周文彬,成哲弘,趙云鵬,傅承新
(浙江大學生命科學學院,瀕危野生動植物保護生物學教育部重點實驗室,杭州310058)
產(chǎn)地與種源對瑪咖化學質量的影響
周文彬,成哲弘,趙云鵬*,傅承新
(浙江大學生命科學學院,瀕危野生動植物保護生物學教育部重點實驗室,杭州310058)
摘要利用多種源同地栽培的同質園試驗和同一種源異地栽培的遷地試驗,分析不同類別瑪咖(Lepidium meyenii Walp.)的17種氨基酸、8種礦質元素、總生物堿、6種瑪咖酰胺等含量的差異及化學分化式樣,為瑪咖質量控制和標準化栽培提供參考.對瑪咖化學成分含量比較表明:同質園試驗的4個種源之間的差異小于遷地試驗2個產(chǎn)地之間的差異,前者在5個指標成分含量上具顯著差異,而后者達11個;種源和產(chǎn)地影響的具體化學成分不盡相同,其中最突出的是同質園試驗不同種源之間在分析的8種礦質元素上均無顯著差異,而遷地試驗瑪咖有5種礦質元素含量及總含量差異顯著;四川紅原栽培的6號種源(H6)的總生物堿含量顯著高于阿壩(A6);不同種源和產(chǎn)地對供試材料的瑪咖酰胺含量均無顯著影響.主成分分析、分級聚類分析和相似度系數(shù)(夾角余弦值)比較均表明:相同種源遷地試驗的2類瑪咖在總體化學相似性上呈現(xiàn)顯著的差異和分化,其差異/分化程度顯著大于供試的4個不同種源之間的差異/分化程度.供試瑪咖的化學質量主要受產(chǎn)地環(huán)境的影響,特別是不同產(chǎn)地的土壤條件直接影響瑪咖塊根的礦質元素含量;而現(xiàn)有不同種源的影響較小.因此,在瑪咖規(guī)范化生產(chǎn)中,應更注重產(chǎn)地的選擇和環(huán)境條件的控制,同時,應進一步分析不同種源之間的遺傳分化及其與化學相似性的相關性,以更好地解析遺傳/種源效應.
關鍵詞瑪咖;質量評價;化學相似性;同質園試驗;遷地試驗
瑪咖(Lepidium meyenii Walp.)是十字花科獨行菜屬多年生草本植物,塊根肉質、球形,原產(chǎn)南美秘魯安第斯山區(qū),海拔4 000~4 500 m,馴化栽培歷史約2 000年[1].研究發(fā)現(xiàn),瑪咖根含有豐富的蛋白質、碳水化合物、脂肪酸、礦物質以及瑪咖酰胺、瑪咖烯等重要的次生代謝產(chǎn)物,具有較高的營養(yǎng)價值和生物活性,有“南美人參”的美譽[2-3].根據(jù)塊根顏色的不同,瑪咖可分為多個品種.研究表明,不同品種瑪咖塊根的化學成分含量有差異[1].我國于2001年開始引種瑪咖,已在云南、西藏、新疆、四川等地引種成功[4],并于2011年5月18日將其列入《新資源食品目錄》[5].隨著市場需求的激增,在我國西南多地逐漸形成較大規(guī)模的栽培,不同地區(qū)栽培的品種/種源不盡相同,因此,亟須評價現(xiàn)有的不同栽培品種/種源和產(chǎn)地的瑪咖質量差異,并探討其成因.
目前,對瑪咖質量評價多采用氨基酸[6]、礦質元素[7-9]、生物堿[7]、瑪咖酰胺含量[10]等單一或少數(shù)指標,評價不夠全面.因此,本研究采用上述4類指標,通過多種源同地栽培的同質園試驗和同一種源異地栽培的遷地試驗,綜合評價、剖析種源和環(huán)境差異對瑪咖塊根各評價指標成分含量及化學分化式樣的影響,旨在為瑪咖質量控制和標準化栽培提供參考.
1.1材料采集與處理
試驗材料采集自四川省金瑪咖生物科技有限公司的紅原和阿壩生產(chǎn)基地,其中,紅原基地采集全部4個種源(編號為H1、H2、H3、H6),阿壩基地采集6號種源(編號為A6).每類樣品隨機采集5個生長勢、大小一致的塊根,于2014年10月采收,塊根切片,于50℃烘干至恒量,用Restch MM400球磨儀粉碎,備用.
