亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于改進FaceNet的河湖采砂船“船臉”識別算法

        2024-12-31 00:00:00包學才陳豹吳燦銳汪忠喜占禮彬
        人民長江 2024年8期
        關鍵詞:采砂船采砂河湖

        摘要:為有效提升河湖采砂船智能化管理水平,提出了一種基于改進FaceNet的河湖采砂船“船臉”識別算法。首先在FaceNet算法網絡的全局平均池化層后引入CA注意力模塊,增強算法對于感興趣區(qū)域的自適應關注能力;其次訓練時在網絡的最后引入線性層構建采砂船個體“船臉”識別器,將分類和識別的方法相結合共同應用于采砂船“船臉”識別;最后在訓練時引入交叉熵損失函數,輔助原FaceNet算法中的三元組損失函數共同實現收斂。實驗結果表明:改進的FaceNet算法對于白天場景下采砂船個體“船臉”目標識別的正確率比改進前提高了4.77%,達79.22%;夜間場景下目標識別的正確率提高了2.83%。研究成果適用于采砂船“船臉”識別任務,可為河湖采砂船的智能監(jiān)管提供技術參考。

        關 鍵 詞:采砂船監(jiān)管;FaceNet;深度學習;卷積神經網絡;目標識別

        中圖法分類號:TP391.41

        文獻標志碼:ADOI:10.16232/j.cnki.1001-4179.2024.08.031

        0 引 言

        采砂船智能監(jiān)管是河湖采砂智能監(jiān)管的重要組成部分。無證開采和超采等無序采砂現象可使堤防、橋梁、碼頭和水下光纜等基礎設施遭到破壞,嚴重威脅河段防洪安全、船舶航行安全和水域生態(tài)安全,因此加強對河湖采砂船的監(jiān)管具有重要意義。

        目前對于河湖采砂船的監(jiān)管識別以人工巡檢、紅外識別、定位或傳統(tǒng)的機器學習算法為主。針對非法采砂行為管理難、監(jiān)督難和監(jiān)控難的問題,曹榮等[1融合了水下偵聽器獲取的音頻信號和紅外監(jiān)控視頻數據分析方法,自動監(jiān)測非法采砂船。呂奕霖2利用GPS定位技術、電子圍欄技術、RFID標簽和RFID讀寫器技術、4G和GPRS無線傳輸技術、DC視頻攝像技術等對采砂船和運砂車輛進行實時定位。肖文等[3通過GPS、智能感知設備和圖像識別技術實現對重點水域非法采砂活動的自動識別和遠程取證,并采用視頻級聯技術實現視頻本地存儲和遠程調閱。付永沖[4介紹了采用Asp.net 3層WEB結構開發(fā)的采砂船舶管理系統(tǒng)的設計思路。鮑凱等[5運用北斗導航定位技術設計了采砂船舶位置跟蹤和航行線路的實時監(jiān)控系統(tǒng),可根據采砂船的位置和時間來判斷采砂船采砂作業(yè)是否合法。江玉才等6采用先進的全球定位系統(tǒng)、傳感器技術、無線傳輸技術、視頻監(jiān)控與智能分析技術完成可采區(qū)采砂作業(yè)的動態(tài)監(jiān)測,對采砂范圍、開采量、開采時間等采砂情況進行及時監(jiān)測管理。Cao等[7利用MODIS影像與實地巡查數據建立了洪澤湖懸浮顆粒物濃度估算算法,并將洪澤湖懸浮顆粒物濃度的顯著變化歸因于密集的采砂活動。Duan等[8在日間影像的基礎上使用了VIIRS晝夜波段夜間燈光數據,總結得到了洪澤湖采砂船的時空分布特征。Li等[9通過湖面分區(qū)、船舶目標增強和懸浮泥沙反演結果疊加分析來提取鄱陽湖采砂船作業(yè)點,并用底質類型分類結果進行結果的驗證。Feng等[10建立了鄱陽湖北湖年平均懸浮泥沙濃度與北湖最南端船舶數的回歸關系。De等[11利用衛(wèi)星圖像估計了禁砂期離開鄱陽湖的船只數量,并評估了鄱陽湖采砂的影響。Lai等[12發(fā)現鄱陽湖的外流河道會隨著采砂強度的變大而加寬加深。以上研究中采用的監(jiān)控方法存在成本高、效率低、精度低和不能持續(xù)有效監(jiān)測等問題。依靠人工河道巡檢的方法會受到夜間環(huán)境等因素的限制,人工成本高且無法做到7×24 h持續(xù)有效監(jiān)測,還容易受到主觀因素的影響出現誤判和漏判。夜間環(huán)境下依靠紅外識別的方法準確率低、會大量漏檢且無法精確識別船體尺寸。基于定位的方法精度低、誤差大而且觀察不夠直觀。傳統(tǒng)的機器學習算法基于樣本特征依靠手工設計模型進行采砂船識別,魯棒性不高且泛化能力不強,無法隨著新樣本的增加而更新算法。隨著硬件性能的高速發(fā)展,各行各業(yè)都在大力推進大數據和人工智能等技術的創(chuàng)新和深入應用,將基于深度學習的目標識別算法應用于河湖采砂船的智能監(jiān)管具有廣泛的應用前景和重要的現實意義。

