白永娟,徐煒南,常曉曉,胡曉輝
(西北農(nóng)林科技大學(xué)園藝學(xué)院,農(nóng)業(yè)部西北設(shè)施園藝工程重點(diǎn)實(shí)驗(yàn)室/陜西省設(shè)施農(nóng)業(yè)工程技術(shù)研究中心,陜西楊凌712100)
不同碳氮比及氮源對菇渣發(fā)酵的影響
白永娟,徐煒南,常曉曉,胡曉輝*
(西北農(nóng)林科技大學(xué)園藝學(xué)院,農(nóng)業(yè)部西北設(shè)施園藝工程重點(diǎn)實(shí)驗(yàn)室/陜西省設(shè)施農(nóng)業(yè)工程技術(shù)研究中心,陜西楊凌712100)
摘要為探討菇渣作為無土栽培基質(zhì)的適宜發(fā)酵條件,通過設(shè)置不同C/N比(25∶1、30∶1和35∶1)和不同氮源(牛糞、雞糞和尿素)試驗(yàn)組合,測定分析不同發(fā)酵階段菇渣的發(fā)酵溫度、積溫、體積質(zhì)量、總孔隙度、通氣孔隙度、持水孔隙度、大小孔隙比、電導(dǎo)率(electrical conductivity,EC)值及p H值.結(jié)果表明:除氮源對總孔隙度的變化無顯著影響外,C/N比和氮源均顯著影響其他指標(biāo).其中:C/N比為30∶1、氮源為牛糞+尿素和雞糞+尿素的處理使堆體大于50℃的高溫分別持續(xù)8、8和9 d,即有利于發(fā)酵堆體保持較長時(shí)間的高溫,縮短菇渣發(fā)酵腐熟的時(shí)間;C/N比為30∶1處理的菇渣體積質(zhì)量、孔隙度從發(fā)酵第70天開始均趨于穩(wěn)定,有利于菇渣的腐熟;氮源為牛糞+尿素和雞糞+尿素處理的菇渣體積質(zhì)量、持水孔隙度、p H值和EC值從發(fā)酵第70天開始趨于穩(wěn)定.綜上所述,在本試驗(yàn)條件下,菇渣宜采用初始C/N比為30∶1、氮源為雞糞+尿素或者牛糞+尿素的組合進(jìn)行發(fā)酵.
關(guān)鍵詞菇渣;碳氮比;氮源;發(fā)酵;無土栽培基質(zhì)
伴隨我國農(nóng)產(chǎn)品數(shù)量逐年增加,農(nóng)業(yè)廢棄物的大量積累,進(jìn)而產(chǎn)生了較為嚴(yán)重的環(huán)境及資源浪費(fèi)問題[1];因此,農(nóng)業(yè)廢棄物的資源化及再利用問題亟待解決.近年來,農(nóng)業(yè)廢棄物發(fā)酵成無土栽培基質(zhì)已成為研究熱點(diǎn),其中,關(guān)于油菜秸稈、棉稈、檸條、椰糠等廢棄物的研究報(bào)道較多[25].菇渣廢棄物中含有大量的菌體蛋白、多種代謝產(chǎn)物及未被充分利用的養(yǎng)料,是較好的栽培基質(zhì)原料[6].前人對菇渣利用的研究多為基質(zhì)配比方面,如:李海燕等[7]篩選出適宜的蘑菇渣代替草炭栽培基質(zhì)的配方為V(草炭)∶V(菇渣)=1∶1,適宜番茄幼苗的生長;郭淑云等[8]發(fā)現(xiàn),按V(菇渣)∶V(爐渣)∶V(雞糞)=9∶5∶3的比例混合可以作為黃瓜的最優(yōu)栽培基質(zhì)配方;但是關(guān)于菇渣發(fā)酵影響因素的研究少見報(bào)道.碳氮比(C/N)和氮源是影響農(nóng)業(yè)廢棄物發(fā)酵的核心因素,通常,發(fā)酵初始的C/N比控制在25∶1到35∶1之間[911],但不同農(nóng)業(yè)廢棄物存在一定的差異.菇渣作為農(nóng)業(yè)廢棄物,含有大量的有機(jī)質(zhì),所以需要選擇合適的氮源來調(diào)節(jié)發(fā)酵初始的C/N比.由于無機(jī)氮源更容易被微生物所利用,而有機(jī)氮源中的氮需要將有機(jī)氮轉(zhuǎn)化成無機(jī)氮才可以被微生物所利用,所以有機(jī)氮源更有利于微生物的持續(xù)利用.為確定適宜菇渣發(fā)酵的C/N比和氮源,本文以菇渣為發(fā)酵主原料,研究不同C/N比和氮源對菇渣發(fā)酵理化性質(zhì)的影響,旨在確定菇渣轉(zhuǎn)化為栽培基質(zhì)的適宜的發(fā)酵條件,為菇渣的基質(zhì)化利用提供發(fā)酵參數(shù),以及為菇渣基質(zhì)的實(shí)際生產(chǎn)和應(yīng)用提供科學(xué)依據(jù).
