王 燕,王洪峰
(東北林業(yè)大學(xué)林學(xué)院,黑龍江哈爾濱 150040)
皮層是細(xì)根初生構(gòu)造之一,皮層結(jié)構(gòu)可直接影響根系的吸收與運(yùn)輸功能[1~3]。在細(xì)根的解剖結(jié)構(gòu)中,皮層在根系橫切面上占有很大比例[4~6],對(duì)根系的吸收與徑向運(yùn)輸產(chǎn)生重要影響[7~10]。以往研究表明,皮層對(duì)于物質(zhì)吸收與運(yùn)輸?shù)挠绊懼饕w現(xiàn)在外皮層與內(nèi)皮層這兩個(gè)主要部位[11,12]。由于對(duì)皮層細(xì)胞結(jié)構(gòu)與功能研究的難度較大,進(jìn)展比較緩慢。近年來隨著觀察技術(shù)和試驗(yàn)方法的改進(jìn),對(duì)皮層的結(jié)構(gòu)和功能的研究才得以深入進(jìn)行。作者對(duì)內(nèi)皮層、外皮層以及通道細(xì)胞結(jié)構(gòu)與功能等方面近幾十年的研究現(xiàn)狀進(jìn)行了綜述,旨在為皮層研究奠定基礎(chǔ)和拓寬視野。
外皮層往往是皮層的最外一層細(xì)胞,排列緊密無間隙[7]。外皮層根據(jù)組成細(xì)胞類型可分為兩類,一原型和二原型。二者判斷的依據(jù)主要是根系的縱切面解剖結(jié)構(gòu),前者主要是指組成細(xì)胞形狀一致,均為長細(xì)胞;后者是指在根系的縱切面中含有兩種不同的細(xì)胞,除了長細(xì)胞以外還有一類比較短的細(xì)胞,即通道細(xì)胞[13]。
上世紀(jì)80年代前后,Peterson等對(duì)洋蔥(Allium cepa)、玉米(Zea may)的研究結(jié)果表明,外皮層有凱氏帶的形成與木栓層積累,并限制熒光染料的移動(dòng)[14,15],對(duì)硫酸鹽離子的滲透起阻礙作用[16]。近20多年來,對(duì)外皮層的認(rèn)識(shí)又有了新的進(jìn)展,Kamula發(fā)現(xiàn)外皮層細(xì)胞木栓化導(dǎo)致與土壤溶液直接接觸的質(zhì)膜面積降低,根系的吸收功能下降[17],Kumar等在研究火炬松(Pinus taeda)時(shí)也持這一觀點(diǎn)[18]。Cholewa發(fā)現(xiàn)根系外皮層細(xì)胞木栓形成之后,洋蔥根系中鈣離子向維管柱的運(yùn)輸量大大降低,Lehmann利用電子顯微鏡觀察鑭離子在大麥(Hordeum vulgare)根系中的質(zhì)外體運(yùn)輸受外皮層凱氏帶的影響較大,也證明了外皮層凱氏帶對(duì)物質(zhì)運(yùn)輸?shù)淖璧K作用[19]。Cholewa采用放射性鈣離子以及鈣離子抑制劑(La3+和釩酸鹽VO43-)證明鈣離子在根系徑向運(yùn)輸中受外皮層凱氏帶影響較大[20]。Clarkson研究發(fā)現(xiàn),由于植物體的內(nèi)循環(huán),鉀、鈣、鎂離子在根系皮層與維管柱之間的運(yùn)輸是雙向的,外皮層對(duì)養(yǎng)分離子的向外擴(kuò)散起到阻礙作用[21],同時(shí)也是對(duì)內(nèi)皮層阻止離子向外移動(dòng)作用的一個(gè)鞏固[11]。近期,在不同環(huán)境下,對(duì)外皮層的研究又有了新的進(jìn)展:Meyer等人研究鳶尾(Iris germanica)時(shí),發(fā)現(xiàn)根系暴露在噴水霧的環(huán)境中時(shí)會(huì)加速外皮層的成熟,以此來影響物質(zhì)的吸收與運(yùn)輸[22];Krishnamurthy等利用熒光顯微鏡研究水稻(Oryza sativa)在抵御鎘脅迫時(shí)發(fā)現(xiàn),外皮層細(xì)胞壁明顯加厚并有大量木栓積累,減少了根系對(duì)有害離子的吸收與運(yùn)輸,并且還認(rèn)為外皮層對(duì)離子的阻礙作用可能與細(xì)胞的木栓組成以及成分含量有關(guān)[23];Cheng等人對(duì)紅樹林樹種進(jìn)行研究時(shí)發(fā)現(xiàn)植物在抵御Zn離子脅迫時(shí),外皮層也會(huì)有細(xì)胞壁的加厚以及木栓積累現(xiàn)象[24]。
