趙前進,張 瀾
(安徽理工大學 理學院,安徽 淮南 232001)
?
應變能最小的保形有理三次樣條插值曲線
趙前進,張 瀾
(安徽理工大學 理學院,安徽 淮南 232001)
為構(gòu)造光順的保形有理三次樣條插值曲線,以形狀控制參數(shù)和插值函數(shù)在節(jié)點處的導數(shù)為決策變量,以插值曲線應變能最小為目標函數(shù),以插值函數(shù)保單調(diào)以及形狀控制參數(shù)和節(jié)點處的導數(shù)大于零做為約束條件,建立優(yōu)化模型,求解獲得應變能最小的保形有理三次樣條插值曲線。給出的數(shù)值例子表明新方法能獲得光順的插值曲線。
有理三次樣條插值;保形;應變能;最優(yōu)化
利用有理樣條進行保形插值是幾何造型領域中的研究熱點之一[1-7]。文獻[1]和[2]中的算法反復迭代過程計算量大。文獻[3-6]介紹了保形有理樣條插值函數(shù)中的形狀控制參數(shù)和節(jié)點處導數(shù)的選取過程。雖然比文獻[1]和[2]的計算量少,但是還是需要根據(jù)插值函數(shù)保形的約束條件不斷地嘗試選取適當?shù)男螤羁刂茀?shù)。本文為了構(gòu)造光順的保形有理三次樣條插值曲線,給出插值算法是以形狀控制參數(shù)和節(jié)點處的導數(shù)為決策變量,以插值曲線應變能最小為目標函數(shù),以插值函數(shù)保單調(diào)以及形狀控制參數(shù)和節(jié)點處的導數(shù)大于零做為約束條件,建立優(yōu)化模型,求解獲得應變能最小的保形有理三次樣條插值曲線。
設{(xi,fi),i=0,1,…,n}是給定的一組數(shù)據(jù),區(qū)間[a,b]的一個劃分:a=x0 其中 并且 Ui=(2αi+βi)fi+αihidi, Vi=(αi+2βi)fi+1-βihidi+1 (3) 式中di為s(x)在節(jié)點xi處的一階導數(shù)值,αi,βi被稱為形狀控制參數(shù)且令αi>0,βi>0。由式(2),(3)易知,有理樣條插值s(x)滿足下列插值性質(zhì) s(xi)=fi,i=0,1,…,n (4) 給定的數(shù)據(jù)組在給定區(qū)間[a,b]上滿足如下條件: a (5) 則有理樣條插值函數(shù)s(x)在區(qū)間[x0,xn]上單調(diào)遞增,節(jié)點處的導數(shù)必須滿足di≥0,(i=0,1,…,n)。文獻[9]中給出了保持有理樣條插值函數(shù)單調(diào)性的定義及條件,故在區(qū)間[xi,xi+1]上,插值函數(shù)s(x)單調(diào)遞增的充要條件是 s′(x)≥0,i=0,1,…,n-1 (6) 對式(1)中定義的插值函數(shù)s(x)求導: (7) 其中 (8) 其中Δi=(fi+1-fi)/(xi+1-xi),i=0,1,…,n-1.因為插值函數(shù)s(x)的導數(shù)s′(x)的分母恒為正,所以只要s′(x)的分子大于零即可保證s′(x)≥0,就有Dij≥0,j=0,1,2,3成立時s′(x)≥0。而當di≥0,di+1≥0時Dij≥0,j=0,3,因此插值函數(shù)s(x)單調(diào)遞增的充要條件為 Dij≥0,j=1,2 (9) 對Di1,Di2進行化簡后得 (10) 插值函數(shù)s(x)在區(qū)間[x0,xn]上C2-連續(xù)曲線的應變能定義如下: (11) 積分化簡得 (12) 其中 為構(gòu)造光順的保形有理三次樣條插值曲線,以形狀控制參數(shù)αi、βi和節(jié)點處的導數(shù)di為決策變量,以插值曲線應變能最小為目標函數(shù),以插值函數(shù)保單調(diào)以形狀及控制參數(shù)αi、βi和節(jié)點處的導數(shù)di大于零做為約束條件,建立優(yōu)化模型 求解此優(yōu)化模型得最優(yōu)參數(shù)αi、βi和di,進一步得到光順的保形有理三次樣條插值曲線。 由文獻[15]知,保形有理三次樣條插值函數(shù)的誤差有以下結(jié)論。 定理1 設f(x)∈C2[a,b],s(x)是f(x)如式(1)所定義的有理樣條插值函數(shù),對給定的αi,βi,當x∈[xi,xi+1],i=0,1,…,n-1時有 , 此處 , 其中 定理2 對任意形狀參數(shù)αi>0,βi>0,定理1中的ci是有界的,并且 . 給出一組單調(diào)遞增的數(shù)據(jù)x0=0,x1=2,x2=3,x3=9,x4=11,f(x0)=0,f(x1)=4, f(x2)=7,f(x3)=9,f(x4)=13.f(x4)=13. 由本文方法建立模型求解得 i01234αi1.531941.2345681.2345681.247861βi0.869571.2345681.2345681.247861di1.5120622.8594420.9220191.1350742.432463 保形有理三次樣條插值曲線圖形見圖1。 圖1 保形有理三次樣條插值曲線圖 [1]Delbourgo R, Gregory J A. Shape Preserving Piecewise Rational Interpolation[J]. Siam Journal on Scientific & Statistical Computing, 1984,6(4):967-976. [2]Delbourgo R. Shape Preserving Interpolation to Convex Data by Rational Functions with Quadratic Numerator and Linear Denominator[J]. Ima J.numer.anal,1989,9(1):123-136. [3]Goodman T N T, Unsworth K. Shape-Preserving Interpolation by Parametrically DefinedCurves[J]. Siam Journal on Numerical Analysis, 1988,25(6):1453-1465. [4]Schumaker L L. On Shape Preserving Quadratic Spline Interpolation[J]. Siam Journal on Numerical Analysis, 1983,20(20):854-864. [5]Gregory J A. Shape Preserving Spline Interpolation[J]. Computer-Aided Design, 1986,18(1): 53-57. [6]王強.