1.1試驗(yàn)材料與設(shè)計(jì)
發(fā)酵原料為杏鮑菇菇渣廢棄物、牛糞和雞糞,各物質(zhì)養(yǎng)分含量見表1.試驗(yàn)于2014年12月至2015年3月在陜西楊凌西北農(nóng)林科技大學(xué)北校區(qū)園藝場玻璃溫室內(nèi)進(jìn)行.設(shè)置不同C/N比和氮源2個(gè)因素,其中:C/N比設(shè)置3個(gè)水平,分別為T1(25∶1)、T2(30∶1)、T3(35∶1);氮源設(shè)置5個(gè)水平,分別為S1(牛糞)、S2(雞糞)、S3(牛糞+尿素)、S4(雞糞+尿素)、S5(尿素).共15個(gè)處理,3個(gè)重復(fù).每個(gè)處理含100 kg菇渣,通過添加不同氮源調(diào)節(jié)C/N比;氮源添加量見表2.采用靜態(tài)高溫堆腐方式,加入發(fā)酵物總質(zhì)量3%的有效微生物群(effective microorganisms,EM)菌劑,相對含水量調(diào)至60%.采用5點(diǎn)取樣法,每個(gè)重復(fù)取樣200 g,每隔15 d取一次樣,每隔10 d翻堆一次,堆置80 d.
表1 發(fā)酵原料的養(yǎng)分含量Table 1 Nutrient contents of the composting material mg/g
表2 100 kg菇渣中添加不同氮源的量_Table 2 Mass of different nitrogen sources added into 100 kg mushroom residue kg
1.2測定項(xiàng)目與方法
發(fā)酵溫度測定:利用HL2008多路溫度巡檢儀(杭州威博科技有限公司),將溫度探頭插入堆體中心,每15 min記錄一次.每天所測溫度的平均值記為當(dāng)天發(fā)酵的溫度.
發(fā)酵后菇渣體積質(zhì)量(容重)、總孔隙度、通氣孔隙度、持水孔隙度、電導(dǎo)率(electrical conductivity, EC)、p H值的測定參照郭世榮[12]的方法;有機(jī)碳、全氮、全磷、全鉀測定參照鮑士旦[13]的方法.
1.3數(shù)據(jù)分析
利用Excel 2010進(jìn)行數(shù)據(jù)整理分析和作圖,測定結(jié)果利用SPSS 20.0軟件的鄧肯多重比較法分析各處理間的差異(P<0.05).
圖1 在發(fā)酵過程中不同處理的菇渣溫度變化Fig.1 Temperature changes of mushroom residue with different treatments during the composting period
2.1不同C/N比和氮源對發(fā)酵過程中菇渣溫度和積溫的影響
2.1.1不同C/N比對菇渣發(fā)酵過程中溫度變化的影響
從圖1A可以看出,在發(fā)酵過程中不同C/N比處理的菇渣溫度均呈現(xiàn)先上升后下降的變化趨勢.各處理都從堆腐的第2天開始迅速升溫;第4天各處理溫度均達(dá)到45℃以上;第6天,T2和T3處理溫度達(dá)到50℃以上,并持續(xù)8 d,而T1處理最高溫度只達(dá)到47℃,并僅持續(xù)2 d;T2處理從第57天到發(fā)酵結(jié)束,溫度顯著高于其他處理.由此表明,將菇渣發(fā)酵初始C/N比控制在30∶1有利于堆體的高溫發(fā)酵腐熟.