        針對上述河湖采砂船監(jiān)管中存在的難點,同時結合河湖采砂智能監(jiān)管關鍵技術項目的需求,本文提出改進的FaceNet[13“船臉”識別方法,在主干網絡中引入CA(coordinate attention)注意力模塊[14,在FaceNet網絡最后引入線性層,形成改進的識別器,同時引入交叉熵損失結合三元組損失共同作為FaceNet識別方法的損失函數。

        1 算法流程

        基于改進FaceNet的河湖采砂船“船臉”識別流程分為兩個步驟。第一步,輸入采砂船圖像。首先經過改進的YOLOX算法[15-20進行采砂船“船臉”目標的分類和定位,以提高YOLOX算法對于復雜場景下河湖過往船舶的檢測精度,如果檢測到采砂船“船臉”圖像則進行截取。第二步,將第一步中檢測并截取到的“船臉”圖像送入改進的FaceNet識別算法進行“船臉”個體識別。這里的采砂船“船臉”識別是指首先將兩張采砂船正面圖像經過改進的FaceNet識別算法提取特征,生成長度為128的特征向量,然后計算兩個特征向量之間的歐氏距離,最后將計算得到的歐氏距離與在評估改進的FaceNet識別算法過程中使用交叉驗證得到的最佳判斷閾值進行比較。如果歐式距離小于最佳判斷閾值,則認為兩張采砂船正面圖像屬于同一艘采砂船,反之則認為屬于不同的采砂船?;诟倪MFaceNet的河湖采砂船“船臉”整體識別流程如圖1所示。

        2 模型結構

        針對具體的河湖采砂船“船臉”識別任務,對FaceNet識別算法進行改進,首先在全局平均池化后引入CA注意力模塊,增強對于“船臉”對象的自適應關注,其次針對數據集中采砂船個體數量較少的特點,訓練時在網絡批標準化層后引入一個線性層用于具體采砂船個體識別,將輸出由固定長度的特征向量映射為采砂船“船臉”個體數,最后結合引入的交叉熵損失函數輔助三元組損失函數收斂。改進的FaceNet河湖采砂船“船臉”識別算法可以很好地應用于采砂船“船臉”識別,為河湖采砂船的智能監(jiān)管提供有效的技術支撐。改進FaceNet的整體網絡結構如圖2所示。

        2.1 改進的識別器

        由于本文所用的采砂船“船臉”數據集中采砂船數量相對較少(訓練集20艘采砂船,測試集10艘采砂船),因此訓練時在網絡的結尾引入一個線性層構成采砂船“船臉”識別器,用于具體的采砂船個體“船臉”識別。線性層的輸入為批標準化層長度為128的特征向量輸出,線性層的輸出為采砂船的個體數。通過此線性層構成的組別器將網絡的輸出由固定128長度的特征向量映射為采砂船個體數,最后結合引入的交叉熵損失函數輔助三元組損失收斂。在預測時仍然使用不加此線性層的輸出,即預測輸出為長度128的特征向量,然后計算不同特征向量之間的歐氏距離。線性層的網絡結構如圖3所示。

        線性層的計算公式為

        z=wTx+b(1)

        式中:z為線性層的加權輸出,x為線性層的輸入,wT為線性層權重矩陣的轉置;b為線性層的偏置。

        2.2 改進的損失函數

        為訓練在網絡中引入的用于預測采砂船“船臉”個體的線性層構成的識別器,同時輔助三元組損失函數收斂,在FaceNet采砂船“船臉”識別算法中引入交叉熵損失函數。對于多分類問題,交叉熵損失函數的公式為