由此可知,外皮層對(duì)根系吸收、運(yùn)輸?shù)V質(zhì)養(yǎng)分具有較大影響。除此之外,在表皮死亡脫落后,外皮層細(xì)胞外壁木栓加厚對(duì)根系起到保護(hù)作用[9],防止病原體、有害真菌進(jìn)入根系[25,26]。
在二原型外皮層中,短細(xì)胞即通道細(xì)胞的著生位置具有隨機(jī)性,與外皮層以內(nèi)的結(jié)構(gòu)沒有直接聯(lián)系[13],此類細(xì)胞有凱氏帶,而很少或沒有木栓的積累[27]
在20世紀(jì)80~90年代,Storey等認(rèn)為表皮細(xì)胞吸收的離子是經(jīng)過通道細(xì)胞傳遞給皮層細(xì)胞的[31],Barrowclough和 Peterson認(rèn)為洋蔥根系當(dāng)中98%的表皮細(xì)胞與通道細(xì)胞有密切關(guān)聯(lián),生長在通道細(xì)胞外層的表皮細(xì)胞死亡減慢,并以此來維持根系對(duì)水分養(yǎng)分的吸收[32]。Walker等研究發(fā)現(xiàn),在不同柑橘的根系當(dāng)中,表皮與外皮層細(xì)胞隨著木栓的形成中斷了胞間連絲的聯(lián)系,使得離子與水分的吸收運(yùn)輸途徑遭到破壞,通道細(xì)胞成為徑向運(yùn)輸?shù)奈ㄒ煌ǖ溃?0]。此外Huang等指出當(dāng)皮層的厚度一定時(shí),柑橘根系的導(dǎo)水率與外皮層上通道細(xì)胞的數(shù)目成比例,影響水分養(yǎng)分在皮層中的徑向運(yùn)輸[33]。近幾年來,衛(wèi)星等認(rèn)為低級(jí)根具有更多的通道細(xì)胞來支持細(xì)根的吸收功能[34],Hashi等試驗(yàn)研究發(fā)現(xiàn)與有機(jī)土相比,礦質(zhì)土層中細(xì)根外皮層具有更多的通道細(xì)胞,來滿足根系對(duì)水分養(yǎng)分的吸收利用[35],Sharda和Koide在15種被子植物的施肥實(shí)驗(yàn)時(shí)也得到了相同的規(guī)律,低磷處理的根系外皮層通道細(xì)胞數(shù)目明顯增加[36]。最近,Zadworny等研究發(fā)現(xiàn),用來抵御外界干擾、為主根莖生長探索空間的先鋒根通道細(xì)胞數(shù)目較少,而纖維根通道細(xì)胞較多,來提高根系的吸收功能以及對(duì)水分養(yǎng)分的橫向運(yùn)輸能力[37]。為我們研究不同類型皮層細(xì)胞在解剖與功能上的差異提供了新的研究視角。
Gallaud指出,外皮層中的通道細(xì)胞是菌絲侵入根系的主要途徑,菌絲無法通過內(nèi)皮層細(xì)胞,只分布在內(nèi)皮層以外區(qū)域[38]。Peterson、Imhof等在研究其他植物根系時(shí)也認(rèn)同這一觀點(diǎn)[39,40]。此外,Sharda 等在近期的研究中認(rèn)為,通道細(xì)胞對(duì)菌根真菌的侵染起決定性作用,通道細(xì)胞在根系中的分布顯著影響菌絲的分布[41]。
因此,通道細(xì)胞在水分離子吸收以及為菌根真菌提供侵染位點(diǎn)上具有重要的作用。
內(nèi)皮層是皮層最內(nèi)層的細(xì)胞,在細(xì)胞的徑向壁和橫向壁上具有栓質(zhì)化和木質(zhì)化增厚成帶狀的厚壁結(jié)構(gòu)——?jiǎng)P氏帶,伴隨著植物生長,內(nèi)皮層細(xì)胞壁積累了大量木栓[1,7,42]。