1.2化學分析
1.2.1礦質元素含量測定
精確稱取樣品0.2 g,加濃硝酸6 m L,95℃水浴1 h,轉移消解液,定容至50 m L.用電感耦合離子體質譜儀(inductively coupled plasma massspectrometer,ICP-MS,PerkinElmer NexION 300)測定礦質元素含量[11].
1.2.2氨基酸含量測定
精確稱取樣品0.2 g,加體積比為1∶1的硝酸/鹽酸(分析純)5 m L,于110℃水解24 h,轉移水解液,定容至100 m L.吸取定容液2 m L,用氮吹儀于60℃下脫干.加0.02 mol/L HCl混勻,過0.22μm微孔濾膜,用日立L8900全自動氨基酸分析儀測定氨基酸含量[12].
1.2.3總生物堿含量測定
精確稱取樣品0.5 g,加甲醇(分析純)20 m L,于80℃水浴超聲提取30 min,過濾,用氮吹儀吹干.分3次、每次加入1 m L鹽酸溶解,5 000 r/min離心10 min,取上清液,用10%NaOH調至p H= 10,用三氯甲烷萃取3次,合并萃取液,濃縮并定容至10 m L,作為供試液.配制0.1 mg/m L小檗堿標準溶液,依次取0、0.1、0.2、0.3、0.4、0.5和0.6 m L,加三氯甲烷至1.0 m L,配成系列標準液.各取供試液和標準液1 m L,加2.0×10-4mol/L溴麝香草酚藍溶液(溶于p H 7.0的磷酸緩沖液)和三氯甲烷各5 m L,密塞振搖2 min,靜置2 h.取三氯甲烷層,加0.2 g無水硫酸鈉干燥,搖勻,放置10 min,用導津UV-2700紫外可見分光光度計測定在414 nm處的吸光度值[13].
1.2.4瑪咖酰胺含量測定
參考MCCOLLOM等[14]和朱財延等[15]的高效液相色譜法(high performance liquid chromatography, HPLC)進行優(yōu)化:精密稱取樣品0.5 g,加乙酸乙酯(分析純)10 m L,250 W超聲提取30 min,濾液經(jīng)50℃水浴、氮吹儀吹干,用乙腈(色譜純)定容至10 m L,經(jīng)0.22μm疏水性微孔薄膜過濾,濾液用于HPLC分析.HPLC分析儀(ProStar 210,美國Varian公司);柱溫箱(天津市旗美科技有限公司);色譜柱:250 mm×4.6 mm,1.8μm(北京迪馬歐泰科技發(fā)展中心).柱溫:40℃;流速:1 m L/min;流動相A:0.005%三氟乙酸(TFA),流動相B:乙腈;洗脫梯度:0~30 min(15%A∶85%B),30~35 min (15%A∶85%B→0%A∶100%B);檢測波長:210和280 nm.
參考YANG等[16]的方法對樣品進行考察:取同一供樣液,連續(xù)進樣5次,進行精密度試驗,考察其主要共有峰保留時間和峰面積的相對標準偏差(relative standard deviation,RSD).同時,分別于0、2、4、8、12、24和48 h進樣,考察樣品的穩(wěn)定性,計算主要共有峰的保留時間和峰面積的RSD;精確稱取N-芐基十八碳酰胺標準品1μg,并用甲醇(分析純)稀釋至150、100、50、25和10μg/m L,進行標準曲線繪制,考察最低檢測限(limit of detection, LOD)(信噪比為3)和最低定量限(limit of quantitation,LOQ)(信噪比為10).
1.3數(shù)據(jù)分析
采用3種分析方法比較不同來源瑪咖之間的化學相似性和分化程度.一是含量比較法:采用單因素方差分析的多重比較和雙樣本t檢驗,比較不同來源的瑪咖之間在氨基酸、礦質元素、總生物堿、瑪咖酰胺含量上的差異.通過Shapiro/Wilk方法,檢驗數(shù)據(jù)是否符合正態(tài)分布.通過方差齊性檢驗,確定多重比較的方法:若數(shù)據(jù)符合方差齊性,則使用最小顯著差別法;若不符合,則使用Tamhane法.二是整體相似性的圖示比較法:分別利用主成分分析(principal component analysis,PCA)和分級聚類分析(hierarchical clustering analysis,HCA),分析供試樣品的聚類和分化式樣.供試數(shù)據(jù)做Z分數(shù)標準化,利用PCA提取解釋度最大的2個主成分;HCA采用基于歐幾里德距離的Ward方法.三是整體相似性的量化比較法:對數(shù)據(jù)進行0~1標準化處理,計算相似度系數(shù)(夾角余弦值),并做單因素方差分析,檢驗不同類別的供試樣品間是否存在顯著的化學分化.上述分析均通過SPSS 22.0(美國IBM公司)軟件完成.