        式中:CEloss為交叉熵損失函數,NLL為對預測結果取負求和的運算,lg為對數函數,softmax為歸一化指數函數,input為網絡的輸入,label為真實標簽值,onehot為獨熱編碼操作。獨熱編碼操作是指取出每個樣本的真實標簽值對應的下標位置,該位置的值獨熱編碼為1,其余位置的值獨熱編碼為0。

        2.3 CA注意力模塊

        為提升FaceNet識別算法對于“船臉”特征信息的獲取能力,在FaceNet網絡中引入CA注意力模塊。CA注意力模塊將通道注意力分解為兩個一維特征編碼過程,分別沿兩個方向進行特征融合。在一個空間方向上捕獲遠程的依賴關系,同時在另一個空間方向上保留精確的位置信息。然后將生成的特征圖編碼為一對方向感知和位置敏感的注意力特征圖,實現互補,最后將輸入特征圖與此注意力特征圖相乘即得到CA注意力模塊的輸出。CA注意力模塊結構如圖4所示,圖中,Input為模塊輸入,Output為模塊輸出,AvgPool為平均池化操作,Concat為通道拼接的特征融合操作,Conv(1×1)為1×1的卷積操作,BatchNorm為批標準化操作[21,ReLU和Sigmoid為激活函數[22,Re-Weight為加權操作。

        CA注意力模塊的具體實現流程為:給定輸入,將其在兩個維度上進行分解,使用維度為(H,1)和(1,W)的池化核,使其分別沿著水平和垂直坐標方向進行全局平均池化操作23,如式(3)和式(4)所示。

        式中:zhc(h)為沿高度方向進行全局平均池化的結果,zwc(w)為沿寬度方向進行全局平均池化的結果,w為輸入特征圖的寬度值,h為輸入特征圖的高度值,xc為輸入特征圖。將不同方向上全局平均池化操作生成的兩個特征向量進行拼接,然后使用卷積核大小為1×1的卷積操作對其通道維度進行壓縮,再經過批標準化和ReLU激活函數處理,此過程如式(5)所示。

        式中: f為輸出特征圖,δ為ReLU激活函數,F1為卷積核大小為1×1的卷積操作,[]為沿空間維度的拼接操作。

        隨后將上一步的輸出特征圖f分別沿空間和通道兩個方向分解成2個單獨的張量fh∈?C/r×H和fw∈?C/r×W,其中r為通道壓縮的比例,分別對兩個張量進行1×1卷積和Sigmoid激活處理,得到輸出加權特征向量,其過程如式(6)和式(7)所示。

        gh=σ(Fh(fh))(6)

        gw=σ(Fw(fw))(7)

        式中:gh為沿高度方向的輸出特征圖,gw為沿寬度方向的輸出特征圖,σ為Sigmoid激活函數,Fh為沿高度方向的1×1卷積,Fw為沿寬度方向的1×1卷積。將上面得到的兩個加權特征向量乘上原輸入即得到CA注意力模塊的輸出,其過程如式(8)所示。

        yc(i,j)=xc(i,j)×ghc(i)×gwc(j)(8)

        式中:yc(i,j)為CA注意力模塊的輸出特征圖,xc(i,j)為CA注意力模塊的輸入特征圖。

        3 實驗結果與分析

        3.1 實驗數據

        為驗證本文改進FaceNet河湖采砂船“船臉”識別算法的有效性,使用白天和夜間場景下的自制采砂船“船臉”數據集訓練改進FaceNet“船臉”識別算法。由于每艘采砂船“船臉”個體都由所有者自行建造,因此不同“船臉”的差異主要體現在每艘采砂船“船臉”的固定特征,例如采砂船編號、船體窗戶和門的分布、樓梯位置等,這些固定特征在每艘采砂船上都有所不同,因此可以通過識別上述特征確定具體是哪一艘采砂船。對數據集進行伽馬變換、直方圖均衡、椒鹽噪聲、色彩抖動和色域扭曲等數據增強操作增加數據集的豐富性,提升算法的魯棒性,然后進行數據集的劃分。所用訓練集包括20艘共3 592張采砂船的“船臉”圖像,所用測試集包括10艘共2 005張采砂船的“船臉”圖像,每艘采砂船分別有100~300張不等的“船臉”圖像,自制采砂船“船臉”數據集如圖5所示。