2.1.2不同氮源對菇渣發(fā)酵過程中溫度變化的影響
從圖1B可以看出,在發(fā)酵過程中不同氮源處理的菇渣溫度均呈現(xiàn)先上升后下降的變化趨勢.各處理從第2天開始均迅速升溫.S3、S4和S5處理到第3天時(shí)溫度均達(dá)到40℃以上,S2、S3、S4和S5處理的溫度高于50℃的時(shí)間分別持續(xù)2、8、9和3 d,而S1處理的溫度最高達(dá)到49.5℃,并持續(xù)3 d.S5處理從第8天開始顯著低于其他處理;S3處理從第18到27天,溫度顯著高于其他處理;S4處理從第53天到發(fā)酵結(jié)束,溫度顯著高于其他處理.這說明在菇渣發(fā)酵中,氮源為有機(jī)物和無機(jī)物混合的處理有利于堆體的高溫發(fā)酵腐熟.
2.1.3不同C/N比和氮源對發(fā)酵過程中菇渣積溫的影響
由表3可知:C/N比為30∶1處理的積溫明顯高于其他2個(gè)水平的處理,達(dá)到1 900.94℃;氮源為雞糞+尿素處理的積溫最高,為1 916.98℃,且牛糞+尿素處理的積溫為1 876.43℃,兩者之間差異無統(tǒng)計(jì)學(xué)意義(P>0.05).從表4可以看出,C/N比和氮源對菇渣發(fā)酵有效積溫的影響均極為顯著.
2.2不同C/N比和氮源對菇渣發(fā)酵前后C/N比的影響
由表3可以看出:在菇渣發(fā)酵前后的不同C/N比處理下,初始C/N比為25∶1和30∶1的處理在發(fā)酵后C/N比相對較低,為14∶1;氮源為牛糞(S1)、雞糞(S2)、牛糞+尿素(S3)處理的降低比例較多.在發(fā)酵過程中,C/N比和氮源對菇渣發(fā)酵后C/ N比的降低均無顯著影響(表4).
表3 不同發(fā)酵條件對菇渣發(fā)酵后C/N比和積溫的影響Table 3 Effect of different composting conditions on C/N ratio,accumulated temperature of mushroom residue after composting
2.3不同C/N比和氮源對菇渣發(fā)酵影響的主因素分析
雙因素試驗(yàn)的方差分析結(jié)果(表4)表明:發(fā)酵菇渣C/N比的變化既不受單因素(C/N或氮源)的影響,也不受兩者交互作用的影響;總孔隙度的變化受C/N比及交互作用的影響極顯著,但不受單因素氮源的影響;C/N比、氮源以及兩者交互作用對體積質(zhì)量、通氣孔隙度、持水孔隙度、大小孔隙比、p H值、EC值及積溫變化的影響均極顯著.
2.4不同C/N比和氮源對發(fā)酵過程中菇渣理化性質(zhì)的影響
2.4.1不同C/N比和氮源對發(fā)酵過程中菇渣物理性質(zhì)的影響
由圖2A可知:T2處理的菇渣體積質(zhì)量在發(fā)酵第70到80天的變化趨于穩(wěn)定;第30到70天, S4處理的菇渣體積質(zhì)量上升趨勢顯著,從第70天開始變化趨于平緩;且在T2水平下,S3處理的增長率最大(表4).從圖2B可知,T2處理的總孔隙度在第45到70天變化趨勢平緩;添加相同的氮源,總孔隙度的變化為T2>T1>T3處理,且在T2水平下的S4處理的通氣孔隙度變化最大(表4).從圖2C可知:第80天,通氣孔隙度為T2>T1>T3處理;從第70天開始,S3和S4處理的變化趨于穩(wěn)定.從圖2D可以看出,T2處理在第15天時(shí)持水孔隙度達(dá)到87%,S3和S4處理在發(fā)酵第30到 70天變化趨于穩(wěn)定,到第80天,兩者的持水孔隙度分別達(dá)到81%和83%,為最大值.由圖2E可知:S4處理在發(fā)酵第30到80天,大小孔隙比下降趨勢明顯,第70天,顯著低于其他各處理;發(fā)酵第80天時(shí),S3處理的大小孔隙比最高,顯著高于其他各處理;在T1水平下S1處理和T2水平下S4處理的大小孔隙比變化最大(表4).
