亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        運(yùn)動(dòng)與心肌保護(hù)

        2024-06-12 00:00:00胡友成鄭桓馬虎習(xí)瑾昆
        現(xiàn)代養(yǎng)生·下半月 2024年5期
        關(guān)鍵詞:內(nèi)質(zhì)網(wǎng)應(yīng)激運(yùn)動(dòng)

        【摘要】" 運(yùn)動(dòng)是預(yù)防和減輕心臟疾病經(jīng)濟(jì)而有效的非藥物干預(yù)手段。線(xiàn)粒體相關(guān)內(nèi)質(zhì)網(wǎng)膜(mitochondria-associated endoplasmic reticulum membranes, MAMs)是心臟相關(guān)疾病的重要治療靶點(diǎn),MAMs 通過(guò)改變其調(diào)節(jié)蛋白和功能導(dǎo)致內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress, ERS)及線(xiàn)粒體功能障礙,并通過(guò)自噬、氧化損傷、凋亡等途徑參與心肌保護(hù)。運(yùn)動(dòng)通過(guò)MAMs介導(dǎo)線(xiàn)粒體和內(nèi)質(zhì)網(wǎng)之間相互作用,共同介導(dǎo)疾病的發(fā)生、發(fā)展與轉(zhuǎn)歸。通過(guò)對(duì)運(yùn)動(dòng)與心肌保護(hù)的作用及機(jī)制進(jìn)行綜述,為臨床研究提供新策略。

        【關(guān)鍵詞】" 運(yùn)動(dòng);心肌保護(hù);線(xiàn)粒體相關(guān)內(nèi)質(zhì)網(wǎng)膜;內(nèi)質(zhì)網(wǎng)應(yīng)激

        中圖分類(lèi)號(hào)" R542.2" " 文獻(xiàn)標(biāo)識(shí)碼" A" " 文章編號(hào)" 1671-0223(2024)10--07

        在《中國(guó)心血管病健康與疾病報(bào)告2022》中指出心血管病死亡率居疾病首位,中國(guó)每5例死亡就有2例死于心血管病。報(bào)告指出,運(yùn)動(dòng)是影響心血管健康的重要因素,與心血管疾?。╟ardiovascular diseases, CVDs)的發(fā)生和發(fā)展密切相關(guān)[1]。研究表明,運(yùn)動(dòng)作為一種有效的干預(yù)措施,可逆轉(zhuǎn)心臟重塑和提高心力衰竭患者的心功能[2],發(fā)生心血管疾病后,經(jīng)常運(yùn)動(dòng)的人生存率高于久坐的人[3]。細(xì)胞器在形態(tài)和功能上既相互依存,又高度協(xié)調(diào),使細(xì)胞的生命活動(dòng)得以順利進(jìn)行,線(xiàn)粒體相關(guān)內(nèi)質(zhì)網(wǎng)膜(mitochondria-associated endoplasmic reticulum membranes, MAMs)就是介導(dǎo)內(nèi)質(zhì)網(wǎng)和線(xiàn)粒體的重要蛋白復(fù)合體。心血管疾病中的病理因素如代謝紊亂、心肌肥厚和炎癥等,使內(nèi)質(zhì)網(wǎng)的內(nèi)環(huán)境穩(wěn)態(tài)失衡,功能遭到破壞,激活未折疊蛋白反應(yīng)(unfolded protein response, UPR),觸發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress, ERS) [4-5],導(dǎo)致細(xì)胞凋亡,而抑制ERS能改善心功能、減輕炎癥和纖維化[6]。心血管疾病導(dǎo)致功能失調(diào)的線(xiàn)粒體積累,進(jìn)而影響線(xiàn)粒體質(zhì)量控制,線(xiàn)粒體自噬異常加重線(xiàn)粒體功能障礙,在線(xiàn)粒體質(zhì)量控制中發(fā)揮著重要作用[7]。通過(guò)綜述運(yùn)動(dòng)與心肌保護(hù)的分子機(jī)制及其相互作用,運(yùn)動(dòng)調(diào)節(jié)MAMs在心肌保護(hù)中的新進(jìn)展,為心肌保護(hù)機(jī)制與臨床防治研究提供新策略。

        1" 運(yùn)動(dòng)

        較高水平的健身或身體活動(dòng)有利于良好的左心室結(jié)構(gòu)和功能,體力活動(dòng)與慢性亞臨床心肌損傷呈負(fù)相關(guān),這可能代表了通過(guò)體力活動(dòng)降低心力衰竭風(fēng)險(xiǎn)的機(jī)制[8]。研究表明,體力活動(dòng)與心力衰竭風(fēng)險(xiǎn)之間存在一致、線(xiàn)性、反向和劑量反應(yīng)關(guān)聯(lián),在很寬的劑量范圍內(nèi)觀(guān)察到線(xiàn)性劑量反應(yīng),沒(méi)有上限或下限效應(yīng),證明了更多的運(yùn)動(dòng)有利于預(yù)防心力衰竭[9]。結(jié)果符合運(yùn)動(dòng)作為心力衰竭患者一級(jí)預(yù)防工具的理念[10]。研究顯示,在有癥狀的慢性心力衰竭患者中,缺乏鍛煉與近兩倍的全因死亡率和心臟死亡率相關(guān),適度的鍛煉也與生存獲益相關(guān)[11],通過(guò)運(yùn)動(dòng)訓(xùn)練改善心力衰竭屬于心力衰竭患者的二級(jí)預(yù)防[10]。運(yùn)動(dòng)能提高心血管舒張功能,增加冠狀動(dòng)脈血流量,減輕心臟氧化應(yīng)激,從而降低CVDs的發(fā)病風(fēng)險(xiǎn)[12]。發(fā)生心肌梗死時(shí),梗死區(qū)的心壁變薄,心室腔擴(kuò)張,研究顯示,在大鼠心肌梗死手術(shù)后一天接受中等強(qiáng)度運(yùn)動(dòng)訓(xùn)練,加強(qiáng)了心肌梗死區(qū)域的修復(fù)和改善心室重構(gòu),提高了心臟功能、減少心肌細(xì)胞凋亡、改善心肌細(xì)胞病理性肥大和促進(jìn)心臟血管新生增加[13]。此外,運(yùn)動(dòng)在CVDs中的ERS和線(xiàn)粒體自噬中起著重要作用。