2.1不同來源瑪咖化學成分含量比較
本研究檢測瑪咖酰胺的HPLC法具有良好的精確性(RSD<3%)、穩(wěn)定性(RSD<3%)和靈敏性(LOD≤0.09μg/mL,LOQ≤0.02μg/m L);查閱文獻并結合標準品比對,確定瑪咖樣品中的峰6是N-芐基十八碳酰胺;此外,還檢測到5種未知物質(圖1).
圖1 N-芐基十八碳酰胺的HPLC圖(A)及瑪咖樣品代表性物質的HPLC圖(B)Fig.1 N-benzyl-octadecanamide standard chromatographic profile(A)and representative chromatographic profile of Maca (Lepidium meyenii)(B)
表1 不同來源瑪咖化學成分含量比較Table 1 Comparisons of chemical composition contents among Maca samples with different cultivars and cultivation localities
續(xù)表1 不同來源瑪咖化學成分含量比較Continuation of Table 1 Comparisons of chemical composition contents among Maca samples with different cultivars and cultivation localities
從表1可以看出:紅原基地同質園栽培的4個種源瑪咖在所檢測的全部17種氨基酸、8種礦質元素和總生物堿含量以及6個色譜峰面積(包括N-芐基十八碳酰胺)間在統(tǒng)計學上幾乎無顯著差異(P>0.05),僅有4種氨基酸(天冬氨酸Asp、苯丙氨酸Phe、賴氨酸Lys、脯氨酸Pro)含量和色譜峰1的面積在統(tǒng)計學上存在顯著差異;此外,2號種源(H2)的3種氨基酸(天冬氨酸Asp、蘇氨酸Thr、絲氨酸Ser)含量總體上高于其他種源,而其色譜峰1面積小于其他種源;相比同地栽培的不同種源,在紅原和阿壩異地栽培的相同種源(H6和A6)的化學成分含量差異較大,兩者在11個分析指標含量上有顯著差異,包括5種礦質元素(Fe、Ca、K、Mg、Na)及礦質元素總含量、3種氨基酸(甲硫氨酸Met、苯丙氨酸Phe、脯氨酸Pro)、總生物堿含量、1個色譜峰面積(峰3),其中,H6有5個指標成分的含量高于A6, A6有6個指標成分的含量高于H6.可見,種源和產(chǎn)地對瑪咖具體化學成分的影響不盡相同.而不同種源和產(chǎn)地對供試材料的瑪咖酰胺含量均無顯著影響.
2.2不同來源瑪咖化學相似性的PCA和HCA分析
基于全部化學數(shù)據(jù)矩陣的PCA散點圖(圖2)直觀顯示了不同產(chǎn)地和種源的瑪咖樣品的聚類式樣和同類樣品間的離散程度.從中可以看出:異地栽培的瑪咖明顯分成了2類,阿壩栽培的A6位于上半?yún)^(qū),而紅原栽培的4個種源聚在下半?yún)^(qū),后者又大致分化為2個亞類(H1,H2;H3,H6);此外,H1、H2這2類樣品個體之間的離散程度較高.
圖2 不同來源瑪咖基于氨基酸、礦質元素、總生物堿、瑪咖酰胺數(shù)據(jù)的主成分分析Fig.2 Principal component analysis(PCA)of Maca samples with different cultivars and cultivation localities using chemical data of amino acids,mineral elements,total alkaloids and macamides
HCA分析結果(圖3)與PCA基本一致:全部樣品首先按照產(chǎn)地聚成了分化程度較大的2大分支(H1,H2,H3,H6;A6);異地栽培的6號種源(H6, A6)分別聚在2個分支中;在同地栽培的4個種源中,H1、H6、H2聚類較近,而與H3聚類略遠.