表4 2因素試驗(yàn)方差分析結(jié)果_Table 4 Results for analysis of variance in the two-factor experiments
圖2 在發(fā)酵過程中不同C/N比和氮源處理下基質(zhì)物理性質(zhì)的變化Fig.2 Changes on physical properties of substrates under different C/N ratios and nitrogen sources during composting
2.4.2不同C/N比和氮源對菇渣發(fā)酵過程中EC和p H值的影響
由圖3 A可知:在整個(gè)發(fā)酵過程中EC值的變化為T1>T2>T3處理;T2處理從發(fā)酵第70天開始呈現(xiàn)相對穩(wěn)定的趨勢;S2處理的EC值一直為最大;S1和S3處理在發(fā)酵第30到70天變化趨于穩(wěn)定.由圖3B可知:在整個(gè)發(fā)酵過程中p H值呈現(xiàn)為T3>T2>T1處理,且p H值都呈堿性;S3處理從第45天開始變化趨勢趨于穩(wěn)定,維持在8.6到8.7之間;S1處理的p H值變化一直處于最高狀態(tài);S4處理在發(fā)酵第80天的p H值相比于其他處理為最低.
圖3 在發(fā)酵過程中不同C/N比和氮源處理下基質(zhì)EC和p H值的變化Fig.3 Changes on EC and p H values of substrates under different C/N ratios and nitrogen sources during composting
無土栽培基質(zhì)以其廉價(jià)、易獲得,以及穩(wěn)定的理化性質(zhì)和豐富的營養(yǎng)物質(zhì)等特點(diǎn),已經(jīng)被廣大農(nóng)戶所認(rèn)可并加以利用,且需求量逐年增加.而農(nóng)業(yè)廢棄物轉(zhuǎn)化為無土栽培基質(zhì),則需要發(fā)酵腐熟過程.基質(zhì)發(fā)酵過程是通過微生物的發(fā)酵作用,對有機(jī)物進(jìn)行有效的生物降解,將其轉(zhuǎn)化為富含營養(yǎng)物質(zhì)的腐殖質(zhì)[14].這個(gè)過程包括4個(gè)階段,即升溫階段、高溫階段、降溫階段、穩(wěn)定階段.在高溫期可以殺死有機(jī)物中的一些病原微生物,所以溫度可以判斷有機(jī)物是否發(fā)酵腐熟.如果發(fā)酵溫度太低,將影響微生物的新陳代謝,并且有機(jī)基質(zhì)得不到有效的氧化分解,所以高溫是有機(jī)質(zhì)得到有效降解的必要條件,并在適宜的范圍內(nèi)降解得更快[15].有研究表明,發(fā)酵溫度在40℃到65℃之間為最佳發(fā)酵溫度,當(dāng)溫度高于55℃時(shí),可以使一些病原微生物致死[16].在發(fā)酵過程中,發(fā)酵溫度維持50℃以上的高溫5~10 d,有機(jī)質(zhì)中所含的蟲卵等物質(zhì)就會被殺死,有毒物質(zhì)會被微生物分解[1718].在本試驗(yàn)中,各處理溫度在發(fā)酵第3天均達(dá)到高溫,并持續(xù)一段時(shí)間,且在前面所述的適宜發(fā)酵溫度范圍內(nèi).C/N為30∶1的處理積溫高于C/N比為25∶1和35∶1的處理,且C/N比為30∶1和35∶1的處理溫度達(dá)50℃以上,并持續(xù)8 d;因此,C/N比為30∶1更有利于菇渣的發(fā)酵腐熟.氮源為雞糞+尿素和牛糞+尿素的處理在整個(gè)發(fā)酵過程中持續(xù)高溫的時(shí)間比較長,可能由于禽畜糞便內(nèi)含有大量的微生物,可以維持較長時(shí)間的高溫,而且尿素能夠被微生物迅速利用,使得微生物的活動旺盛,加快了有機(jī)質(zhì)的降解,所以氮源為禽畜糞便+尿素更有利于菇渣的發(fā)酵腐熟.