凱氏帶形成以后,內(nèi)皮層細(xì)胞的質(zhì)膜與凱氏帶之間有著極強(qiáng)的聯(lián)系。對(duì)于內(nèi)皮層及凱氏帶結(jié)構(gòu)的研究,許多學(xué)者已經(jīng)開展了不同試驗(yàn)探討。早在1922年,Priestley就利用強(qiáng)酸對(duì)根系細(xì)胞進(jìn)行處理,發(fā)現(xiàn)內(nèi)皮層徑向壁處的凱氏帶未被降解[43]。1968年 Bonnett將內(nèi)皮層細(xì)胞置于高濃度溶液中,當(dāng)其它細(xì)胞發(fā)生質(zhì)壁分離時(shí),具凱氏帶加厚處的內(nèi)皮層細(xì)胞質(zhì)膜仍與細(xì)胞壁緊緊連在一起[44]。進(jìn)入20世紀(jì)70年代以后,隨著酶技術(shù)的廣泛應(yīng)用,Schreiber利用果膠酶對(duì)根系細(xì)胞進(jìn)行處理時(shí),凱氏帶仍未被降解[45],在顯微鏡下可觀察到完整的漁網(wǎng)狀結(jié)構(gòu),仍與周圍細(xì)胞保持聯(lián)系[11]。20世紀(jì)70~80年代,隨著觀察技術(shù)與試驗(yàn)方法的改進(jìn),內(nèi)皮層功能研究不斷有了新的突破。Robards等、Ferguson等先后發(fā)現(xiàn)大麥根系內(nèi)皮層凱氏帶與木栓對(duì)離子向維管束的質(zhì)外體運(yùn)輸起阻礙作用[46,47],Nagahashi等利用放射性鑭離子進(jìn)行標(biāo)記,在玉米根系中也得到相同的結(jié)論[48]。2000年,Kuhn等采用激光微束質(zhì)譜分析(Laser Microbeam Mass Analysis)等新的方法研究鈣、鎂離子在歐洲云杉(Picea abies)根中運(yùn)輸狀況時(shí)也驗(yàn)證了這一觀點(diǎn),即內(nèi)皮層對(duì)離子的質(zhì)外體運(yùn)輸具有阻礙作用[49]。在鹽分脅迫下,Karahara等發(fā)現(xiàn)內(nèi)皮層細(xì)胞間的凱氏帶增厚,對(duì)離子的質(zhì)外體運(yùn)輸阻礙作用增強(qiáng)[50]。Lux等、Vaculík等均發(fā)現(xiàn)重金屬鎘的運(yùn)輸受內(nèi)皮層凱氏 帶 影 響 很 大[51-53],Stoláriková 等 對(duì) 楊 樹(Populus× euramericana clone I-214)研究鋅脅迫時(shí)也認(rèn)同這一觀點(diǎn)[54]。但是在西葫蘆(Cucurbita pepo)當(dāng)中,Harrison-Munay等認(rèn)為鉀與磷的共質(zhì)體運(yùn)輸受到的內(nèi)皮層阻礙較?。?5]。因此Enstone等認(rèn)為,養(yǎng)分離子經(jīng)內(nèi)皮層進(jìn)入維管柱時(shí),內(nèi)皮層對(duì)離子養(yǎng)分的吸收具有選擇性,同時(shí)具有凱氏帶加厚細(xì)胞壁的內(nèi)皮層還起著防止養(yǎng)分離子回流進(jìn)入皮層甚至倒流回土壤溶液的作用[11]。
通道細(xì)胞是靠近維管束木質(zhì)部的內(nèi)皮層細(xì)胞,通道細(xì)胞的細(xì)胞壁并不隨皮層細(xì)胞的生長而增厚,仍保持初期發(fā)育階段的結(jié)構(gòu)[7,56]。