有理插值樣條方法及其在數(shù)字圖像處理中的應用研究[D].合肥:合肥工業(yè)大學(博士學位論文),2007. [7]Sarfraz M, Hussain M Z. Data Visualization Using Rational Spline Interpolation[J]. Journal of Computational & Applied Mathematics, 2006,189(1-2):513-25. [8]Abbas M, Majid A A, Ali J M. Monotonicity-preserving C 2 rational cubic spline for monotone data[J]. Applied Mathematics & Computation, 2012, 219(6):2885-2895. [9]Fritsch F N, Butland J. A Method for Constructing Local Monotone Piecewise Cubic Interpolants[J]. Siam Journal on Scientific & Statistical Computing, 1984,5(2):300-304. [10]Gregory J A, Sarfraz M, Yuen P K. Interactive Curve Design Using C 2, Rational Splines[J]. Computers & Graphics, 1994,18(2):153-159. [11]M Sharivastava, J Joseph. C 2 Rational Cubic Spline Involviong Tension Parameters[J]. Math. Sci. ,2000(8):305-314. [12]Duan Q, Bao F, Du S, et al. Local Control of Interpolating Rational Cubic Spline Curves[J]. Computer-Aided Design, 2009,41(11):825-829. [13]Zhang C, Zhang P, Cheng F. Fairing Spline Curves and Surfaces by Minimizing Energy[J]. Computer-Aided Design, 2001,33(13):913-923. [14]Bao F, Sun Q, Pan J, et al. A Blending Interpolator with Value Control and Minimal Strain Energy[J]. Computers & Graphics, 2010,34(2):119-124. [15]段奇,劉愛奎,張玲,等.幾種有理插值函數(shù)的逼近性質(zhì)[J].高等學校計算機數(shù)學學報,2000,22(1):55-62. Shape Preserving Rational Cubic Spline Interpolation Curve of Minimum Strain Energy ZHAO Qianjin, ZHANG Lan (CollegeofScience,AnhuiUniversityofScience&Technology,Huainan232001,China) In order to obtain the most fairing shape preserving rational cubic spline interpolation curve, an optimization model is established, with the shape control parameters and the derivative of the interpolation function at the nodes being decision variables, the minimum strain energy of the interpolation curve being the objective function, and the interpolation function for monotony as well as the shape control parameters and the derivative of the node greater than zero being the constraint conditions. The shape preserving rational cubic spline interpolation curve with minimum strain energy is obtained based on the optimization model. The numerical examples are given to show that the new method can obtain fairing interpolation curve. rational cubic spline interpolation; shape preserving; strain energy; optimization 2016-06-28 國家自然科學基金(60973050);安徽省教育廳自然科學基金項目(KJ2009A50)資助。 趙前進(1967-),男,安徽鳳陽人,教授,博士,碩士生導師,研究方向:有理插值與逼近、數(shù)字圖像處理;張瀾(1990-),女,河南南陽人,碩士研究生,研究方向:有理插值與逼近、數(shù)字圖像處理。 O241 A 1009-9735(2016)05-0038-032 保單調(diào)性分析[7-11]
3 插值曲線的應變能[12,13,14]
4 應變能最小的保形有理三次樣條插值曲線
5 數(shù)值例子