基質(zhì)理化性質(zhì)對作物生長有較大的影響.在本試驗(yàn)中,菇渣理化性質(zhì)在發(fā)酵前后有明顯的變化.適宜作物生長的基質(zhì)體積質(zhì)量在0.1~0.8 g/cm3之間,總孔隙度在54%~96%的范圍內(nèi)[12].在本試驗(yàn)中,菇渣體積質(zhì)量均在0.2~0.5 g/cm3之間,經(jīng)過發(fā)酵后,菇渣的總孔隙度有所下降,在93%~96%的范圍內(nèi).賀滿橋[19]研究表明,在蘑菇廢棄物的發(fā)酵試驗(yàn)中,通氣孔隙度在發(fā)酵結(jié)束時(shí)大于10%,通氣性比泥炭好.本試驗(yàn)在菇渣發(fā)酵結(jié)束后,各處理的通氣孔隙度均大于10%,其中C/N比為30∶1的處理在發(fā)酵前后變化明顯,并且從發(fā)酵第70天開始,變化趨于穩(wěn)定.對于持水孔隙度,C/N比為30∶1的處理在發(fā)酵前后變化較大,氮源為禽畜糞便+尿素的處理(S3和S4)從發(fā)酵第70天開始變化趨于穩(wěn)定,且在發(fā)酵結(jié)束時(shí)兩者的持水孔隙度分別達(dá)到81%和83%.劉寧等[20]在棉稈發(fā)酵試驗(yàn)中發(fā)現(xiàn),發(fā)酵后棉稈持水孔隙度有明顯的增加.本試驗(yàn)結(jié)果與此一致.適宜植株生長的EC值應(yīng)低于0.6~2.0 mS/cm,若高于3.5 mS/cm,則會抑制植株的正常生長[21].本試驗(yàn)在菇渣發(fā)酵過程中,EC值呈上升趨勢,均大于4.0 mS/cm,并且與添加糞肥的量呈正相關(guān),糞肥量越多,EC值越高;且氮源為雞糞的處理EC值高于其他處理,而氮源為尿素的處理EC值較低,氮源為有機(jī)氮的處理EC值高于無機(jī)氮的處理,禽畜糞便+尿素的處理處于中間狀態(tài).張曄等[3]研究表明,發(fā)酵時(shí)用有機(jī)氮作為氮源更有利于EC值的提高.本試驗(yàn)結(jié)果與此一致.在發(fā)酵過程中p H值是影響微生物活動的重要因素,中性或者弱堿性的環(huán)境適宜微生物的生活,p H值一般在6.7~8.5之間[22].在本試驗(yàn)中,C/N比為30∶1的處理發(fā)酵前后p H值變化較大,且發(fā)酵結(jié)束時(shí)p H值為8.6,而C/N比為35∶1的處理在發(fā)酵過程中p H值偏高,在8.4~8.9之間;氮源為牛糞的處理在發(fā)酵過程中p H值最高,在8.2~9.2之間.p H值可以作為發(fā)酵物是否腐熟的重要指標(biāo)之一,發(fā)酵腐熟物的p H值一般在8~9之間,呈弱堿性[23].本試驗(yàn)結(jié)果與其一致.
通過2因素方差分析可知:C/N比和氮源對菇渣發(fā)酵積溫的影響顯著,且C/N比對菇渣體積質(zhì)量、總孔隙度、通氣孔隙度、持水孔隙度、EC值和p H值的變化均有顯著影響,T2處理的體積質(zhì)量、總孔隙度、通氣孔隙度以及EC值從發(fā)酵第70天開始就趨于穩(wěn)定,所以,當(dāng)C/N比為30∶1(T2處理)時(shí)有利于菇渣的腐熟;氮源對菇渣體積質(zhì)量、通氣孔隙度、持水孔隙度、EC值和p H值的變化有顯著影響,S3(牛糞+尿素)和S4(雞糞+尿素)處理的體積質(zhì)量、持水孔隙度、p H值以及EC值從發(fā)酵第70天開始趨于穩(wěn)定,所以,添加禽畜糞便+尿素有利于菇渣的腐熟.