圖3 不同來源瑪咖基于氨基酸、礦質元素、總生物堿、瑪咖酰胺數(shù)據(jù)的分級聚類分析Fig.3 Hierarchical clustering analysis(HCA)dendrogram of Maca samples with different cultivars and cultivation localities using chemical data of amino acids,mineral elements,total alkaloids and macamides
2.3不同來源瑪咖化學相似性比較
對不同來源瑪咖化學相似度系數(shù)(夾角余弦值)進行統(tǒng)計學分析(表2)表明:雖然相同產(chǎn)地4個不同種源之間在礦質元素和色譜峰的相似度上有顯著差異,但是其總化學矩陣的相似度差異并不顯著;相反,不同產(chǎn)地的相同種源雖然單類指標的相似度差異不顯著,但其總化學矩陣相似度具顯著差異.
PCA、HCA及夾角余弦值比較均表明,不同產(chǎn)地環(huán)境(紅原和阿壩)對供試的相同種源瑪咖的總體化學相似性有顯著影響,并且其作用大于供試的4種不同種源的差異效應:說明對于現(xiàn)有種源而言,產(chǎn)地環(huán)境是影響瑪咖塊根化學品質的主要因素.瑪咖的該特性與短莛飛蓬(燈盞花)(Erigeron breviscapus)[17]、白術(Atractylodes macrocephala)[18]、獅牙苣(Leontodon autumnalis)[19]等植物相似.產(chǎn)地環(huán)境對不同類別化學成分的影響不盡相同,如對瑪咖酰胺含量無顯著影響,而對礦質元素有突出效應,測試的8種礦質元素總含量及其中的5種礦質元素含量差異顯著:說明不同產(chǎn)地的土壤性質直接影響了瑪咖塊根中礦質元素的吸收和積累,導致其產(chǎn)地差異性.此外,四川紅原栽培的6號種源(H6)的總生物堿含量顯著高于阿壩(A6).因此,在現(xiàn)有種源的生產(chǎn)實踐中,應更注重產(chǎn)地的選擇和環(huán)境條件的控制.
本研究顯示種源效應不如產(chǎn)地效應明顯,其原因可能是種源對瑪咖化學品質的影響較小,與燈盞花類似[17].但前人研究發(fā)現(xiàn),瑪咖不同品種塊根的化學成分含量有差異[1];因此,本結果也可能僅僅是因為供試的種源之間遺傳分化較小,尚不足以產(chǎn)生顯著的化學表型分化,或者這種化學差異因品種而異.下階段需要進一步分析瑪咖不同種源之間的遺傳距離,研究遺傳距離(遺傳差異程度)與化學距離(化學差異程度)的相關性;同時,通過分析不同種源在不同化學成分指標上的具體表現(xiàn),進一步明確品種特性和育種目標,促進瑪咖的標準化生產(chǎn)和質量控制.
表2 不同來源瑪咖化學相似度(夾角余弦值)比較Table 2 Comparisons of chemical similarity using cosine coefficient among Maca samples with different cultivars and cultivation localities
參考文獻(References):
[1] NORENBURG J,RITGERS R.Lepidium meyenii. Encyclopedia of Life[OL].[2014 01 15].http:// www.eol.org/pages/483599/overview.
[2] 蘭玉倩,王玲,張之會.瑪咖研究進展.北京農(nóng)業(yè),2013(30):47. LAN Y Q,WANG L,ZHANG Z H.Advances of Maca researches.Beijing Agriculture,2013(30):47.(in Chinese)
[3] GONZALES G F,CORDOVA A,VEGA K,et al.Effect of Lepidium meyenii(Maca),a root with aphrodisiac and fertility-enhancing properties,on serum reproductive hormone levels in adult healthy men.Journal of Endocrinology,2003,176(1):163-168.