Clarkson等與Roberts等在上世紀(jì)70年代認(rèn)為內(nèi)皮層細(xì)胞切向壁間存在大量胞間連絲,并向外與皮層細(xì)胞、向內(nèi)與中柱鞘細(xì)胞聯(lián)系緊密,這是物質(zhì)運(yùn)輸?shù)闹饕ǖ?,而通道?xì)胞只是物質(zhì)運(yùn)輸?shù)拇我緩剑?7,58]。進(jìn)入 90 年代以后,研究學(xué)者認(rèn)為通道細(xì)胞上很少有木栓積累并含有通道蛋白,對(duì)水分的運(yùn)輸阻力較小,更有利于水分的橫向運(yùn)輸[12,56,59]。McKenzie 通過研究短葉松(Pinus banksiana)和桉樹(Eucalyptus pilularis)認(rèn)為,在根的次生生長達(dá)到一定程度之后,形成周皮而皮層遭到破壞,通道細(xì)胞成為唯一與溶液接觸的質(zhì)外體的質(zhì)膜通道,由于通道細(xì)胞木栓積累較少,因而減小了水分進(jìn)入中柱的阻力[60]。Waduwara等利用激光共聚焦掃描顯微鏡與熒光染料對(duì)內(nèi)皮層細(xì)胞木栓的積累進(jìn)行的觀察時(shí)也發(fā)現(xiàn)通道細(xì)胞很少有木栓積累,為水分離子進(jìn)入維管柱提供質(zhì)膜通道[56]。最近幾年來,對(duì)通道細(xì)胞不斷有了新的認(rèn)識(shí)。Enstone等指出在縮合單寧區(qū),即使皮層細(xì)胞死亡,內(nèi)皮層的通道細(xì)胞對(duì)水分離子的吸收仍具有重要作用[61]。Kumar在研究生長環(huán)境對(duì)火炬松根系的影響時(shí)發(fā)現(xiàn),環(huán)境越惡劣,內(nèi)皮層通道細(xì)胞數(shù)目越多[18]。Meyer等在2009年的最新研究中首次提到了二原型內(nèi)皮層這一概念,即在根系縱切面上,內(nèi)皮層存在兩種類型細(xì)胞,長細(xì)胞與短細(xì)胞,在細(xì)根成熟部位木栓程度低、細(xì)胞壁不增厚的短細(xì)胞為通道細(xì)胞,為今后通道細(xì)胞的研究提供了新的思路[24]。
由此可知,在具有次生生長的根系當(dāng)中,細(xì)胞壁不增厚的通道細(xì)胞為水分離子的橫向運(yùn)輸提供通道,以此來控制物質(zhì)的轉(zhuǎn)運(yùn)。由于細(xì)胞生理相關(guān)研究的限制以及某些植物根系自身內(nèi)皮層細(xì)胞壁全面木栓加厚,導(dǎo)致無法辨別通道細(xì)胞[7],對(duì)通道細(xì)胞的了解及功能的認(rèn)識(shí),還需要在更多植物根系中進(jìn)行深入研究。
當(dāng)前細(xì)根皮層研究的熱點(diǎn)在于皮層對(duì)根系水分離子的吸收和橫向運(yùn)輸?shù)挠绊?。在不同環(huán)境中不同植物的細(xì)根中,內(nèi)外皮層與通道細(xì)胞對(duì)根系水分、養(yǎng)分吸收及橫向運(yùn)輸?shù)挠绊懽饔玫玫?了 驗(yàn) 證[25,26,50~53,62,63]。但 是 隨 著 植 物 生長,根毛伸長、菌根真菌侵染,對(duì)根系的吸收功能也具有促進(jìn)作用[64,65]。由于直接測定根系的生理功能問題一直以來沒有得到有效解決[66],皮層在根系吸收功能中的權(quán)重仍然是一個(gè)未知數(shù)。因此,還需要對(duì)細(xì)根皮層做系統(tǒng)性研究,皮層結(jié)構(gòu)與功能間的關(guān)系還需進(jìn)一步研究探討。伴隨著生物研究技術(shù)的不斷創(chuàng)新和完善,以及與其他學(xué)科間的相互配合與滲透,將會(huì)為皮層結(jié)構(gòu)與功能之間更加廣泛和深入的研究奠定基礎(chǔ)。
[1]Fahey TJ,Arthur MA.Further studies of root decomposition following harvest of a northernhardwood forest[J].Forest Science,1994,40:618-629.