        3.2 評價指標

        為客觀衡量改進FaceNet算法的識別效果,本文使用接收者操作特征曲線(receiver operating characteristic,ROC)[24評估改進FaceNet“船臉”識別算法的輸出品質,反映相同的感受性。ROC曲線以真正例率(true positive rate,TPR)為縱軸,以假正例率(1 positive rate,FPR)為橫軸,在不同的閾值下獲得坐標點,并連接成曲線。ROC曲線的優(yōu)點是能夠很好地描述改進FaceNet算法對于不均衡分布樣本的識別性能。ROC曲線下的面積為AUC(area under the curve),AUC可以直觀地評價網絡識別的性能,其值越大代表算法的識別效果越好。TPR和FPR的計算公式如式(9)和式(10)所示。

        式中:TP表示實際為正樣本預測也為正樣本的數量,FN表示實際為正樣本但預測為負樣本的數量,FP表示實際為負樣本但被預測為正樣本的數量,TN表示實際為負樣本預測也為負樣本的數量。

        3.3 實驗設置

        3.3.1 實驗平臺配置

        本文所用的深度學習實驗平臺配置如表1所列。

        3.3.2 超參數設置

        網絡的訓練超參數設置具體包括:每批次訓練樣本數為30,最大學習率為0.001,最小學習率為0.000 01。采用自適應矩陣估計(adaptive moment estimation,Adam)[25優(yōu)化器優(yōu)化訓練,Momentum參數為0.9,同時使用余弦退火算法更新學習率。遍歷1次全部訓練驗證集數據稱為1個Epoch,經過100個Epoch訓練使代價函數最小,得到最優(yōu)網絡權重。

        FaceNet算法不同改進的訓練正確率變化曲線如圖6所示。從圖中可以看出,三元組損失+交叉熵損失+CA注意力模塊的訓練正確率曲線上升更加平滑。

        FaceNet算法不同改進的訓練損失值變化曲線如圖7所示。從圖中可以看到三元組損失+交叉熵損失+CA注意力模塊的訓練損失值曲線下降更加平滑。

        3.4 消融實驗

        從YOLOX算法改進前后對于復雜場景下河湖過往船舶目標檢測的精度對比可知,YOLOX算法的檢測精度為95.58%,改進的YOLOX算法的檢測精度為97.60%,比原算法提高了2.02%。因此,改進的YOLOX算法可以實現對于復雜場景下河湖過往船舶的精確檢測。

        為探究不同改進部分對于白天和夜間場景下FaceNet采砂船“船臉”識別算法識別精度的影響,本文進行了消融實驗,實驗結果如表2所列。根據表中數據,第一組實驗表示原FaceNet算法的識別效果,使用三元組損失函數進行訓練,網絡中沒有引入改進部分,在白天場景下識別AUC值為0.83,識別正確率為74.45%,算法確定的判斷閾值為1.00;第2組實驗表示訓練時在原FaceNet算法網絡中引入一個線性層作為識別器,并相應地引入交叉熵損失函數和三元組損失函數共同進行網絡權值的收斂,在白天場景下的識別AUC值比原FaceNet算法提高了0.01,正確率提高了1.83%,算法確定的判斷閾值為1.18;第3組實驗表示本文改進的FaceNet識別算法,在第2組實驗的基礎上在網絡中引入CA注意力模塊,在白天場景下識別AUC值比原FaceNet算法提高了0.04,正確率提高了4.77%,算法確定的判斷閾值為1.19,達到了最高的識別精度;第4組實驗表示原FaceNet算法在夜間場景下的識別效果,識別AUC值為0.72,識別正確率為68.46%,算法確定的判斷閾值為1.12;第5組實驗表示第2組改進算法在夜間場景下的識別效果,識別AUC值比原FaceNet算法提高了0.03,正確率提高了2.81%,算法確定的判斷閾值為1.17;第6組實驗表示本文改進的FaceNet識別算法在夜間場景下的識別效果,識別AUC值比原FaceNet算法提高了0.03,正確率提高了2.83%,算法確定的判斷閾值為1.22。綜上,本文引入的改進對于白天和夜間場景下采砂船“船臉”的識別精度均有提高。

