陳舟
[摘? 要] 創(chuàng)新歷來(lái)是基礎(chǔ)教育的重要理念,核心素養(yǎng)背景下,創(chuàng)新能力的培養(yǎng)已經(jīng)演繹為創(chuàng)新素養(yǎng)的培養(yǎng). 創(chuàng)新素養(yǎng)是面向?qū)W生的,同時(shí)又是要靠教師自身的創(chuàng)新素養(yǎng)作為支撐的. 創(chuàng)新素養(yǎng)可以驅(qū)動(dòng)教師更好地理解高中數(shù)學(xué)課程、更高效地進(jìn)行教學(xué)設(shè)計(jì)、更有效地促進(jìn)自身的專(zhuān)業(yè)成長(zhǎng).
[關(guān)鍵詞] 高中數(shù)學(xué);創(chuàng)新素養(yǎng);核心素養(yǎng)
早在二十多年前,國(guó)內(nèi)教育界就提出了“創(chuàng)新精神”與“實(shí)踐能力”兩大培養(yǎng)目標(biāo),今天在核心素養(yǎng)背景下強(qiáng)調(diào)必備品格與關(guān)鍵能力,則更多地從品格與能力角度強(qiáng)調(diào)素養(yǎng)的培育. 有研究者指出,核心素養(yǎng)中的素養(yǎng)應(yīng)當(dāng)是包括創(chuàng)新素養(yǎng)的,師保國(guó)、劉霞、余發(fā)碧等人從國(guó)際社會(huì)培養(yǎng)人才、國(guó)內(nèi)學(xué)生成長(zhǎng)發(fā)展需要等角度,論證了創(chuàng)新素養(yǎng)培養(yǎng)的必要性. 而筆者結(jié)合自身所從教的高中數(shù)學(xué)來(lái)看,創(chuàng)新素養(yǎng)確實(shí)也反映著學(xué)生在學(xué)科學(xué)習(xí)中的品格與能力發(fā)展水平,因而在高中數(shù)學(xué)教學(xué)中進(jìn)行創(chuàng)新素養(yǎng)的培養(yǎng),也是非常有必要的. 本文擬從三個(gè)方面描述筆者對(duì)高中數(shù)學(xué)教學(xué)中創(chuàng)新素養(yǎng)培養(yǎng)的淺顯觀點(diǎn),希望得到同行的批評(píng)指正.
創(chuàng)新素養(yǎng)培養(yǎng)驅(qū)動(dòng)教師更好地理解高中數(shù)學(xué)課程
坦率地說(shuō),一線教師是普遍缺少課程意識(shí),他們對(duì)課程的認(rèn)識(shí)更多的是一種學(xué)科認(rèn)識(shí),比如說(shuō)數(shù)學(xué)學(xué)科就是教學(xué)生數(shù)學(xué)知識(shí),并利用數(shù)學(xué)知識(shí)來(lái)解決數(shù)學(xué)習(xí)題的,這樣的理解對(duì)于學(xué)生掌握并運(yùn)用知識(shí)是可行的,但對(duì)于培養(yǎng)學(xué)生的創(chuàng)新能力乃至于形成創(chuàng)新素養(yǎng)來(lái)說(shuō)是有很大的挑戰(zhàn)性的. 而如果以培養(yǎng)學(xué)生的創(chuàng)新需要來(lái)“倒逼”教師站在更高的角度理解課程,則是可能的.
《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)》(2017年版)中對(duì)高中數(shù)學(xué)課程性質(zhì)的描述中,有這樣的一些表述需要重視,下面擇兩個(gè)筆者以為重要的表述進(jìn)行理解:
一是“數(shù)學(xué)源于對(duì)現(xiàn)實(shí)世界的抽象,基于抽象結(jié)構(gòu),通過(guò)符號(hào)運(yùn)算、形式推理、模型構(gòu)建等,理解和表達(dá)現(xiàn)實(shí)世界中事物的本質(zhì)、關(guān)系和規(guī)律”. 這樣的描述與數(shù)學(xué)學(xué)科核心素養(yǎng)的基本要素如數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模、數(shù)學(xué)運(yùn)算等高度相關(guān),而也只有在有效抽象的基礎(chǔ)上,才能更好地利用數(shù)學(xué)語(yǔ)言去描述客觀事物,從而為創(chuàng)新提供基礎(chǔ). 筆者的理解是,其實(shí)每一個(gè)新的數(shù)學(xué)概念或規(guī)律的得出,對(duì)于學(xué)生來(lái)說(shuō)都是一種創(chuàng)新,比如說(shuō)當(dāng)學(xué)生學(xué)習(xí)“空間向量”這一概念的時(shí)候,其需要跳出原來(lái)的平面思維并將思維轉(zhuǎn)向空間,要跳出原來(lái)的數(shù)值思維并將思維轉(zhuǎn)向“既有大小又有方向的量”. 如果此過(guò)程中思維無(wú)法實(shí)現(xiàn)順利轉(zhuǎn)向,那就必然囿于原有的認(rèn)識(shí),因而真正的空間向量關(guān)系及其運(yùn)算規(guī)則的學(xué)習(xí)就會(huì)非常困難. 從本質(zhì)上講,這就是創(chuàng)新思維不夠的體現(xiàn).