[3]Esau K.Plant Anatomy[M].New York:John Wiley,1964.
[4]許旸,谷加存,董雪云,等.海南島4個(gè)熱帶闊葉樹種前5級(jí)細(xì)根的形態(tài)、解剖結(jié)構(gòu)組織碳氮含量[J].植物生態(tài)學(xué)報(bào),2011,35(9):955-964.
[5]Guo DL,Xia MX,Wei X,et al.Anatomical traits associated with absorption andmycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species[J].New Phytologist,2008b,180:673-683.
[6]陳海波,衛(wèi)星,王婧,等.水曲柳苗木根系形態(tài)和解剖結(jié)構(gòu)對(duì)不同氮濃度的反應(yīng)[J].林業(yè)科學(xué),2010,46(2):61-66.
[7]劉穆.種子植物形態(tài)解剖學(xué)導(dǎo)論[M].北京:科學(xué)出版社,2008.
[8]McCully ME.Roots in soil:unearthing the complexities of roots and their rhizospheres[J].Annual Review Plant Physiology and Plant Molecular Biology,1999,50:695-718.
[9]Seago JR JL,Peterson CA,Kinsley LJ,et al.Development and structure of the root cortex in Caltha palustris L.and Nymphaea odorata Ait[J].Annals of Botany,2000,86:631-640.
[10]于濤,李萬春,汪李宏,等.水分虧缺對(duì)玉米根毛區(qū)皮層解剖結(jié)構(gòu)的影響[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,39(10):111-117.
[11]Enstone DE,Peterson CA,F(xiàn)engshan Ma.Root endodermis and exodermis:structure,function,and responses to the environment[J].Plant Growth Regulation,2003,21:335-351.
[12]Peterson CA,Estone DE.Functions of passage cells in the endodermis and exodermis of roots[J].Physiologia Plantrum,1996,97:592-598.
[13] von Guttenberg H.Der primarc Bau der Angiospermenwurzei- Handh[J].Pflanzenanatomie,1968,8:138-141.
[14]Peterson CA,Peterson RL,Robards AW.A correlated histochemical and ultrastructural study of the epidermis and hypodermis of onion roots[J].Protoplasma,1978,96:1-21.
[15]Peterson CA,Emanuel ME,Wilson C.Identification of a Casparian band in the hypodermis of onion and corn roots[J].Canadian Journal of Botany,1982,60:1529 -1535.
[16]Peterson CA.The exodermal Casparian band of onion blocks apoplastic movement of sulphate ions[J].Experimental Botany,1987,32:2068-2081.
[17]Kamula SA,Peterson CA,Mayfield CI.The plasmalemma surface area exposed to the soil solution is markedly reduced by maturation of the exodermis and death of the epidermis in onion roots[J].Plant Cell and Environment,1994,17:1183 -1193.
[18]Kumar P,Hallgren SW,Enstone DE,et al.Root anatomy of Pinus taeda L.:seasonal and environmental effects on development in seedlings[J].Trees,2007.21:693-706.
[19]Kumar P.Anatomical characteristics of roots of loblolly pine seedlings[D].Oklahoma:Oklahoma State University,2003.
[20]Cholewa EM.Calcium transport and delivery to the xylem in onion(Allium cepa L.)roots[D].Waterloo:U-niversity of Waterloo,2000.
[21]Lehmann H,Stelzer R,Holzamer S,et al.Analytical electron microscopical investigations on the apoplastic pathways of lanthanum transport in barley roots[J].Planta,2000,211:816-822.