        FaceNet“船臉”識別算法和改進的FaceNet“船臉”識別算法的ROC曲線如圖8所示。圖8(a)表示FaceNet“船臉”識別算法,圖8(b)表示改進的FaceNet“船臉”識別算法,ROC曲線與橫縱坐標軸所包圍的圖形面積為AUC。AUC可以直觀地評價算法識別的性能,其值越大代表算法的識別效果越好。從圖中可以看出,FaceNet“船臉”識別算法的AUC值為0.83,改進的FaceNet“船臉”識別算法的AUC值為0.87,比改進前提高了0.04。因此改進的FaceNet“船臉”識別算法精度更高,可以較好地完成采砂船“船臉”識別任務。

        改進的FaceNet識別算法對相同采砂船“船臉”識別向量的歐幾里得距離如圖9所示。從圖中可以看出,相同采砂船“船臉”識別向量的歐幾里得距離均小于判斷閾值。

        為直觀體現改進FaceNet識別算法的識別效果,利用測試集中10艘不同采砂船的“船臉”圖像對改進的FaceNet識別算法進行測試,不同采砂船“船臉”之間計算的歐式距離如表3所列。表中將測試集中的10艘采砂船分為兩組。第一組采砂船編號分別為JC1568、JC1688、JC1819、JC1888和NGG99,第二組采砂船編號分別為2011、CC0136、CC0183、CC0188和CC0205,分別計算兩組不同采砂船“船臉”之間的歐氏距離。從表中可以看出,經過改進FaceNet算法識別的不同采砂船“船臉”之間的歐氏距離均大于改進算法得到的閾值,表明改進的FaceNet識別算法全部識別正確。

        3.5 識別效果

        基于改進FaceNet的河湖采砂船“船臉”在白天和夜間的識別效果如圖10所示。從圖中可以看出,對于不同場景和不同尺寸大小的采砂船“船臉”目標,本文改進的采砂船“船臉”識別方法不僅可以精確定位圖像中采砂船的位置,而且可以精確識別不同的采砂船個體,識別效果優(yōu)越,可以為河湖采砂船的智能管理提供有效的技術支撐。

        4 結 論

        本文提出了一種基于改進FaceNet的河湖采砂船“船臉”識別算法。該算法在FaceNet網絡的全局平均池化層后引入CA注意力模塊,增強對于感興趣對象的自適應關注:訓練時在網絡最后引入線性層構建采砂船個體識別器,引入交叉熵損失函數輔助三元組損失函數收斂。實驗結果表明,在圖形處理器RTX3070條件下,結合自適應矩陣估計優(yōu)化器優(yōu)化訓練,改進的FaceNet算法對于白天場景下河湖采砂船“船臉”識別的AUC值達0.87,識別正確率達79.22%,比原算法提升了4.77%;對于夜間場景下采砂船個體“船臉”目標識別的正確率提高了2.83%。適用于采砂船“船臉”識別任務。本文改進方法相比于之前方法具有以下優(yōu)勢:首先,本文改進方法可以通過遠程攝像頭拍攝的圖像或視頻進行采砂船自動識別,不需要人工實地巡檢,節(jié)約了人工成本。其次,改進方法可以實現采砂船的實時識別,相較于人工和傳統(tǒng)方法大大提高了識別效率。然后,改進方法通過針對性地引入改進模塊,相較于原FaceNet算法提高了識別精度,不會受到夜間環(huán)境等因素的影響,后續(xù)可以通過增加新的訓練樣本進行模型的訓練和更新,對于新場景的采砂船也可以進行精確識別,實現模型的動態(tài)更新。最后,改進方法可以部署在云端服務器或邊緣計算端,相較于人工巡檢可以實現7×24 h持續(xù)有效地監(jiān)測。綜上所述,改進的FaceNet“船臉”識別方法在成本、效率、精度和持續(xù)有效監(jiān)測等方面均有提升,可以為河湖采砂船智能化監(jiān)管提供有效技術支撐,從而提升采砂行業(yè)的現代化管理水平。

        但是受限于訓練樣本數量較少,且拍攝的采砂船“船臉”數據集中大部分圖像包含正對“船臉”的拍攝角度,僅少量包含“船臉”側面的拍攝角度,同時包含大量拍攝距離較遠、目標較小的“船臉”圖像;再加上數據集圖像拍攝的背景為寬闊的水面,容易受到光照因素、水面波動、水面倒影和船舶相互遮擋的影響,所以本文提出的基于改進FaceNet的河湖采砂船“船臉”識別算法的正確率未達到FaceNet應用于人臉的識別精度,而且對于夜間場景下的采砂船“船臉”識別精度還有提升空間,后續(xù)研究可針對上述原因做進一步深入探討。最后本文還提出一種基于改進FaceNet的河湖采砂船“船臉”識別流程步驟,可為河湖采砂船的智能監(jiān)管提供有效的技術支撐。

        參考文獻:

        [1]曹榮,周佩日,王文強,等.基于聲光聯動的非法采砂船自動監(jiān)測方法[J].江蘇水利,2022(8):45-48.