        2" MAMs

        2.1" MAMs蛋白復(fù)合體

        細(xì)胞器并非是獨(dú)立存在的,它們?cè)谛螒B(tài)和功能上相互聯(lián)系,既相互依存,又高度協(xié)調(diào),使得細(xì)胞的生命活動(dòng)得以順利進(jìn)行。內(nèi)質(zhì)網(wǎng)和線(xiàn)粒體在物理上的動(dòng)態(tài)連接形成了專(zhuān)門(mén)的結(jié)構(gòu)域,即MAMs,在心血管疾病導(dǎo)致ERS、Ca2+失衡、線(xiàn)粒體損傷和細(xì)胞凋亡等方面發(fā)揮作用[14]。課題組研究證實(shí),外源性Zn2+通過(guò)線(xiàn)粒體鈣單向轉(zhuǎn)運(yùn)體(mitochondrial calcium uniporter, MCU)抑制ERS進(jìn)而阻止線(xiàn)粒體通透性轉(zhuǎn)化孔(mitochondrial permeability transformant pore, mPTP)開(kāi)放,從而保護(hù)心臟[15]。但這種機(jī)制是否與MAMs有關(guān),仍需進(jìn)一步研究。內(nèi)質(zhì)網(wǎng)調(diào)節(jié)細(xì)胞Ca2+的攝取、儲(chǔ)存和信號(hào)傳遞,MAMs是一種高度可塑造的結(jié)構(gòu),線(xiàn)粒體和內(nèi)質(zhì)網(wǎng)之間的接觸位點(diǎn),其特征是兩個(gè)細(xì)胞器以恒定的距離并列,電子斷層掃描技術(shù)顯示,對(duì)于線(xiàn)粒體與滑面內(nèi)質(zhì)網(wǎng)是10~25nm變化;對(duì)于線(xiàn)粒體與粗面內(nèi)質(zhì)網(wǎng)是50~80nm變化,易于內(nèi)質(zhì)網(wǎng)中的Ca2+運(yùn)輸至線(xiàn)粒體[16]。當(dāng)發(fā)生ERS和線(xiàn)粒體自噬時(shí),MAMs會(huì)有相應(yīng)的變化。研究顯示,內(nèi)質(zhì)網(wǎng)線(xiàn)粒體相互作用的線(xiàn)粒體融合蛋白2(mitofusin 2 protein, MFN2)的缺失而減少,MFN2是一種內(nèi)質(zhì)網(wǎng)線(xiàn)粒體束縛蛋白,MFN2在高糖誘導(dǎo)的心房肌細(xì)胞內(nèi)ERS中發(fā)揮重要作用,沉默MFN2顯著破壞了ERS損傷的原代心肌細(xì)胞內(nèi)質(zhì)網(wǎng)-線(xiàn)粒體的相互作用并且可防止線(xiàn)粒體Ca2+超載介導(dǎo)的線(xiàn)粒體功能障礙,從而減少ERS介導(dǎo)的心肌細(xì)胞死亡[17]。另外,MFN2的消融減少I(mǎi)P3誘導(dǎo)的線(xiàn)粒體鈣攝取,從而導(dǎo)致內(nèi)質(zhì)網(wǎng)發(fā)生顯著的形態(tài)變化[18]。研究表明,UPR信號(hào)通路是MAMs中最活躍的通路[19],除了作為ERS傳感器的典型功能外,IRE1α在MAMs中具有非典型作用,即作為IP3R1介導(dǎo)Ca2+從內(nèi)質(zhì)網(wǎng)轉(zhuǎn)運(yùn)到線(xiàn)粒體的支架并隨后激活I(lǐng)P3R1介導(dǎo)的內(nèi)質(zhì)網(wǎng)的Ca2+運(yùn)輸?shù)骄€(xiàn)粒體的Ca2+依賴(lài)代謝酶[20]。研究顯示,IP3R-GRP75-VDAC1-MCU鈣調(diào)節(jié)軸通過(guò)促進(jìn)線(xiàn)粒體Ca2+超載介導(dǎo)足細(xì)胞凋亡的途徑[21],IP3Rs介導(dǎo)的Ca2+從內(nèi)質(zhì)網(wǎng)流出,使MAMs局部Ca2+濃度增高,隨后通過(guò)線(xiàn)粒體外膜(outer mitochondrial membrane, OMM)的電壓依賴(lài)性陰離子通道1(voltage-dependent anion" channel 1, VDAC1)介導(dǎo)的Ca2+從MCU流入線(xiàn)粒體基質(zhì)[20]。最新研究表明,IP3R1-GRP75-VDAC1復(fù)合物介導(dǎo)ERS-線(xiàn)粒體氧化應(yīng)激,在糖尿病心房重構(gòu)中發(fā)揮重要作用,抑制GRP75可減輕線(xiàn)粒體氧化應(yīng)激和鈣超載,并保護(hù)細(xì)胞免受ERS誘導(dǎo)的細(xì)胞凋亡[22]。心肌細(xì)胞中,VDAC2與RyR2有特異性的相互作用并介導(dǎo)Ca2+從MAMs流入線(xiàn)粒體[23]。此外,線(xiàn)粒體Ca2+通過(guò)線(xiàn)粒體內(nèi)膜進(jìn)入線(xiàn)粒體基質(zhì)的關(guān)鍵蛋白是MCU,它與線(xiàn)粒體負(fù)性孔隙形成亞基(MCU regulatory subunit b, MCUb)、必要MCU調(diào)節(jié)蛋白(essential MCU regulator, EMRE)和線(xiàn)粒體鈣攝入蛋白(mitochondrial calcium uptake, MICU)形成復(fù)合物共同發(fā)揮作用,而MICU包括MICU1和MICU2,形成MICU1-MICU2異源二聚體,MICU1位于線(xiàn)粒體內(nèi)膜,MICU2位于線(xiàn)粒體膜間隙(intermembrane space, IMS),MICU1-MICU2異源二聚體通過(guò)MCU介導(dǎo)線(xiàn)粒體Ca2+內(nèi)流。因此,該復(fù)合物由“看門(mén)人”MICU1-MICU2控制[24]。在小鼠的心肌細(xì)胞中發(fā)現(xiàn),定位于MAMs上的FUN14結(jié)構(gòu)域1(fun14 domain-containing protein 1, FUNDC1)與IP3R2相互作用,介導(dǎo)內(nèi)質(zhì)網(wǎng)的Ca2+流向胞質(zhì)和線(xiàn)粒體并影響心臟功能[25]。此外,糖原合酶激酶3β(glycogen synthase kinase 3β, GSK 3β)是心肌細(xì)胞Ca2+轉(zhuǎn)移的重要調(diào)節(jié)因子,與MAMs上IP3R-GRP75-VDAC1蛋白復(fù)合體相互作用,抑制劑GSK 3β活性能減少與IP3R-GRP75-VDAC1的相互作用,減少線(xiàn)粒體鈣超載和細(xì)胞死亡[26]。