[22]Cholewa E,Peterson CA.Evidence for symplastic involvement in the radial movement of calcium in onion roots[J].Plant Physiology,2004,134:1793 -1802.
[23]Clarkson,DT,Roots and the delivery of solutes to the xylem[J].Philosophical Transactions Biological Sciences,1993.341:5 -17.
[24]Meyer CJ,Seago Jr JL,Peterson CA.Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots[J].Annals of Botany,2009,103:687-702.
[25]Krishnamurthy P,Ranathunge K,F(xiàn)ranke R,et al.The role of root apoplastic transport barriers in salt tolerance of rice(Oryza sativa L.)[J].Planta,2009,230:119-134.
[26]Cheng H,Liu Y,Tam NFY,et al.The role of radial oxygen loss and root anatomy on zinc uptake and tolerance in mangrove seedlings[J].Environmental Pollution,2010,158:1189-1196
[27]Kamula SA,Peterson CA,Mayfield CI.Impact of the exodermis on infection of roots by Fusarium culmorum[J].Plant and Soil,1994,167:121 -126.
[28]Bernards MA.Demystifying suberin[J].Canadian Journal of Botany,2002,80:227-240.
[29]Wilson AJ,Robards AW.Observations on the pattern of secondary wall development in the hypodermis of onion(Allium cepa)roots[J].Protoplasma,1980,104:149-156.
[30]Walker RR,Sedgley M,Blesing MA,et al.Anatomy ultrastructure and assimilate concentrations in roots of Citrus genotypes differing in ability for salt exclusion[J].Experiment Botany,1984,35:1481-1494.
[31]Storey R,Walker RR.Some effects of root anatomy on K,Na and Cl loading of citrus roots and leave[J].Experimental Botany,1987,38:1769-1780.
[32]Barrowclough DE,Peterson CA.Effects of growing conditions and development of the underlying exodermis on the vitality of the onion root epidermis[J].Physiologia Plantarum,1994,92:343-349.
[33]Huang B,Eissenstat,DM,Achor D.Root hydraulic conductivity in relation to its morphological and anatomical characteristics for citrus root stocks[A].M.A.Topa,P.T.Rygiewicz,J.R.Cumming.In Dynamics of Physiological Processes in Woody Roots[C].NY:Ithaca,1995.
[34]衛(wèi)星,劉穎,陳海波.黃波羅不同根序的解剖結(jié)構(gòu)及其功能異質(zhì)性[J].植物生態(tài)學(xué)報(bào),2008,32(6):1238-1247.
[35]Hishi T,Tateno R,Takeda H.Anatomical characteristics of individual roots within the fine-root architecture of Chamaecyparis obtusa(Sieb.& Zucc.)in organic and mineral soil layers[J].Ecological Research,2006,21:754-758.
[36]Sharda JN,Koide RT.Exploring the role of root anatomy in P-mediated control of colonization by arbuscular mycorrhizal fungi[J].Botany,2010,88:165 -173.
[37]Zadworny M,Eissenstat DM.Contrasting the morphology,anatomy and fungal colonization of new pioneer and fibrous roots[J].New Phytologist,2011,190:213 -221.
[38] Gallaud I. études sur les mycorhizes endotrophes[J].Rev Gén Bot,1905,7:5 -18.
[39]Peterson RL.Adaptations of root structure in relation to biotic and abiotic factors[J].Canadian Journal of Botany,1991,70:661 -675.
[40]Imhof S,Weber HC.Root anatomy and mycotrophy(AM)of the achlorophyllous Voyria truncata(Standley)Standley and Steyermark(Gentianaceae)[J].Botanica Acta,1997,110:127-134.
[41]Sharda JN,Koide RT.Can hypodermal passage cell distribution limit root penetration by mycorrhizal fungi[J].New Phytologist,2008,180:696 -701.
[42]Thomas R,F(xiàn)ang X,Ranathunge K,et al.Soybean root suberin:anatomical distribution,chemical composition,and relationship to partial resistance to Phytophthora sojae[J].Plant Physiology,2007,144(1):299 -311.
[43] Priestley JH,North EE.Physiological studies in plant anatomy.III.The structure of the endodermis in relation to its function[J].New Phytologist,1922,21:8 -139.