二是“數(shù)學(xué)是自然科學(xué)的重要基礎(chǔ),并在社會(huì)科學(xué)中發(fā)揮越來(lái)越大的作用”“數(shù)學(xué)在形成人的理性思維、科學(xué)精神和促進(jìn)個(gè)人智力發(fā)展過(guò)程中起著不可替代的作用”“會(huì)用數(shù)學(xué)眼光觀察世界,會(huì)用數(shù)學(xué)思維思考世界,會(huì)用數(shù)學(xué)語(yǔ)言表達(dá)世界”等. 從創(chuàng)新的角度來(lái)看,這些表述其實(shí)都指向了創(chuàng)新的需要,數(shù)學(xué)從對(duì)自然科學(xué)的支撐,到對(duì)社會(huì)科學(xué)的促進(jìn),本身就是創(chuàng)新的結(jié)果,今天的社會(huì)已經(jīng)有越來(lái)越多的領(lǐng)域離不開(kāi)數(shù)學(xué)(主要是數(shù)學(xué)模型的建立),而學(xué)習(xí)者個(gè)體形成數(shù)學(xué)眼光、思維與語(yǔ)言,就可以對(duì)世界的本質(zhì)進(jìn)行觀察、思考與表達(dá),這個(gè)過(guò)程也是創(chuàng)新過(guò)程.
如果站在這樣的高度認(rèn)識(shí)數(shù)學(xué)課程及其教學(xué),筆者以為高中數(shù)學(xué)教學(xué)中應(yīng)當(dāng)建立這樣的三點(diǎn)意識(shí):
一是每一個(gè)新的數(shù)學(xué)知識(shí)的學(xué)習(xí)都需要思考創(chuàng)新的可能. 這一點(diǎn)上面所舉的空間向量例子中已經(jīng)表述,不再贅述.
二是注重?cái)?shù)學(xué)問(wèn)題解決過(guò)程中學(xué)生的批判性思維培養(yǎng). 批判是創(chuàng)新的前提,批判著不盲從,在當(dāng)前追求正確率的前提下,批判思維似乎沒(méi)有太大的空間,但在解題過(guò)程中其實(shí)是有著很大的操作空間的. 譬如空間向量學(xué)習(xí)中對(duì)于向量的運(yùn)算規(guī)則,如何理解“三角形法則”的適用性,教師可以給學(xué)生提供問(wèn)題:只有大小沒(méi)有方向的量的運(yùn)算遵循四則運(yùn)算等法則,那帶有方向的量的運(yùn)算應(yīng)當(dāng)如何計(jì)算呢?教師可以讓學(xué)生自己去構(gòu)建這個(gè)過(guò)程,此時(shí)肯定有學(xué)生會(huì)猜想四則運(yùn)算能否適用并對(duì)其批判,而批判的過(guò)程必然是具體的探究過(guò)程,比如說(shuō)有學(xué)生會(huì)用筆表示向量(筆尖方向就是向量的方向),然后兩個(gè)空間向量同時(shí)出現(xiàn)時(shí),其結(jié)果會(huì)是如何?學(xué)生的思維必然會(huì)在試錯(cuò)中走向向量的首尾相接,最后變成三角形,于是三角形法則實(shí)際也就出現(xiàn)了.