        2.2" 內(nèi)質(zhì)網(wǎng)應(yīng)激

        內(nèi)質(zhì)網(wǎng)是最大、多功能的膜狀細(xì)胞器,分為光滑和粗糙兩種,形成相互連通的空間網(wǎng)絡(luò),負(fù)責(zé)蛋白質(zhì)折疊和轉(zhuǎn)運(yùn)、脂類(lèi)和類(lèi)固醇的生物合成及Ca2+穩(wěn)態(tài)等[27]。在內(nèi)質(zhì)網(wǎng)調(diào)節(jié)細(xì)胞Ca2+攝取、儲(chǔ)存和信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中,Ca2+釋放通道是控制內(nèi)質(zhì)網(wǎng)Ca2+釋放的巨大膜蛋白,通過(guò)三磷酸肌醇受體(inositol-1,4,5-trisphosphate receptors, IP3Rs)連接線(xiàn)粒體,是調(diào)控Ca2+的重要因素[28]。內(nèi)質(zhì)網(wǎng)中蛋白質(zhì)折疊過(guò)程是由多種伴侶、折疊酶和轉(zhuǎn)錄因子介導(dǎo)的,蛋白質(zhì)折疊能力的破壞導(dǎo)致未折疊和錯(cuò)誤折疊蛋白質(zhì)形成,這種內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)的擾動(dòng)被稱(chēng)為ERS[14]。在基礎(chǔ)狀態(tài)下,蛋白激酶RNA樣內(nèi)質(zhì)網(wǎng)激酶(protein kinase RNA-like endoplasmic reticulum kinase, PERK)與糖調(diào)節(jié)蛋白78(glucose regulating protein78, GRP78)結(jié)合處于非激活狀態(tài)[29]。心血管疾病能導(dǎo)致ERS且引發(fā)UPR[14]。ERS是一把雙刃劍,適應(yīng)性UPR功能通過(guò)改善蛋白質(zhì)折疊、抑制蛋白質(zhì)翻譯、改善錯(cuò)誤折疊蛋白的降解等機(jī)制來(lái)維持蛋白質(zhì)穩(wěn)態(tài)和細(xì)胞生存,當(dāng)適應(yīng)性UPR不能維持內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)時(shí),適應(yīng)性不良或終末UPR被激活,導(dǎo)致內(nèi)質(zhì)網(wǎng)完整性破壞和細(xì)胞凋亡[14]。研究顯示,當(dāng)未折疊蛋白錯(cuò)誤折疊蛋白累積超過(guò)內(nèi)質(zhì)網(wǎng)的降解限度時(shí),PERK暴露,釋放內(nèi)質(zhì)網(wǎng)跨膜蛋白1α(inositol-requiring enzyme 1α, IRE1α)和激活轉(zhuǎn)錄因子6 (activating transcription factor 6, ATF6),并啟動(dòng)各自信號(hào)聯(lián)級(jí)反應(yīng)。PERK和IRE1α的二聚化和磷酸化分別激活PERK磷酸化的真核起始因子2α(eukaryotic initiation factor 2α, EIF2α)-ATF4和IRE1α-剪切型X-盒結(jié)合蛋白1 (spliced X-box-binding protein 1, XBP1s)-ATF6被高爾基體上的位點(diǎn)1蛋白酶(enzymes site-1 proteases, S1P)和位點(diǎn)2蛋白酶(enzymes site-2 proteases, S2P)招募到高爾基體加工,剪切后的ATF6釋放并進(jìn)入細(xì)胞核誘導(dǎo)靶基因表達(dá),最終導(dǎo)致細(xì)胞凋亡,誘發(fā)心血管疾病[14]。課題組前期研究表明,嗎啡通過(guò)抑制PERK通路降低ERS,使GSK3β失活,阻止了mPTP開(kāi)放,保護(hù)受氧化應(yīng)激損傷的H9c2心肌細(xì)胞[30]。此外,神經(jīng)酰胺位于 OMM的脂質(zhì),發(fā)生ERS時(shí),神經(jīng)酰胺從內(nèi)質(zhì)網(wǎng)轉(zhuǎn)移到OMM。研究顯示,苯氧酚化合物誘導(dǎo)ERS,使肝癌細(xì)胞對(duì)C2型神經(jīng)酰胺誘導(dǎo)的自噬應(yīng)激更加敏感[31]。這表明ERS可能與線(xiàn)粒體自噬存在一定的聯(lián)系,但其中機(jī)制有待深入研究??傊?,ERS機(jī)制深入研究有益于維持內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài),對(duì)心肌保護(hù)的意義重大。

        2.3" 線(xiàn)粒體自噬

        在正常生理?xiàng)l件下,細(xì)胞內(nèi)基礎(chǔ)水平的線(xiàn)粒體自噬可使功能失調(diào)的線(xiàn)粒體被及時(shí)識(shí)別和清除,從而為新鮮線(xiàn)粒體提供充足的原料,保證細(xì)胞的能量供應(yīng),以維持細(xì)胞穩(wěn)態(tài)。相反,線(xiàn)粒體自噬過(guò)度或不足將導(dǎo)致功能障礙的線(xiàn)粒體積累,引起細(xì)胞凋亡[7]。線(xiàn)粒體自噬分為泛素介導(dǎo)和受體介導(dǎo)的線(xiàn)粒體自噬。泛素介導(dǎo)的線(xiàn)粒體自噬包括PINK1/Parkin途徑、受體介導(dǎo)的線(xiàn)粒體自噬途徑包括Bcl-2和腺病毒E1B19 kDa相互作用蛋白3(bcl-2 and adenovirus E1B19 kDa-interacting protein 3, BNIP3)介導(dǎo)的線(xiàn)粒體自噬、FUNDC1介導(dǎo)的線(xiàn)粒體自噬和脂質(zhì)介導(dǎo)的線(xiàn)粒體自噬[7]。在受損的去極化線(xiàn)粒體中,PINK1無(wú)法轉(zhuǎn)運(yùn)到線(xiàn)粒體內(nèi)膜裂解,導(dǎo)致PINK1在OMM上積累形成二聚體[7]。PINK1二聚體通過(guò)S228和S402處的磷酸化被激活[32],這是將Parkin募集到OMM以啟動(dòng)線(xiàn)粒體自噬的必要條件。Parkin會(huì)結(jié)合PINK1介導(dǎo)的磷酸化泛素從而被招募至線(xiàn)粒體,并且Parkin的E3泛素連接酶活性增加,使OMM上的蛋白如 VDAC1和線(xiàn)粒體融合蛋白1/2(mitofusin 1/2, MFN1/2)被Parkin泛素化從而誘導(dǎo)線(xiàn)粒體自噬,泛素化后,包括p62在內(nèi)的接頭蛋白在OMM上積累,導(dǎo)致泛素化蛋白通過(guò)與微管相關(guān)蛋白1輕鏈3α(microtubule associated protein 1 light chain 3α, LC3α)結(jié)合而被招募到自噬體中,成熟的自噬體與溶酶體融合形成自噬溶酶體,包含的線(xiàn)粒體隨后被降解[33]。除了Parkin,最近報(bào)道顯示增加線(xiàn)粒體E3泛素連接酶1(mitochondrial E3 ubiquitin ligase 1, MUL1)水平可誘導(dǎo)線(xiàn)粒體分裂,與MFN2的減少和線(xiàn)粒體動(dòng)力相關(guān)蛋白1(dynamin-related protein 1, Drp1)(MUL1的兩個(gè)靶點(diǎn))的增加有關(guān),沉默MUL1可防止線(xiàn)粒體分裂和心肌細(xì)胞肥大[34]。MUL1可能是自噬的潛在候選酶,其機(jī)制需深入探究。研究顯示,TM結(jié)構(gòu)域促進(jìn)BNIP3L在OMM定位,并通過(guò)磷酸化促進(jìn)BNIP3L同二聚化,這對(duì)于線(xiàn)粒體自噬活性至關(guān)重要[35]。另外,F(xiàn)UNDC1通過(guò)其LC3相互作用區(qū)(LC3-interacting region, LIR)直接與加工的LC3/GABARAP蛋白相互作用,從而促進(jìn)線(xiàn)粒體自噬,神經(jīng)酰胺和鞘脂部分也通過(guò)將LC3募集到線(xiàn)粒體來(lái)調(diào)節(jié)線(xiàn)粒體自噬[36]。有報(bào)道顯示促進(jìn)FUNDC1與Drp1相互作用,可導(dǎo)致過(guò)度線(xiàn)粒體自噬介導(dǎo)的程序性壞死[37]。此外,哺乳動(dòng)物ATG8(mammalian ATG8, mATG8)與磷脂乙醇胺結(jié)合是自噬的關(guān)鍵步驟,研究顯示,細(xì)胞mATG8偶聯(lián)機(jī)制失調(diào)時(shí),線(xiàn)粒體通過(guò)分泌性自噬途徑通過(guò)細(xì)胞外釋放被清除的過(guò)程是線(xiàn)粒體質(zhì)量控制中的機(jī)制,并強(qiáng)調(diào)mATG8脂化在抑制炎癥反應(yīng)中的關(guān)鍵作用[38]。課題組前期研究證實(shí),?;撬崦撗跄懰嵬ㄟ^(guò)抑制線(xiàn)粒體自噬降低ERS進(jìn)而提高細(xì)胞生存率,發(fā)揮心肌細(xì)胞保護(hù)作用[39]。線(xiàn)粒體自噬降解功能和結(jié)構(gòu)異常的線(xiàn)粒體,有利于清除線(xiàn)粒體功能障礙。