[4] 謝榮芳,瞿熙.瑪咖引種及栽培技術.云南農(nóng)業(yè)科技,2008 (4):42-43. XIE R F,QU X.Introduction and cultivation technique of Maca.Yunnan Agricultural Science and Technology,2008 (4):42-43.(in Chinese)
[5] 中華人民共和國衛(wèi)生部.關于批準瑪咖粉作為新資源食品的公告[OL].2011- 05- 18[2015- 12- 10].http://www. gov.cn/zwgk/2011-06/16/content_1885915.htm. Ministry of Health of the People's Republic of China. Approval of Maca powder as a new resource food.2011 05 18[2015- 12- 10].http://www.gov.cn/zwgk/2011- 06/ 16/content_1885915.htm.(in Chinese)
[6] 馮穎,何釗,徐瓏峰,等.云南栽培瑪咖的營養(yǎng)成分分析與評價.林業(yè)科學研究,2009,22(5):696-700. FENG Y,HE Z,XU L F,et al.Nutritive elements analysis and evaluation of Maca(Lepidium meyenii)cultivated in Yunnan.Forest Research,2009,22(5):696-700.(in Chinese with English abstract)
[7] 楊申明,張蒙,汪啟蓮,等.ICP-AES測定瑪咖中微量元素的含量.微量元素與健康研究,2015,32(1):26-27. YANG S M,ZHANG M,WANG Q L,et al.Determination of trace elements in Maca nationality's medicine by ICPAES.Studies of Trace Elements and Health,2015,32(1): 26-27.(in Chinese with English abstract)
[8] 李磊,周昇昇.瑪咖的食品營養(yǎng)與安全評價及開發(fā)前景.食品工業(yè)科技,2012,33(5):376-379. LI L,ZHOU S S.Nutrition,food security assessment and development prospects of Maca.Science and Technology of Food Industry,2012,33(5):376-379.(in Chinese with English abstract)
[9] 丁曉麗,楚剛輝,任俊坤.帕米爾瑪咖中微量元素及重金屬含量分析.微量元素與健康研究,2011,28(5):26-27. DING X L,CHU G H,REN J K.Analysis of trace element and heavy metal contents in Pamir Maca.Studies of Trace Elements and Health,2011,28(5):26-27.(in Chinese)
[10] 王義強,陳章靖,王啟業(yè),等.瑪咖藥用價值與引種培育研究進展.經(jīng)濟林研究,2014,32(2):167-172. WANG Y Q,CHEN Z Q,WANG Q Y,et al.Advances in research on medicinal value,introduction and cultivation in Lepidium meyenii.Nonwood Forest Research,2014,32(2): 167-172.(in Chinese with English abstract)
[11] 金鵬飛,梁曉麗,夏路風,等.ICP-MS研究牛黃解毒片中20種微量元素的總量及在水和胃腸液中的溶出特性.藥物分析雜志,2014,34(6):985-991. JIN P F,LIANG X L,XIA L F,et al.Study on total contents of 20 trace elements in Niuhuang Jiedu tablets and their extract rates in water and gastrointestinal fluids by ICPMS.Chinese Journal of Pharmaceutical Analysis,2014,34 (6):985-991.(in Chinese with English abstract)
[12] 姜濤,馮永建,何學超,等.氨基酸自動分析儀快速分析方法的研究.化學研究與應用,2012,24(7):1159-1163. JIANG T,FENG Y J,HE X C,et al.Research on localized reagent and rapid analysis method of amino acid analyzer. Chemical Research and Application,2012,24(7):1159-1163.(in Chinese with English abstract)
[13] 甘瑾,馮穎,何釗,等.云南栽培3種顏色瑪咖中總生物堿含量分析.食品科學,2010,31(24):415-419. GAN J,FENG Y,HE Z,et al.Total alkaloids in Maca (Lepidium meyenii)cultivated in Yunnan.Food Science, 2010,31(24):415-419.(in Chinese with English abstract)
[14] MCCOLLOM M M,VILLINSKI J R,MCPHAIL K L,et al.Analysis of macamides in samples of Maca(Lepidium meyenii)by HPLC-UV-MS/MS.Phytochemical Analysis, 2005,16(6):463-469.
[15] 朱財延,李炳輝,羅成員,等.高效液相色譜-質譜法分析植物瑪咖中的瑪咖烯和瑪咖酰胺.分析儀器,2014(5):44-49. ZHU C Y,LI B H,LUO C Y,et al.Analysis of macaenes and macamides in Maca plant by high performance liquid chromatograph-mass.Analytical Instrumentation,2014(5): 44-49.(in Chinese with English abstract)
[16] YANG S T,CHEN C,ZHAO Y P,et al.Association between chemical and genetic variation of wild and cultivated populations of Scrophularia ningpoensis Hemsl.Planta Medica,2010,77:865-871.
[17] LI X,PENG L Y,ZHANG S D,et al.The relationships between chemical and genetic differentiation and environmental factors across the distribution of Erigeron breviscapus(Asteraceae).PLoSOne,2013,8(11):e74490.