三是注重?cái)?shù)學(xué)班本課程的開(kāi)發(fā). 經(jīng)過(guò)了近二十年的課程改革,校本課程是不陌生的,班本課程是怎么回事呢?其實(shí)這也是筆者的一個(gè)創(chuàng)舉(也可以視作是創(chuàng)新素養(yǎng)的體現(xiàn)),結(jié)合所教學(xué)生的實(shí)際與學(xué)生對(duì)某個(gè)知識(shí)體系掌握的情況,挖掘教材或其他材料,形成的適合本班學(xué)生學(xué)習(xí)需要的小的課程.
如“共面向量定理”這一內(nèi)容的教學(xué),筆者自制了一個(gè)長(zhǎng)方體框架(由12根鐵絲加8個(gè)接頭組成),其中鐵絲的一端刷上紅漆表示方向,然后放在課代表那里,讓課代表帶著各組組長(zhǎng)并引導(dǎo)其他學(xué)生課后圍著它思考:哪些向量是共面向量?一個(gè)向量如何由另外兩個(gè)向量共同表示?這些思考可以為學(xué)生建構(gòu)“共面向量定理”提供有效的經(jīng)驗(yàn)支撐,而這樣的過(guò)程本身也是一個(gè)創(chuàng)新素養(yǎng)培養(yǎng)的過(guò)程.
創(chuàng)新素養(yǎng)培養(yǎng)促使教師更好地設(shè)計(jì)高中數(shù)學(xué)教學(xué)
教學(xué)設(shè)計(jì)是實(shí)施教學(xué)的基礎(chǔ),教學(xué)設(shè)計(jì)中如果帶有創(chuàng)新素養(yǎng)培養(yǎng)的思路,那么數(shù)學(xué)教學(xué)往往能夠打開(kāi)更為廣闊的空間,從而讓學(xué)生的數(shù)學(xué)學(xué)習(xí)更輕松、更有效.
例如,為了讓學(xué)生更有效地認(rèn)識(shí)“拋物線”,教師通常會(huì)用表格從標(biāo)準(zhǔn)方程、圖形、焦點(diǎn)坐標(biāo)、準(zhǔn)線方程、開(kāi)口方向等角度,為學(xué)生梳理y2=2px,y2=-2px,x2=2py,x2=-2py等四種情況. 這樣當(dāng)這個(gè)表格呈現(xiàn)在學(xué)生的面前時(shí),學(xué)生就可以將遇到的拋物線的情況與表格中梳理的結(jié)果對(duì)號(hào)入座,從而更好地運(yùn)用表述中梳理出的結(jié)果進(jìn)行相關(guān)運(yùn)算.
但在教學(xué)中筆者發(fā)現(xiàn),這樣的教學(xué)設(shè)計(jì)有一個(gè)缺陷,那就是這種結(jié)果過(guò)快地呈現(xiàn),實(shí)際上剝奪了學(xué)生構(gòu)建關(guān)于拋物線整體認(rèn)識(shí)的機(jī)會(huì),甚至是剝奪了學(xué)生出錯(cuò)的機(jī)會(huì),根據(jù)教學(xué)經(jīng)驗(yàn),這里節(jié)省出來(lái)的時(shí)間,總會(huì)在后面的問(wèn)題解決過(guò)程中的出錯(cuò)補(bǔ)回來(lái). 反之,如果在這里豐富學(xué)生的探究過(guò)程,讓學(xué)生出錯(cuò)、試錯(cuò),最終經(jīng)歷一個(gè)自主探究拋物線性質(zhì)的過(guò)程,那就可以讓學(xué)生對(duì)拋物線相關(guān)性質(zhì)的認(rèn)識(shí)更為深刻.
這樣的一個(gè)過(guò)程對(duì)于學(xué)生的學(xué)習(xí)來(lái)說(shuō)具有創(chuàng)新性,可以培養(yǎng)學(xué)生的創(chuàng)新素養(yǎng). 因?yàn)楦鶕?jù)筆者的教學(xué)觀察,學(xué)生在此過(guò)程中會(huì)有這樣的認(rèn)識(shí)過(guò)程:一是基于拋物線標(biāo)準(zhǔn)方程y2=2px(p>0)的分類(lèi),意味著學(xué)生對(duì)拋物線的探究變得更加精細(xì),意味著學(xué)生知道了p值的不同會(huì)影響拋物線的其他性質(zhì);而正是因?yàn)檫@一步創(chuàng)新,學(xué)生在研究拋物線圖形的時(shí)候就會(huì)發(fā)現(xiàn)開(kāi)口方向會(huì)有所不同,因此拋物線的圖形與開(kāi)口方向會(huì)同時(shí)成為學(xué)生的研究對(duì)象;進(jìn)一步,焦點(diǎn)坐標(biāo)與準(zhǔn)線方程會(huì)成為學(xué)生描述不同拋物線的另外兩個(gè)指標(biāo)而進(jìn)入學(xué)生的視野.