        線(xiàn)粒體自噬的關(guān)鍵分子PINK1、Parkin、MFN2和FUNDC1在MAMs上均有定位。MFN2在S442和T111處被PINK1磷酸化,磷酸化的MFN2作為Parkin泛素化底物,防止受損的線(xiàn)粒體與健康細(xì)胞器融合[40]。MAMs是PINK/Parkin依賴(lài)的線(xiàn)粒體自噬的起始位點(diǎn),過(guò)表達(dá)Parkin能增強(qiáng)MAMs的結(jié)構(gòu)和功能[41]。MAMs可以為自噬體形成提供膜,通過(guò)消耗MFN2來(lái)破壞MAMs減弱自噬的作用[42-43]。研究顯示,MFN2缺乏阻礙Parkin介導(dǎo)的線(xiàn)粒體自噬,最終導(dǎo)致心肌肥厚和心力衰竭[44]。在缺氧條件下,隨著線(xiàn)粒體自噬的進(jìn)行,F(xiàn)UNDC1與鈣聯(lián)蛋白的關(guān)聯(lián)減弱,暴露的FUNDC1細(xì)胞質(zhì)環(huán)反而與Drp1相互作用,Drp1因此被招募到MAMs[45]。研究顯示,AMPK-MFN2軸通過(guò)在AMPK和MFN2之間建立分子聯(lián)系來(lái)調(diào)節(jié)能量應(yīng)激誘導(dǎo)的MAMs動(dòng)態(tài)和線(xiàn)粒體自噬[46]。另外,在心肌梗死后患者以及慢性心室擴(kuò)張/功能障礙患者中發(fā)現(xiàn)VDAC1過(guò)度表達(dá),這意味著VDAC1的重要作用[47]。VDAC1既與MAMs密切相關(guān),又在線(xiàn)粒體自噬中起著重要作用。研究表明,VDAC1有兩種不同的泛素化結(jié)構(gòu)即VDAC1單泛素化和VDAC1多泛素化,單泛素化VDAC1缺陷通過(guò)MCU增加線(xiàn)粒體鈣攝取來(lái)促進(jìn)細(xì)胞凋亡,VDAC1是Parkin的一個(gè)關(guān)鍵底物,多泛素化VDAC1缺失阻礙Parkin向線(xiàn)粒體的易位和線(xiàn)粒體自噬[48]。過(guò)度表達(dá)的VDAC1將導(dǎo)致mPTP過(guò)度開(kāi)放,并釋放包括細(xì)胞色素C在內(nèi)的促凋亡蛋白。研究表明,線(xiàn)粒體中通過(guò)VDAC1丟失細(xì)胞色素C會(huì)損害并降低線(xiàn)粒體自噬水平[49]。

        3" 運(yùn)動(dòng)調(diào)節(jié)MAMs與心肌保護(hù)

        3.1" 運(yùn)動(dòng)與MAMs

        研究顯示,6周的運(yùn)動(dòng)干預(yù)顯著降低了高脂肪飲食誘導(dǎo)的心臟中的p-Drp1Ser616/Drp1水平并增加了MFN2/VDAC水平[50]。最近的一項(xiàng)研究表明,在能量應(yīng)激下,隨著線(xiàn)粒體裂變的發(fā)生,大量AMPK從細(xì)胞質(zhì)轉(zhuǎn)移到MAMs和線(xiàn)粒體,并直接與MFN2相互作用[46]。AMPK對(duì)于基線(xiàn)身體健康和運(yùn)動(dòng)誘導(dǎo)的益處都是必需的,并且AMPK激活依賴(lài)于線(xiàn)粒體動(dòng)力學(xué)來(lái)提高身體健康[51]。另一項(xiàng)研究顯示,運(yùn)動(dòng)預(yù)處理可以通過(guò)抑制VDAC1但不抑制線(xiàn)粒體自噬來(lái)提供有限的線(xiàn)粒體保護(hù)[52],在缺血再灌注損傷的大鼠中,VDAC1和IP3R1通過(guò)GRP75橋形成VDAC1-GRP75-IP3R1復(fù)合物,對(duì)心臟有保護(hù)作用[53]。再灌注期間GSK3β的抑制減少了IP3R的磷酸化和肌漿網(wǎng)與內(nèi)質(zhì)網(wǎng)中Ca2+的釋放,進(jìn)而降低了細(xì)胞質(zhì)和線(xiàn)粒體Ca2+濃度以及細(xì)胞凋亡的易感性,表明再灌注期間GSK3β的抑制減少了心臟MAMs中IP3R的Ca2+滲漏,從而限制了細(xì)胞和線(xiàn)粒體的Ca2+滲漏,在線(xiàn)粒體Ca2+超載和隨后的細(xì)胞死亡并充當(dāng)心臟保護(hù)劑[26]。研究表明,運(yùn)動(dòng)訓(xùn)練期間的p-GSK3β信號(hào)傳導(dǎo)可保護(hù)異丙腎上腺素治療的大鼠免受心肌損傷,而對(duì)異丙腎上腺素治療的動(dòng)物中總磷酸化AKTSer473/GSK3βSer9的定量估計(jì)顯示p-AKT和p-GSK3β顯著下降[54],從而發(fā)揮心肌保護(hù)作用。