[18] 楊舒婷,龔華棟,趙云鵬,等.產(chǎn)地與種源對白術藥材質量的影響.中藥材,2013,36(6):890-892. YANG S T,GONG H D,ZHAO Y P,et al.Contributions of environmental and genetic variation to medicinal quality of Atractylodis macrocephalae Rhizoma.Journal of Chinese Medicinal Materials,2013,36(6):890-892.(in Chinese)
[19] GRASS S,ZIDORN C,BLATTNER F R,et al. Comparative molecular and phytochemical investigation of Leontodon autumnalis(Asteraceae,Lactuceae)populations from Central Europe.Phytochemistry,2006,67(2): 122-131.
ZHOU Wenbin,CHENG Zhehong,ZHAO Yunpeng*,FU Chengxin(Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education,College of Life Sciences,Zhejiang University, Hangzhou 310058,China)
Summary Maca,Lepidium meyenii Walp.(Brassicaceae),has been domesticated as a medicinal crop at high altitude of the Peruvian Andes for two millennia.Its cultivars or landraces with different chemical profiles were bred and introduced out of Peru to various countries for industrial cultivation as driven by the increasing demand. Maca,which was approved on the China Inventory of New Resource Food in 2011,was also massively cultivated in multiple regions in China.The applied Maca cultivars differed among the producers,which may result in significant inconsistency of Maca quality.Thus,it is increasingly urgent to assess the quality of Maca roots with different cultivars and_cultivation localities.
We simultaneously conducted both common garden and translocation experiments to address the contribution of both genetic and environmental variation to chemical similarity of Maca.Contents of mineral elements,amino acids,total alkaloid,and macamides were determined on five replicate samples of each Maca category using inductively coupled plasma mass spectrometer(ICP-MS),L8900 amino acid analyzer,UV-2700 spectrophotometer and ProStar 210 high performance liquid chromatograph.Both the chemical component contents and overall similarity coefficients were calculated and compared for the four parameters above using analysis of variance(ANOVA),principal component analysis(PCA),hierarchical clustering analysis(HCA)and cosine coefficient.Data analyses were conducted using SPSS version 22.0.
The results showed that the same cultivar from the translocation experiment(H6,A6)demonstrated remarkably greater chemical dissimilarity than the four cultivars(H1,H2,H3,H6)from the common garden experiment.The former experimental pair significantly differed in 11 components,while the latter four cultivars differed in five components.Although different groups of components differed to different extents between either cultivars or localities,the contents of mineral elements were prominently different between localities.Specifically, the total content and the contents of five of the total eight mineral elements were significantly different between the two studied localities.Meanwhile,Maca from Hongyuan of Sichuan Province(H6)showed a significantly higher content of total alkaloids than that from Aba of Sichuan Province(A6).Macamides did not differ either between localities or cultivars.A remarkable differentiation and the greater chemical dissimilarity between localities were also supported by the comparisons of the overall chemical similarity using PCA,HCA and cosine coefficient.
In conclusion,the chemical quality of the analyzed Maca is mainly determined by the environmental difference,particularly the soils which may directly impact the contents of mineral elements in Maca roots.More attention should be laid on the selection of farm localities and the control of cultivation environments.Further investigations of genetic distances of Maca cultivars and their relationships with chemical similarity will help better understand the exact contribution of cultivars.
Key wordsLepidium meyenii Walp.;quality assessment;chemical similarity;common garden experiment; translocation experiment
Contribution of environmental and genetic variation to chemical similarity of Maca(Lepidium meyenii Walp.).Journal of Zhejiang University(Agric.&Life Sci.),2016,42(6):731- 738
DOI:10.3785/j.issn.1008-9209.2015.12.131
中圖分類號R 282.6;S 567.23
文獻標志碼A
基金項目:浙江省自然科學基金(LY13C020001);國家中醫(yī)藥行業(yè)科研專項(201407002).
*通信作者(Corresponding author):趙云鵬(http://orcid.org/0000-0003-4393-8472),Tel:+86- 571- 88206463,E-mail:ypzhao@zju.edu.cn
收稿日期(Received):2015 12 13;接受日期(Accepted):2016 03 02;網(wǎng)絡出版日期(Published online):2016 11 19
第一作者聯(lián)系方式:周文彬(http://orcid.org/0000-0003-4413-2227),E-mail:zhouwenbin2012@gmail.com
URL:http://www.zjujournals.com/agr/CN/article/download ArticleFile.do?attach Type=PDF&id=10434