學知識作為基礎的強大作用。
五、模塊教學的效果和教學反思
在教學中我們注重改變傳統(tǒng)的教師歸納學生照搬的現(xiàn)象,采用啟發(fā)式和案例教學等靈活多樣的教學方式,從相關問題出發(fā),分析專業(yè)背景材料,學生主動去探究問題并用數(shù)學方法解決。將數(shù)學知識與數(shù)學建模融為一體,激發(fā)學生學習的興趣,提高其自覺獲取新知識和用數(shù)學的能力。依據(jù)模塊設計的教學創(chuàng)新之處在于:內(nèi)容專業(yè)、針對性強,與建筑中職施工類專業(yè)有著良好的結(jié)合;弱化理論證明,強化建模和計算,融入數(shù)學實驗和數(shù)學建模內(nèi)容,提高學生解決實際問題的能力;處理好與初中知識的銜接,盡量做到無縫連接;教學內(nèi)容分層次,滿足不同層次學生的需求。
不足之處在于,筆者無法做到對施工專業(yè)的精通,致使案例缺乏專業(yè)性檢驗,較多案例中的數(shù)據(jù)只能考慮理想狀態(tài)下的情況;教學過程中借助數(shù)學軟件演示的部分,由于時間和硬件設施有限,只能展示結(jié)果,無法給學生體會過程。
參考文獻:
[1]王富彬.高職數(shù)學基于教學模塊的任務引領式教學法的研究與實踐[J].職業(yè)技術,2009(2):80.
[2]徐春芬,陳偉軍.高職數(shù)學模塊式教學研究與探索[J].職業(yè)教育研究,2011(4):124-125.
[3]李巧萍,陸博,劉娟.大學數(shù)學模塊化教學改革探索[J].河南職業(yè)技術師范學院學報,2009(5):108-109.