        3.2" 運(yùn)動(dòng)與內(nèi)質(zhì)網(wǎng)應(yīng)激

        研究顯示,心臟組織暴露在ERS下似乎會(huì)引發(fā)氧化應(yīng)激、缺血、鈣代謝紊亂,以及包括系統(tǒng)性動(dòng)脈高血壓、心肌梗死和心力衰竭的疾病[14]。從這種意義上說(shuō),內(nèi)質(zhì)網(wǎng)心臟應(yīng)激標(biāo)志物的研究可能是治療靶點(diǎn),因此,與生活方式相關(guān)因素的干預(yù)是必不可少的,運(yùn)動(dòng)就是其中之一。有氧運(yùn)動(dòng)、游泳和抵抗力鍛煉能有效降低心肌組織中ERS信號(hào)的水平[55]。研究表明,ATF4、GRP78、p-PERK和PERK蛋白表達(dá)減少可改善心功能,降低梗死風(fēng)險(xiǎn)[56]。心肌細(xì)胞在缺氧和急性炎癥的環(huán)境下可導(dǎo)致ERS,而ERS和UPR通過(guò)增加PERK和EIF2A-ATF4-CCAAT-CHOP信號(hào)通路促進(jìn)心肌肥厚[57]。8周的中等強(qiáng)度跑步訓(xùn)練(60min,5天/周)可以明顯提升心力衰竭大鼠的心功能,這與降低UPR標(biāo)志蛋白如GRP78和CHOP有關(guān)[58]。研究表明,在間歇低氧的最后2周,進(jìn)行10天的高強(qiáng)度跑步運(yùn)動(dòng),可阻止間歇低氧誘導(dǎo)ERS,降低GRP78、p-PERK、p-eIF2α、ATF6、CHOP和Caspase-3的表達(dá)且防止間歇低氧誘導(dǎo)動(dòng)脈血壓和心肌梗死面積的增加,從而保護(hù)心臟[59]。另外,游泳通過(guò)激活cGMP信號(hào)通路減輕ERS和活性氧(reactive oxygen species, ROS)生成,提高衰老相關(guān)的心臟功能[60]。中等強(qiáng)度的有氧運(yùn)動(dòng)可以增強(qiáng)抗氧化防御的作用,防止氧化應(yīng)激的產(chǎn)生[55]。綜上所述,運(yùn)動(dòng)可降低ERS水平,有利于改善心血管功能。

        3.3" 運(yùn)動(dòng)與線(xiàn)粒體自噬

        運(yùn)動(dòng)對(duì)自噬的影響是一個(gè)雙向調(diào)節(jié)過(guò)程,自噬不足或過(guò)度均可導(dǎo)致心血管疾病,而運(yùn)動(dòng)可使自噬保持正常水平,延緩心血管疾病的進(jìn)展[61]。為了維持線(xiàn)粒體穩(wěn)態(tài),通過(guò)運(yùn)動(dòng)誘導(dǎo)的線(xiàn)粒體自噬是至關(guān)重要的。研究顯示,在6周運(yùn)動(dòng)訓(xùn)練后,利用秋水仙堿治療提供了線(xiàn)粒體自噬通量的直接測(cè)量,Parkin在線(xiàn)粒體中的定位增強(qiáng),并且經(jīng)過(guò)訓(xùn)練的小鼠肌肉中Parkin的表達(dá)也有所增加,然而,運(yùn)動(dòng)引起的線(xiàn)粒體自噬通量增加在訓(xùn)練后有所減少[62-63]。研究表明,經(jīng)過(guò)一段時(shí)間的慢性收縮活動(dòng)(耐力訓(xùn)練的替代模型)后,基礎(chǔ)狀態(tài)下的線(xiàn)粒體自噬通量減少[64]。這些類(lèi)型的運(yùn)動(dòng)明顯改善線(xiàn)粒體功能,減少了線(xiàn)粒體自噬信號(hào)傳導(dǎo)的必要性。雖然細(xì)胞器生物發(fā)生途徑的激活導(dǎo)致線(xiàn)粒體碎片增加,但為了維持或改善線(xiàn)粒體庫(kù)的質(zhì)量,通過(guò)線(xiàn)粒體自噬消除已失效的線(xiàn)粒體片段至關(guān)重要[65]。在急性運(yùn)動(dòng)期間,AMP/ATP比率增加,從而激活A(yù)MPK及其下游靶點(diǎn)Unc-51樣自噬激活激酶1(unc-51 like autophagy activating kinase 1, ULK1),同時(shí),該過(guò)程中的mTORC1被抑制,并已被證明可以激活線(xiàn)粒體自噬[66]。然而,與Parkin不同,ULK1會(huì)因缺氧而遷移至受損的線(xiàn)粒,ULK1的底物和亞細(xì)胞定位仍不清楚,需更多研究。研究表明,運(yùn)動(dòng)預(yù)處理通過(guò)間歇性缺血缺氧誘導(dǎo)心肌自噬,增加LC3脂質(zhì)相關(guān)蛋白,促進(jìn)自噬體的形成,從而發(fā)揮心臟保護(hù)作用[67]。有報(bào)道指出劇烈運(yùn)動(dòng)具有更快的線(xiàn)粒體自噬速度,通過(guò)促進(jìn)Parkin定位到線(xiàn)粒體以及運(yùn)動(dòng)后立即通過(guò)LC3-II、p62和泛素測(cè)量的線(xiàn)粒體自噬通量增加來(lái)發(fā)揮作用[62,68]。但是在Parkin敲除動(dòng)物中沒(méi)有觀(guān)察到這種線(xiàn)粒體自噬通量的增加[62],這表明Parkin是對(duì)耐力運(yùn)動(dòng)的線(xiàn)粒體自噬反應(yīng)所必需的。總之,研究表明線(xiàn)粒體自噬對(duì)能量應(yīng)激敏感,并響應(yīng)急性耐力運(yùn)動(dòng)而被激活,目的是啟動(dòng)現(xiàn)有線(xiàn)粒體庫(kù)的重塑[63]。在糖尿病大鼠模型中,其左心室心肌功能退減與自噬水平降低有關(guān),運(yùn)動(dòng)增強(qiáng)了糖尿病大鼠心肌自噬能力,可能是運(yùn)動(dòng)改善糖尿病大鼠心肌功能的重要分子機(jī)制[69]。因此,運(yùn)動(dòng)可調(diào)節(jié)線(xiàn)粒體自噬來(lái)維持心臟健康。