[44]Bonnett Jr HT.The root endodermis:fine structure and function[J].Cell Biology,1968,37:199 -205.
[45]Schreiber L,Breiner H -W,Riederer M,et al.The Casparian strip of Clivia miniata Reg.roots:isolation,fine structure and chemical nature[J].Botanica Acta,1994,107:353-361.
[46]Robards AW,Robb ME.Uptake and binding of uranyl ions by barley roots[J].Science,1972,178:980-982.
[47] Ferguson IB,Clarkson DT.Simultaneous uptake and translocation of magnesium and calcium in barley(Hordeum vulgare L.)roots[J].Planta,1976b,128:267-269.
[48]Nagahashi G,Thompson WW,Leonard RT.The Casparians trip as a barrier to the movement of lanthanum in corn roots[J].Science,1974,183:670 -671.
[49]Kuhn AJ,Schr?der WH,Bauch J.The kinetic of calcium and magnesium entry onto mycorrhizal spruce root[J].Planta,2000,210(3):488 -496.
[50]Karahara I,Ikeda A,Kondo T,et al.Development of the Casparian strip in primary roots of maize under salt stress[J].Planta,2004,219:41 -47.
[51]Lux A,Sottníková A,Opatrná J,et al.Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity[J].Physiologia Plantarum,2004,120:537 -545.
[52]Lux A ,Martinka M,Vaculík M ,et al.Root responses to cadmium in the rhizosphere:a review[J].Ex-perimental Botany,2011,62(1):21-37.
[53]Vaculík M,Konlechner C,Langer I,et al.Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities[J].Environmental Pollution,2012,163:117-126.
[54]Stoláriková M,Vaculík M,Lux A,et al.Anatomical differences of poplar(Populus×euramericana clone I- 214)roots exposed to zinc excess[J].Biologia,2012,679(3):483-489.
[55]Harrison - Munay RS,Clarkson DT.Relationships between structural development and the absorption of ions by the root system of Cucurbita pepo[J].Planta,1973,114:1-16.
[56]Waduwara CI,Walcott SE.Peterson CA.Suberin lamellae of the onion root endodermis:their pattern of development and continuity[J].Botany,2008,86(6):623-632.
[57]Clarkson DT,Robards AW,Sanderson J.The tertiary endodermis in barley roots:fine structure in relation to radial transport of ions and water[J].Planta,1971,96:292-305.
[58]Robards AW,Jackson M,Clarkson DT,et al.The structure of barley roots in relation to the transport of ions into the stele[J].Protoplasma,1973,77:291 -311.
[59]Steudle E,Henzler T.Water channels in plants:do basic concepts of water transport change[J].Experiment Botany,1995,46:1067-1076.
[60]McKenzie BE,Peterson CA.Root browning in Pinus banksiana Lamb,and Eucalyptus pilularis Sm.2.Anatomy and permeability of the cork zone[J].Botanica Acta,1995b,108:138-143.
[61]Enstone DE,Peterson CA,Hallgren SW.Anatomy of seedling tap roots of loblolly pine (Pinus taeda L.)[J].Trees,2001,15:98 -111.
[62]劉穎,谷加存,衛(wèi)星,等.樹木不同著生位置1級(jí)根的形態(tài)、解剖結(jié)構(gòu)和氮含量[J].植物生態(tài)學(xué)報(bào),2010,34(11):1336-1343.
[63]Volder A,Smart DR,Bloom AJ,et al.Rapid decline in nitrate uptake and respiration with age in fine lateral roots of grape:implications for root efficiency and competitive effectiveness[J].New Phytologist,2005,165:493-502.
[64]王立德,廖紅,王秀榮,等.植物根毛的發(fā)生、發(fā)育及養(yǎng)分吸收[J].植物學(xué)通報(bào),2004.21(6):649-659.
[65]鄭玲,吳小芹.植物菌根共生體結(jié)構(gòu)的研究進(jìn)展[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,32(5):135-139.
[66]Lux A,Luxova M,Abe J,et al.Root cortex:structural and functional variability and responses to environmental stress[J].Root Research,2004,13:117-131.