菇渣發(fā)酵初始C/N比為30∶1、氮源為禽畜糞便+尿素的組合處理在發(fā)酵過程中有較高的有效積溫,菇渣體積質(zhì)量、總孔隙度、持水孔隙度、EC值、p H值等理化指標(biāo)從發(fā)酵第70天開始趨于穩(wěn)定,即縮短了菇渣發(fā)酵的時(shí)間.綜上所述,在本試驗(yàn)條件下,宜采用初始C/N比為30∶1、雞糞+尿素或者牛糞+尿素為氮源進(jìn)行菇渣發(fā)酵.
參考文獻(xiàn)(References):
[1] 彭靖.對我國農(nóng)業(yè)廢棄物資源化利用的思考.生態(tài)環(huán)境學(xué)報(bào), 2009,18(2):794-798. PENG J.Review and discussion on utilization of agricultural waste resources in China.Ecology and Environmental Sciences,2009,18(2):794-798.(in Chinese with English abstract)
[2] 汪季濤,朱世東,胡克玲,等.油菜秸稈適宜發(fā)酵條件研究.中國農(nóng)學(xué)通報(bào),2006,22(12):373-376. WANG J T,ZHU S D,HU K L,et al.Studies on the favorable condition of Cole stalk fermentation.Chinese Agricultural Science Bulletin,2006,22(12):373-376.(in Chinese with English abstract)
[3] 張曄,余宏軍,楊學(xué)勇,等.棉稈作為無土栽培基質(zhì)的適宜發(fā)酵條件.農(nóng)業(yè)工程學(xué)報(bào),2013,29(12):210-217. ZHANG Y,YU H J,YANG X Y,et al.Favorable conditions of cotton straw composting using as soilless culture substrate.Transactions of the Chinese Society of Agricultural Engineering,2013,29(12):210-217.(inChinese with English abstract)
[4] 馮海萍,曲繼松,楊志剛,等.氮源類型與配比對檸條粉基質(zhì)化發(fā)酵品質(zhì)的影響.農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(5):171-178. FENG H P,QU J S,YANG Z G,et al.Effects of type and proportion of nitrogen on fermentation quality of Caragana powder for substrate production.Transactions of the Chinese Society for Agricultural Machinery,2015,46(5):171-178. (in Chinese with English abstract)
[5] 陳艷麗,李紹鵬,高新生,等.椰糠在不同氮源發(fā)酵過程中養(yǎng)分變化規(guī)律的研究.熱帶作物學(xué)報(bào),2010,31(4):525-529. CHEN Y L,LI S P,GAO X S,et al.Nutrient variation of crumbled coconut husk fermented under different nitrogen sources.Chinese Journal of Tropical Crops,2010,31(4): 525-529.(in Chinese with English abstract)
[6] 王春雨.基于農(nóng)業(yè)廢棄物利用的茄果類蔬菜育苗基質(zhì)研究.山東,泰安:山東農(nóng)業(yè)大學(xué),2010:5-6. WANG C Y.Study on the seedling media based on agricultural wastes for solanaceous fruit vegetables.Tai'an, Shandong:Shandong Agricultural University,2010:5-6.(in Chinese with English abstract)
[7] 李海燕,李絮花,王克安,等.蘑菇渣替代草炭的栽培基質(zhì)對番茄幼苗氮素狀況的影響.中國農(nóng)學(xué)通報(bào),2011,27(31): 244-247. LI H Y,LI X H,WANG K A,et al.Effects of mushroom compost replace peat on substrates formula on N nutrition status of tomato seedlings.Chinese Agricultural Science Bulletin,2011,27(31):244-247.(in Chinese with English abstract)
[8] 郭淑云,吳曉剛,趙靜杰.菇渣有機(jī)生態(tài)型無土栽培基質(zhì)配方初探.中國園藝文摘,2014(3):34-35. GUO S Y,WU X G,ZHAO J J.Preliminary test study on organic ecotype soilless culture on cucumber.Chinese Horticulture Abstracts,2014(3):34-35.(in Chinese with English abstract)
[9] VUORINEN A H,SAHARINEN M H.Evolution of microbiological and chemical parameters during manure and straw co-composting in a drum composting system. Agriculture,Ecosystems and Environment,1997,66(1):19-29. [10] GOLUEKE C G.Principles of composting:Understanding the process//The Art and Science of Composting.Emmaus, Pennsylvania,USA:The JG Press,1991:14-27.