        [2]呂奕霖.智慧河道采砂監(jiān)管平臺系統(tǒng)的設計與實現[D].鄭州:華北水利水電大學,2019.

        [3]肖文,陳群山,林皓,等.河道執(zhí)法信息系統(tǒng)研發(fā)[J].水利水電快報,2018,39(12):53-57.

        [4]付永沖.采砂船舶管理系統(tǒng)[D].武漢:湖北工業(yè)大學,2018.

        [5]鮑凱,潘洪軍,亓常松.基于 GPRS 的采砂船舶監(jiān)控系統(tǒng)設計[J].人民長江,2017,48(18):20-22.

        [6]江玉才,符富果,王炎龍,等.河道采砂智能監(jiān)控系統(tǒng)的設計[J].現代計算機(專業(yè)版),2014(16):53-57.

        [7]CAO Z,DUAN H,FENG L,et al.Climate and human induced changes in suspended particulate matter over Lake Hongze on short and long time scales[J].Remote Sensing of Environment,2017,192:98-113.

        [8]DUAN H,CAO Z,SHEN M,et al.Detection of illicit sand mining and the associated environmental effects in China′s fourth largest freshwater lake using daytime and nighttime satellite images[J].Science of Total Environment,2019,647:606-618.

        [9]LI J,TIAN L,CHEN X,et al.Remote-sensing monitoring for spatio-temporal dynamics of sand dredging activities at Poyang Lake in China[J].International Journal of Remote Sensing,2014,35(16):6004-6022.

        [10]FENG L,HU C,CHEN X,et al.Human induced turbidity changes in Poyang Lake between 2000 and 2010:Observations from MODIS[J].Journal of Geophysical Research:Oceans,2012,117(C7):CD7006.

        [11]DE L J,SHANKMAN D,WU G,et al.Strategic assessment of the magnitude and impacts of sand mining in Poyang Lake,China[J].Regional Environmental Change,2010,10:95-102.

        [12]LAI X,SHANKMAN D,HUBER C,et al.Sand mining and increasing Poyang Lake′s discharge ability:A reassessment of causes for lake decline in China[J].Journal of Hydrology,2014,519:1698-1706.

        [13]SCHROFF F,KALENICHENKO D,PHILBIN J.Facenet:A unified embedding for face recognition and clustering[C]∥ Proceedings of the IEEE conference on computer vision and pattern recognition(CVPR),2015:815-823.

        [14]HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[C]∥ Proceedings of the IEEE/CVF conference on computer vision and pattern recognition(CVPR),2021:13713-13722.

        [15]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[C]∥ Proceedings of the IEEE conference on computer vision and pattern recognition,2016:779-788.

        [16]REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]∥ Proceedings of the IEEE conference on computer vision and pattern recognition,2017:7263-7271.

        [17]REDMON J,FARHADI A.Yolov3:an incremental improvement[J].arXiv e-prints,2018:1804.02767.

        [18]BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:optimal speed and accuracy of object detection[J].arXiv e-prints,2020:2004.10934.

        [19]GE Z,LIU S,WANG F,et al.Yolox:Exceeding yolo series in 2021[J].arXiv e-prints,2021:2107.08430.

        [20]WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7:Trainable bag of freebies sets new state of the art for real-time object detectors[J].arXiv e-prints,2022:2207.02696.

        [21]IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]∥ International Conference on Machine Learning,PMLR,2015:448-456.

        [22]NAIR V,HINTON G E.Rectified linear units improve restricted boltzmann machines[C]∥ Proceedings of the 27th International Conference on Machine Learning(ICML-10),2010:807-814.

        [23]LIN M,CHEN Q,YAN S.Network in network[J].arXiv e-prints,2013:1312.4400.