        4" 總結(jié)與展望

        目前,CVDs死亡率仍然居高不下,運(yùn)動(dòng)仍是改善心臟健康最有效的行為療法[70]。內(nèi)質(zhì)網(wǎng)和線(xiàn)粒體之間的橋梁即MAMs,它們通過(guò)MAMs相互作用,運(yùn)動(dòng)也可通過(guò)調(diào)節(jié)MAMs相關(guān)蛋白發(fā)揮心肌保護(hù)作用。心血管疾病能引起ERS和線(xiàn)粒體自噬紊亂,而運(yùn)動(dòng)干預(yù)能降低ERS水平,并能夠調(diào)節(jié)線(xiàn)粒體自噬使其恢復(fù)正常水平。然而,運(yùn)動(dòng)調(diào)節(jié)MAMs的直接證據(jù)很少,可以深入這方面的研究,為闡明運(yùn)動(dòng)介導(dǎo)的心臟保護(hù)機(jī)制提供更可靠的證據(jù)。此外,心血管疾病引起的ERS和線(xiàn)粒體自噬有著密切的聯(lián)系,仍然需要進(jìn)一步探究,該領(lǐng)域研究的不斷深入將為闡明內(nèi)質(zhì)網(wǎng)和線(xiàn)粒體的聯(lián)系提供新策略。

        5" 參考文獻(xiàn)

        [1] 王增武, 胡盛濤. 中國(guó)心血管健康與疾病報(bào)告2022 [J]. 中國(guó)心血管雜志, 2023,28(4): 297-312.

        [2] Bernardo BC,Ooi JYY,Weeks KL,et al.Understanding key mechanisms of exercise-induced cardiac protection to mitigate disease: Current knowledge and emerging concepts [J]. Physiol Rev, 2018, 98(1): 419-475.

        [3] Taylor RS, Long L,Mordi IR,et al.Exercise-based rehabilitation for heart failure: Cochrane systematic review, meta-analysis, and trial sequential analysis [J]. JACC Heart Fail, 2019, 7(8): 691-705.

        [4] Diaz-Bulnes P,Saiz ML,Lopez-Larrea C,et al.Crosstalk between hypoxia and er stress response:A key regulator of macrophage polarization[J].Front Immunol,2019,10: 2951-2967.

        [5] Wang S,Binder P,F(xiàn)ang Q,et al.Endoplasmic reticulum stress in the heart: Insights into mechanisms and drug targets[J].Br J Pharmacol,2018,175(8):1293-1304.

        [6] Zhang Y,Chen W,Wang Y.Sting is an essential regulator of heart inflammation and fibrosis in mice with pathological cardiac hypertrophy via endoplasmic reticulum (er) stress[J].Biomed Pharmacother, 2020, 125: 110022.

        [7] Li A,Gao M, Liu B,et al.Mitochondrial autophagy:Molecular mechanisms and implications for cardiovascular disease[J].Cell Death Dis,2022,13(5): 444-459.

        [8] Florido R,Ndumele CE,Kwak L,et al.Physical activity, obesity, and subclinical myocardial damage[J]. JACC Heart Fail, 2017, 5(5): 377-384.

        [9] Pandey A,Garg S, Khunger M, et al.Dose-response relationship between physical activity and risk of heart failure: A meta-analysis[J].Circulation,2015,132(19):1786-1794.

        [10] Cattadori G, Segurini C,Picozzi A,et al.Exercise and heart failure:An update[J].ESC Heart Fail, 2018, 5(2): 222-232.

        [11] Doukky R,Mangla A,Ibrahim Z,et al.Impact of physical inactivity on mortality in patients with heart failure[J]. Am J Cardiol, 2016, 117(7): 1135-1143.

        [12] Adams V,Reich B,Uhlemann M,et al.Molecular effects of exercise training in patients with cardiovascular disease: Focus on skeletal muscle, endothelium, and myocardium[J].Am J Physiol Heart Circ Physiol, 2017, 313(1): H72-H88.

        [13] Liao Z, Li D, Chen Y, et al. Early moderate exercise benefits myocardial infarction healing via improvement of inflammation and ventricular remodelling in rats[J].J Cell Mol Med,2019,23(12): 8328-8342.

        [14] Ren J, Bi Y, Sowers JR, et al. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases [J]. Nat Rev Cardiol, 2021, 18(7): 499-521.

        [15] Zhao Y, Wang P, Liu T, et al. Zn2+ protect cardiac h9c2 cells from endoplasmic reticulum stress by preventing mptp opening through mcu[J]. Cell Signal, 2022, 100: 110467.

        [16] Giacomello M, Pellegrini L.The coming of age of the mitochondria-er contact: A matter of thickness [J]. Cell Death Differ, 2016, 23(9): 1417-1427.

        [17] Yuan M, Gong M, Zhang Z, et al. Hyperglycemia induces endoplasmic reticulum stress in atrial cardiomyocytes, and mitofusin-2 downregulation prevents mitochondrial dysfunction and subsequent cell death[J]. Oxid Med Cell Longev, 2020,2020: 6569728.

        [18] Naon D, Zaninello M, Giacomello M, et al. Critical reappraisal confirms that mitofusin 2 is an endoplasmic reticulum-mitochondria tether[J]. Proc Natl Acad Sci U S A,2016,113(40): 11249-11254.

        [19] Ma JH,Shen S,Wang JJ, et al. Comparative proteomic analysis of the mitochondria-associated er membrane (mam) in a long-term type 2 diabetic rodent model[J]. Sci Rep, 2017, 7(1): 2062-2079.

        [20] Malli R, Graier WF. Ire1α modulates er and mitochondria crosstalk[J]. Nat Cell Biol, 2019, 21(6): 667-668.

        [21] Xu H, Guan N, Ren YL, et al. Ip(3)r-grp75-vdac1-mcu calcium regulation axis antagonists protect podocytes from apoptosis and decrease proteinuria in an adriamycin nephropathy rat model[J]. BMC Nephrol,2018,19(1):140-151.

        [22] Yuan M,Gong M,He J,et al. Ip3r1/grp75/vdac1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodeling[J].Redox Biol,2022,52: 102289.

        [23] Wilting F, Kopp R, Gurnev PA, et al. The antiarrhythmic compound efsevin directly modulates voltage-dependent anion channel 2 by binding to its inner wall and enhancing mitochondrial Ca2+ uptake[J]. Br J Pharmacol, 2020, 177(13): 2947-2958.