在此過(guò)程中還有一個(gè)細(xì)節(jié),那就是最終描述拋物線性質(zhì)的表格,最好由學(xué)生自己畫(huà)出,這看來(lái)與拋物線的性質(zhì)認(rèn)識(shí)無(wú)關(guān),但實(shí)際上卻反映著學(xué)生思維中對(duì)描述拋物線四種情況下的各個(gè)要素的認(rèn)識(shí)是否清晰. 在這里,制表、讀表能力就是學(xué)生整合數(shù)學(xué)知識(shí)能力的重要體現(xiàn).
總的來(lái)說(shuō),這樣的教學(xué)設(shè)計(jì)可以讓學(xué)生在探究的情境中進(jìn)行不斷的創(chuàng)新思考,從而讓學(xué)生在高效構(gòu)建數(shù)學(xué)知識(shí)的同時(shí)獲得創(chuàng)新能力的培養(yǎng).
創(chuàng)新素養(yǎng)培養(yǎng)引導(dǎo)教師更好地實(shí)現(xiàn)自身專(zhuān)業(yè)成長(zhǎng)
創(chuàng)新素養(yǎng)其實(shí)是同時(shí)面向教師和學(xué)生的,因?yàn)槊嫦驅(qū)W生的創(chuàng)新素養(yǎng)培養(yǎng),最終是需要靠教師發(fā)揮引導(dǎo)作用的,而也只有教師在對(duì)創(chuàng)新素養(yǎng)培養(yǎng)的研究中實(shí)現(xiàn)自身的專(zhuān)業(yè)成長(zhǎng),也才真正吻合“教學(xué)相長(zhǎng)”的要義.
高中數(shù)學(xué)教學(xué)中,類(lèi)似于上述對(duì)創(chuàng)新素養(yǎng)在實(shí)際教學(xué)中的培養(yǎng)的研究,其對(duì)教師專(zhuān)業(yè)成長(zhǎng)的促進(jìn)作用在于:其一,其可以讓教師建立創(chuàng)新素養(yǎng)培養(yǎng)的主線,這是對(duì)傳統(tǒng)數(shù)學(xué)教學(xué)中知識(shí)構(gòu)建與應(yīng)用主線的豐富,可以更有效地培養(yǎng)學(xué)生的能力,而教師在此過(guò)程中如果同時(shí)具有教學(xué)反思的意識(shí),就可以提取出促進(jìn)自身教學(xué)經(jīng)驗(yàn)的累積與智慧的生成. 其二,其可以讓教師在課堂上更好地面對(duì)學(xué)生的創(chuàng)新思路. 數(shù)學(xué)教學(xué)的一題多解與多題一解(思路),是創(chuàng)新思維的重要體現(xiàn),面對(duì)學(xué)生的超乎預(yù)設(shè)的解題思路時(shí),又或者是面對(duì)學(xué)生對(duì)某個(gè)數(shù)學(xué)概念或規(guī)律的適切理解時(shí),教師需要在肯定學(xué)生創(chuàng)新思維的同時(shí),進(jìn)一步跟學(xué)生交流以探清學(xué)生思維背后的邏輯機(jī)制或者是直覺(jué)判斷,這樣對(duì)于教師進(jìn)一步掌握學(xué)生的思維特點(diǎn)非常有好處,所謂的專(zhuān)業(yè)成長(zhǎng),某種程度上講就是建立在對(duì)學(xué)生思維特點(diǎn)的有把握的基礎(chǔ)之上的.
綜上所述,高中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的創(chuàng)新思維,提升學(xué)生的創(chuàng)新素養(yǎng),實(shí)際上需要教師在“教”與“學(xué)”兩個(gè)角度同時(shí)思考,尤其是要從學(xué)習(xí)心理角度進(jìn)行觀察與分析,這樣才能真正將創(chuàng)新能力上升為創(chuàng)新素養(yǎng),進(jìn)而更好地實(shí)現(xiàn)數(shù)學(xué)學(xué)科核心素養(yǎng)的培育.