        [24]DAVIS J,GOADRICH M.The relationship between Precision-Recall and ROC curves[C]∥ Proceedings of the 23rd International Conference on Machine Learning.2006:233-240.

        [25]KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv e-prints,2014:1412.6980.

        (編輯:鄭 毅)

        “Ship face” recognition algorithm for river and lake sand dredgers

        based on improved FaceNet

        BAO Xuecai1,2,CHEN Bao1,2,WU Canrui1,2,WANG Zhongxi1,2,ZHAN Libin1,2

        (1.School of Information Engineering,Nanchang Institute of Technology,Nanchang 330099,China; 2.Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing,Nanchang Institute of Technology,Nanchang 330099,China)

        Abstract:In order to effectively improve the intelligent management level of river and lake sand dredgers,an improved FaceNet based “ship face” recognition algorithm for river and lake sand dredgers was proposed.Firstly,a CA attention module was introduced behind the global average pooling layer of the FaceNet algorithm network to enhance the adaptive attention ability for regions of interest.Secondly,a linear layer was introduced at the end of the network during training to construct an individual “ship face” recognizer for sand dredgers.The combination of classification and recognition methods was applied to the “ship face” recognition of sand dredgers.Finally,Cross entropy Loss function was introduced into the training to assist the Triplet loss function in the original FaceNet algorithm to converge together.The experimental results showed that the accuracy of the improved FaceNet algorithm for identifying individual “ship face” objects on sand dredgers in daytime had increased by 4.77 percentage points compared to that before the improvement,reaching 79.22%.The accuracy of identifying individual “ship face” objects of sand dredgers in night had increased by 2.83 percentage points.This algorithm is suitable for the “ship face” recognition task of sand dredgers and can provide effective technical support for the intelligent supervision of river and lake sand dredgers.

        Key words:supervision of sand dredgers; FaceNet; deep learning; convolutional neural network; object identification

        猜你喜歡
        采砂船采砂河湖
        全面推行河湖長制打造“三晉”幸福河湖
        山西水利(2022年5期)2022-09-21 02:38:28
        淮河流域省級河湖長第一次聯席會議召開
        治淮(2022年8期)2022-09-03 03:42:26
        采砂對沅水典型采砂河道影響初步分析
        加強河湖保護治理 改善河湖生態(tài)環(huán)境
        黑龍江:河湖治理保護成效明顯
        論江河流域非法采砂行為違法判斷根據
        刑法論叢(2016年1期)2016-06-01 12:13:48
        雞東縣河道整治及采砂治理
        對直管河道采砂管理的認識與思考
        中國水利(2015年16期)2015-02-28 15:14:46
        安徽省長江采砂船舶管理實踐與思考
        中國水利(2012年10期)2012-08-15 00:51:37
        扶溝局一天搗毀7條非法采砂船
        資源導刊(2010年9期)2010-08-15 00:51:44
        亚洲1区第2区第3区在线播放| 久草视频这里有精品| 国产精品麻豆A啊在线观看| 亚洲中文乱码在线视频| 新婚少妇无套内谢国语播放| 国产麻豆精品一区| 无码中文日韩Av| 国产午夜福利av在线麻豆| 日韩精品成人区中文字幕| 疯狂撞击丝袜人妻| 亚洲色大成在线观看| 日本激情久久精品人妻热| 国产av自拍视频在线观看| 亚洲av无码成人专区片在线观看| 亚洲AV无码精品呻吟| 日韩人妻免费一区二区三区| 亚洲在线视频免费视频| 国产精品无圣光一区二区| 亚洲另类激情综合偷自拍图| 亚洲精品国产av成人网| 精品卡一卡二卡3卡高清乱码| 18禁无遮挡无码网站免费| 精品一区二区三区在线观看l| 不卡免费在线亚洲av| 欧美大屁股xxxx高跟欧美黑人| 怡春院欧美一区二区三区免费| 国产精品一区二区日韩精品| 久久久免费看少妇高潮| 亚洲色在线v中文字幕| 亚洲国产精品线观看不卡| 日韩成人高清不卡av| 高潮毛片无遮挡高清视频播放| 香蕉久久久久久久av网站| 人人妻人人澡av| 国产一区二区三区亚洲avv| 中国丰满熟妇xxxx性| 韩国精品一区二区三区| 国产午夜精品久久精品| 免费看又色又爽又黄的国产软件| 人妻丰满熟妇AV无码区HD| 亚洲色图在线视频观看 |