        [24] Park J, Lee Y, Park T, et al.Structure of the micu1-micu2 heterodimer provides insights into the gatekeeping threshold shift[J]. IUCrJ, 2020, 7(Pt 2): 355-365.

        [25] Wu S,Lu Q,Wang Q,et al.Binding of fun14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo[J].Circulation,2017,136(23): 2248-2266.

        [26] Gomez L, Thiebaut PA, Paillard M, et al.The sr/er-mitochondria calcium crosstalk is regulated by GSK3β during reperfusion injury[J]. Cell Death Differ, 2016,23(2): 313-322.

        [27] Hetz, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response[J]. Nat Rev Mol Cell Biol, 2020, 21(8): 421-438.

        [28] Woll KA, Van Petegem F. Calcium-release channels: Structure and function of IP3 receptors and ryanodine receptors[J]. Physiol Rev, 2022, 102(1): 209-268.

        [29] Bi X, Zhang G, Wang X, et al. Endoplasmic reticulum chaperone grp78 protects heart from ischemia/reperfusion injury through akt activation [J]. Circ Res, 2018, 122(11): 1545-1554.

        [30] 趙苗, 韓雅茹, 賀翼飛,等. Perk通路在嗎啡保護(hù)心肌h9c2細(xì)胞過(guò)程中的作用[J].中國(guó)病理生理雜志, 2020, 36(1): 9-16.

        [31] Chiu CC,Chen YC,Bow YD,et al.Ditfpp, a phenoxyphenol, sensitizes hepatocellular carcinoma cells to c(2)-ceramide-induced autophagic stress by increasing oxidative stress and er stress accompanied by lamp2 hypoglycosylation[J].Cancers (Basel),2022,14(10): 2528-2546.

        [32] Okatsu K,Uno M, Koyano F,et al.A dimeric pink1-containing complex on depolarized mitochondria stimulates parkin recruitment[J]. J Biol Chem, 2013, 288(51): 36372-36384.

        [33] Guan R, Zou W, Dai X, et al. Mitophagy, a potential therapeutic target for stroke[J]. J Biomed Sci,2018, 25(1): 87-103.

        [34] Vásquez-Trincado C, Navarro-Márquez M,Morales PE, et al. Myristate induces mitochondrial fragmentation and cardiomyocyte hypertrophy through mitochondrial e3 ubiquitin ligase mul1 [J]. Front Cell Dev Biol, 2023, 11: 1072315.

        [35] Li Y,Zheng W,Lu Y,et al.Bnip3l/nix-mediated mitophagy:Molecular mechanisms and implications for human disease[J]. Cell Death Dis, 2021, 13(1): 14-25.

        [36] Poole LP, Macleod KF.Mitophagy in tumorigenesis and metastasis[J].Cell Mol Life Sci, 2021, 78(8): 3817-3851.

        [37] Yang HH,Jiang HL,Tao JH, et al.Mitochondrial citrate accumulation drives alveolar epithelial cell necroptosis in lipopolysaccharide-induced acute lung injury[J].Exp Mol Med,2022,54(11): 2077-2091.

        [38] Tan HWS,Lu G,Dong H,et al.A degradative to secretory autophagy switch mediates mitochondria clearance in the absence of the matg8-conjugation machinery[J].Nat Commun, 2022,13(1): 3720-3737.

        [39] 韓雅茹,劉宇琳,趙苗,等.抑制線(xiàn)粒體自噬在?;撬崦撗跄懰岚l(fā)揮心肌細(xì)胞保護(hù)中的作用及機(jī)制[J].中國(guó)新藥雜志, 2019, 28(14): 1744-1750.

        [40] Chen Y,Dorn GW, 2ND.Pink1-phosphorylated mitofusin 2 is a parkin receptor for culling damaged mitochondria[J]. Science, 2013, 340(6131): 471-475.

        [41] Basso V, Marchesan E, Peggion C,et al.Regulation of er-mitochondria contacts by parkin via mfn2[J]. Pharmacol Res,2018,138: 43-56.

        [42] Gomez-Suaga P,Paillusson S,Stoica R,et al.The er-mitochondria tethering complex vapb-ptpip51 regulates autophagy[J].Curr Biol, 2017, 27(3): 371-385.

        [43] Manganelli V, Matarrese P, Antonioli M, et al. Raft-like lipid microdomains drive autophagy initiation via ambra1-erlin1 molecular association within mams[J].Autophagy,2021,17(9): 2528-2548.

        [44] Zhao T,Huang X, Han L, et al.Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes[J]. J Biol Chem, 2012, 287(28): 23615-23625.

        [45] Wu W, Lin C, Wu K, et al. Fundc1 regulates mitochondrial dynamics at the er-mitochondrial contact site under hypoxic conditions[J]. Embo j, 2016, 35(13): 1368-1384.

        [46] Hu Y, Chen H, Zhang L, et al. The ampk-mfn2 axis regulates mam dynamics and autophagy induced by energy stresses[J]. Autophagy, 2021, 17(5): 1142-1156.

        [47] Klapper-Goldstein H,Verma A, ELYAGON S, et al. Vdac1 in the diseased myocardium and the effect of vdac1-interacting compound on atrial fibrosis induced by hyperaldosteronism [J]. Sci Rep, 2020, 10(1): 22101.

        [48] Ham SJ, Lee D, Yoo H, et al. Decision between mitophagy and apoptosis by parkin via vdac1 ubiquitination[J]. Proc Natl Acad Sci U S A, 2020, 117(8): 4281-4291.

        [49] Camara AKS, Zhou Y, Wen PC, et al. Mitochondrial vdac1: A key gatekeeper as potential therapeutic target[J]. Front Physiol, 2017, 8: 460.

        [50] Palee S, Minta W, Mantor D, et al.Combination of exercise and calorie restriction exerts greater efficacy on cardioprotection than monotherapy in obese-insulin resistant rats through the improvement of cardiac calcium regulation[J]. Metabolism, 2019, 94: 77-87.

        [51] Campos JC,Marchesi Bozi LH, Krum B, et al.Exercise preserves physical fitness during aging through ampk and mitochondrial dynamics[J]. Proc Natl Acad Sci U S A,2023,120(2): e2204750120.

        [52] Yuan Y, Pan SS, Wan DF, et al.H(2)o(2) signaling-triggered pi3k mediates mitochondrial protection to participate in early cardioprotection by exercise preconditioning[J]. Oxid Med Cell Longev, 2018, 2018:1916841.

        [53] Sharma AK,Kumar A,Sahu M,et al.Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting gsk-3β phosphorylation in ischemia/reperfusion induced myocardial infarction[J]. Microvasc Res, 2018, 120: 59-66.

        [54] Sharma AK, Kumar A, Taneja G, et al.Combined and individual strategy of exercise generated preconditioning and low dose copper nanoparticles serve as superlative approach to ameliorate iso-induced myocardial infarction in rats[J]. Pharmacol Rep, 2018, 70(4): 789-795.