[11] 黃國鋒,吳啟堂,黃煥忠.有機(jī)固體廢棄物好氧高溫堆肥化處理技術(shù).中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2003,11(1):159-161. HUANG G F,WU Q T,HUANG H Z.Aerobic and thermophilic composting technology of solid organic waste. Chinese Journal of Eco-Agriculture,2003,11(1):159-161. (in Chinese with English abstract)
[12] 郭世榮.無土栽培學(xué).北京:中國農(nóng)業(yè)出版社,2005:423-425. GUO S R.Soilless Culture.Beijing:Chinese Agricultural Press,2005:423-425.(in Chinese)
[13] 鮑士旦.土壤農(nóng)化分析.北京:中國農(nóng)業(yè)出版社,2000:44-48. BAO S D.Soil and Agricultural Chemistry Analysis. Beijing:Chinese Agricultural Press,2000:44-48.(in Chinese)
[14] HAUG R T.Compost Engineering:Principles and Practice.Michigan,USA:Ann Arbor Science,1980:28-62.
[15] 秦莉,沈玉君,李國學(xué),等.不同C/N比對堆肥腐熟度和含氮?dú)怏w排放變化的影響.農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2009,28(12): 2668-2673. QIN L,SHEN Y J,LI G X,et al.The impact of composting with different C/N on maturity variation and emission of gas concluding N.Journal of Agro-Environment Science,2009, 28(12):2668-2673.(in Chinese with English abstract)
[16] BERTOLDI M,VALLINI G,PERA A.The biology of composting.Waste Management and Research,1983,1: 157-176.
[17] 錢曉雍,沈根祥,黃麗華,等.畜禽糞便堆肥腐熟度評價(jià)指標(biāo)體系研究.農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2009,28(3):549-554. QIAN X Y,SHEN G X,HUANG L H,et al.An index system for evaluating the maturity of animal manure composting.Journal of Agro-Environment Science,2009,28 (3):549-554.(in Chinese with English abstract)
[18] 呂子文,顧兵,方海蘭,等.綠化植物廢棄物和污泥的堆肥特性研究.中國土壤與肥料,2010(1):57-64. LüZ W,GU B,FANG H L,et al.Compost characteristics with greening plant waste and sewage sludge.Soil and Fertilizer Sciences in China,2010(1):57-64.(in Chinese with English abstract)
[19] 賀滿橋.蘑菇栽培廢棄物的生物轉(zhuǎn)化及在蔬菜育苗基質(zhì)中應(yīng)用.杭州:浙江大學(xué),2012:25-26. HE M Q.The research on biological fermentation and application of mushroom castoff in vegetable nursery substrate.Hangzhou:Zhejiang University,2012:25-26.(in Chinese with English abstract)
[20] 劉寧,邊洋,王威,等.發(fā)酵棉稈屑的重組理化性質(zhì)研究及配比篩選.新疆農(nóng)業(yè)科學(xué),2011,48(4):702-706. LIU N,BIAN Y,WANG W,et al.Study on recombinant physico-chemical properties of fermented cotton straw crumbs and the combination screening.Xinjiang Agricultural Sciences,2011,48(4):702-706.(in Chinese with English abstract)
[21] CHONG C.Experiences with the utilization of wastes in nursery potting mixes and as field soil amendments. Canadian Journal of Plant Science,1999,79:139-148.
[22] 李國學(xué),張福鎖.固體廢棄物堆肥化與有機(jī)復(fù)混肥生產(chǎn).北京:化學(xué)工業(yè)出版社,2000:23-24. LI G X,ZHANG F S.Composting of Solid Waste and Production of Organic Compound Fertilizer.Beijing: Chemical Industry Press,2000:23-24.(in Chinese)
[23] 李艷霞,王敏健,王菊思.有機(jī)固體廢棄物堆肥的腐熟度參數(shù)及指標(biāo).環(huán)境科學(xué),1999,20(2):98-103. LI Y X,WANG M J,WANG J S.The maturity indexes and standards of organic solid waste composting.Chinese Journal of Environmental Science,1999,20(2):98-103.(in Chinese with English abstract)
BAI Yongjuan,XU Weinan,CHANG Xiaoxiao,HU Xiaohui*
(Key Laboratory of Protected Horticultural Engineering in Northwest,Ministry of Agriculture,College of Horticulture,Northwest A&F University/ Shaanxi Province Facility Agriculture Engineering Center,Yangling 712100,Shaanxi,China)
Summary With the increase production of agricultural products by years,large quantitative accumulations of agricultural waste have brought severe environmental problems and wasting of resources.Therefore,recycling and reusing the agricultural waste become urgent.Recently,composting of agricultural waste has become the research focus of soilless culture substrate.With the advantages such as stable physiochemical property,adequate supply of fat,wide variety of sources and low cost,soilless culture substrates have been accepted by majority of farmers, and the demand for substrates increased quickly.Mushroom waste contains large amounts of mycoprotein,a variety of metabolites and underutilized nutrients,which is a good substrate material.In this study,mushroom residue was selected as the main material for composting,the effects of different carbon-to-nitrogen ratios and nitrogen sources on physiochemical properties of composting were investigated,to find the optimal condition for transformation of mushroom residue to soilless culture substrate,to provide optimized composting parameters for the practical production,to offer scientific basis for the widespread application of the mushroom substrates.
The carbon-to-nitrogen(C/N)ratio was set at three levels of 25∶1,30∶1,and 35∶1.Five different combinations of nitrogen sources were selected,including cow manure,chicken manure,urea,a mixture of cow manure and urea,and a mixture of chicken manure and urea.Actually,the C/N ratio of mushroom was 40∶1, and the dry cow manure,dry chicken manure and urea were used to adjust the C/N ratio.Each treatment contained 100 kg mushroom residue and 3%effective microorganism(EM)agents,and the water content was adjusted to 60%.Static composting at high temperature was applied and the experimental containers were covered by plastic sheeting.The piles were turned over every 10 days,and were sampled every 15 days for a study period of 80 days.Composting temperature,total porosity,air-filled porosity,water holding capacity,air-water ratio, electrical conductivity(EC),p H and bulk density were measured for each sample.The temperature in center of each pile was recorded using a temperature meter every day.
The results showed that during the composting period,the C/N ratios had significant influence on all parameters,while the nitrogen sources had significant influence on all parameters except total porosity.The optimal condition to keep high temperature(>50℃,and last for 8,8 and 9 days,respectively),and to shorten the composting period of mushroom residue was C/N ratio of 30∶1,and adding the mixture of cow manure or chicken manure and urea as an additive nitrogen source.Under the C/N ratio of 30∶1,bulk density and porosity tend to be stable after 70-day fermentation,beneficial to composting of mushroom residue.When the mixture of cow manure or chicken manure and urea was added as nitrogen source,bulk density,water holding capacity,p H and EC values tended to be stable after 70-day composting.
In conclusion,the optimal condition for composting of mushroom residue is the initial C/N ratio of 30∶1 and the mixture of cow manure or chicken manure and urea as the nitrogen source.
Key wordsmushroom residue;carbon-to-nitrogen ratio;nitrogen source;composting;soilless culture substrate
Effects of carbon-to-nitrogen ratios and nitrogen sources on composting of mushroom residue.Journal of Zhejiang University(Agric.&Life Sci.),2016,42(6):760- 768
DOI:10.3785/j.issn.1008-9209.2016.01.061
中圖分類號X 71;S 141.4
文獻(xiàn)標(biāo)志碼A
基金項(xiàng)目:陜西省農(nóng)業(yè)科技創(chuàng)新與攻關(guān)項(xiàng)目(S2015NY102);陜西省楊凌示范區(qū)科技計(jì)劃項(xiàng)目(2014NY-17).
*通信作者(Corresponding author):胡曉輝(http://orcid.org/0000-0003-1298-9250),Tel:+86- 29- 87082452,E-mail:hxh1977@163.com
收稿日期(Received):2016 01 06;接受日期(Accepted):2016 04 19;網(wǎng)絡(luò)出版日期(Published online):2016 11 19
第一作者聯(lián)系方式:白永娟(http://orcid.org/0000-0002-6741-553X),E-mail:1058085600@qq.com
URL:http://www.zjujournals.com/agr/CN/article/download ArticleFile.do?attach Type=PDF&id=10437
浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版)2016年6期