        [55] De Sousa Fernands MS,Badicu G,Santos GCJ, et al. Physical exercise decreases endoplasmic reticulum stress in central and peripheral tissues of rodents: A systematic review[J].Eur J Investig Health Psychol Educ, 2023, 13(6): 1082-1096.

        [56] Hong J,Kim K,Kim JH,et al.The role of endoplasmic reticulum stress in cardiovascular disease and exercise[J]. Int J Vasc Med, 2017, 2017: 2049217.

        [57] Yao Y, Lu Q, Hu Z, et al. A non-canonical pathway regulates er stress signaling and blocks er stress-induced apoptosis and heart failure[J]. Nat Commun, 2017, 8(1): 133-148.

        [58] Bozi LH, Jannig PR, Rolim N, et al. Aerobic exercise training rescues cardiac protein quality control and blunts endoplasmic reticulum stress in heart failure rats[J]. J Cell Mol Med, 2016, 20(11): 2208-2212.

        [59] Bourdier G,F(xiàn)lore P,Sanchez H,et al.High-intensity training reduces intermittent hypoxia-induced er stress and myocardial infarct size[J]. Am J Physiol Heart Circ Physiol, 2016, 310(2): H279-H289.

        [60] Chang P, Zhang X, Zhang M, et al. Swimming exercise inhibits myocardial er stress in the hearts of aged mice by enhancing cgmp?pkg signaling[J].Mol Med Rep,2020, 21(2): 549-556.

        [61] Wang L,Wang J,Cretoiu D, et al.Exercise-mediated regulation of autophagy in the cardiovascular system[J]. Journal of Sport and Health Science, 2020, 9(3): 203-210.

        [62] Chen CCW, Erlich AT, Hood DA.Role of parkin and endurance training on mitochondrial turnover in skeletal muscle[J]. Skelet Muscle, 2018, 8(1): 10-24.

        [63] Hood DA, Menne JM, Oliveira AN, et al. Maintenance of skeletal muscle mitochondria in health, exercise, and aging[J]. Annu Rev Physiol, 2019, 81: 19-41.

        [64] Leduc-Gaudet JP, Rrynaud O,Hussain SN,et al.Parkin overexpression protects from ageing-related loss of muscle mass and strength[J]. J Physiol, 2019, 597(7): 1975-1991.

        [65] Memme JM, Erlich AT, Phukan G, et al. Exercise and mitochondrial health[J]. J Physiol, 2021, 599(3): 803-817.

        [66] Laker RC,Drake JC,Wilson RJ, et al. Ampk phosphorylation of ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy[J].Nat Commun,2017,8(1): 548-561.

        [67] Wan DF, Pan SS, Tong YS, et al. Exercise preconditioning promotes autophagy to cooperate for cardioprotection by increasing lc3 lipidation-associated proteins[J].Front Physiol,2021,12: 599892.

        [68] Chen CCW, Erlich AT, Crilly MJ, et al.Parkin is required for exercise-induced mitophagy in muscle: Impact of aging[J]. Am J Physiol Endocrinol Metab, 2018, 315(3): E404-E415.

        [69] 王世強(qiáng), 胥祉涵, 王少堃, 等. 運(yùn)動(dòng)改善糖尿病大鼠心肌功能:自噬的可能調(diào)節(jié)作用 [J]. 中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志, 2021, 40(2): 121-128.

        [70] Lv Y, Cheng L, Peng F. Compositions and functions of mitochondria-associated endoplasmic reticulum membranes and their contribution to cardioprotection by exercise preconditioning [J]. Front Physiol, 2022, 13: 910452.

        基金項(xiàng)目:國(guó)家自然科學(xué)基金(編號(hào):82270303) ;河北省社會(huì)科學(xué)基金 (編號(hào): HB20TY012)

        作者單位:063210" 河北省唐山市,華北理工大學(xué)基礎(chǔ)醫(yī)學(xué)院(胡友成、鄭桓、習(xí)瑾昆);體育部(馬虎)

        *通訊作者

        猜你喜歡
        內(nèi)質(zhì)網(wǎng)應(yīng)激運(yùn)動(dòng)
        不正經(jīng)運(yùn)動(dòng)范
        Coco薇(2017年9期)2017-09-07 20:39:29
        白蘆藜醇對(duì)糖尿病小鼠腎臟內(nèi)質(zhì)網(wǎng)應(yīng)激的影響
        蚯蚓活性組分對(duì)四氯化碳誘導(dǎo)小鼠內(nèi)質(zhì)網(wǎng)應(yīng)激所致急性肝損傷的保護(hù)作用
        原花青素通過(guò)內(nèi)質(zhì)網(wǎng)應(yīng)對(duì)H9C2心肌細(xì)胞缺氧/復(fù)氧損傷的作用
        內(nèi)質(zhì)網(wǎng)應(yīng)激在腎臟缺血再灌注和環(huán)孢素A損傷中的作用及研究進(jìn)展
        丹蛭降糖膠囊對(duì)肥胖大鼠骨骼肌IRE1α—JNK信號(hào)通路的干預(yù)效應(yīng)
        硫化氫抑制葡萄糖調(diào)節(jié)蛋白78減輕6—OHDA誘導(dǎo)的PC12細(xì)胞損傷
        大搜尋·瘋狂的運(yùn)動(dòng)
        古代都做什么運(yùn)動(dòng)
        瘋狂的運(yùn)動(dòng)
        中文字幕文字幕一区二区 | 久久综合99re88久久爱| 少妇人妻陈艳和黑人教练| 国产午夜精品电影久久| 久久99热精品免费观看麻豆| 中文字幕午夜精品久久久| 成人午夜视频精品一区| 亚洲精品免费专区| 女优av福利在线观看| 日韩中文字幕在线观看一区| 激性欧美激情在线| 好爽受不了了要高潮了av| 玖玖资源网站最新网站| 麻豆精品国产专区在线观看| 毛多水多www偷窥小便 | 国产精品一级av一区二区| 国产免费人成视频网站在线18| 真人做爰片免费观看播放 | 色优网久久国产精品| 日本久久精品视频免费| 国产成人无码18禁午夜福利p| 国产最新网站| 女同久久精品国产99国产精| 香蕉久久一区二区不卡无毒影院 | 1769国产精品短视频| 极品少妇一区二区三区四区| 麻豆91蜜桃传媒在线观看| 久久99热久久99精品| 日本a在线天堂| 日本综合视频一区二区| 久久精品亚洲一区二区三区浴池| 99久久久国产精品免费蜜臀| 亚洲免费av第一区第二区| 精品国产品香蕉在线| 开心婷婷五月激情综合社区| 国产精品亚洲av网站| 国产内射视频在线免费观看| 亚洲国产美女精品久久久| 国产一精品一aⅴ一免费| 加勒比婷婷色综合久久| 精品无码久久久久久国产|