摘 要 炎癥性腸?。╥nflammatory bowel disease,IBD)是一類病因尚不完全清楚的慢性非特異性腸道炎癥性疾病,近年來隨著腸道微生態(tài)研究的不斷深入,以益生菌制劑為代表的腸道微生態(tài)干預(yù)成為了IBD重要的治療方式。益生菌制劑在治療IBD方面具有維持微生態(tài)平衡、調(diào)節(jié)腸道免疫功能、緩解氧化應(yīng)激、保護(hù)腸黏膜屏障等功能。本文針對(duì)益生菌的定義、作用機(jī)制、使用效果及安全性等綜述益生菌制劑在IBD治療方面的研究進(jìn)展。
關(guān)鍵詞 炎癥性腸病 腸道微生態(tài) 益生菌 臨床試驗(yàn)
中圖分類號(hào):R975; R574 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1006-1533(2024)23-0055-05
引用本文 李驥遠(yuǎn), 陳春球. 益生菌用于治療炎癥性腸病的研究進(jìn)展[J]. 上海醫(yī)藥, 2024, 45(23): 55-59; 95.
基金項(xiàng)目:國(guó)家自然科學(xué)基金面上項(xiàng)目(82470555)
Research progress of probiotics for the treatment of inflammatory bowel disease
LI Jiyuan, CHEN Chunqiu
(Diagnosis and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China)
ABSTRACT Inflammatory bowel disease (IBD) is a type of chronic non-specific intestinal inflammatory disease whose etiology is not fully understood. In recent years, with the deepening of intestinal microecology research, intestinal microecology intervention represented by probiotics has become an important therapeutic method for IBD. Probiotic preparations for the treatment of IBD can maintain microecological balance, regulate intestinal immune function, relieve oxidative stress and protect mucosal barrier function. This article reviews the research progress of probiotics in the treatment of IBD from the aspects of definition, mechanism, efficacy and safety.
KEY WORDS inflammatory bowel disease; intestinal microecology; probiotics; clinical trial
炎癥性腸?。╥nflammatory bowel disease,IBD)是一類包括克羅恩?。–rohn’s disease,CD)和潰瘍性結(jié)腸炎(ulcerative colitis,UC)在內(nèi)的非特異性腸道慢性炎癥性疾病。目前IBD的病因尚未完全清楚,一般認(rèn)為與環(huán)境、遺傳、腸道微生態(tài)改變、免疫失衡相關(guān)。IBD目前尚無法治愈,內(nèi)科用藥的目的在于緩解疾病進(jìn)展并減少嚴(yán)重并發(fā)癥的發(fā)生。隨著腸道微生態(tài)研究的不斷深入,大量證據(jù)表明腸道菌群同IBD的發(fā)生與進(jìn)展關(guān)系密切,由此催生出了一系列以腸道微生物為靶點(diǎn)的臨床治療方法[1]。本文綜述以益生菌為代表的活體生物藥物在IBD治療方面的進(jìn)展,以期為該類藥物的科學(xué)研究及臨床使用提供參考。
1 益生菌與活菌藥物
益生菌泛指一類與宿主共生并對(duì)宿主起有益作用的微生物,美國(guó)FDA將一些以益生菌為有效成分的藥品歸納為活體生物藥(live biotherapeutic products,LBP),即利用有活性的生物體(如細(xì)菌)以預(yù)防、治療或治愈人類疾病及適應(yīng)證的生物制劑(疫苗除外)。2020年版《中華人民共和國(guó)藥典》將益生菌制劑歸納為“微生態(tài)活菌制品”,要求由人體內(nèi)正常菌群成員或具有促進(jìn)正常菌群生長(zhǎng)和活性作用的無害外籍細(xì)菌制備且在生產(chǎn)過程、制品貯存和使用期間保持穩(wěn)定的活菌狀態(tài)。
2 腸道微生態(tài)失調(diào)引起IBD的機(jī)制
腸道微生態(tài)失調(diào)是指腸道微生物的多樣性減少及特定菌群相對(duì)豐度的變化,菌群種類與數(shù)量的變化可以引起代謝組的廣泛改變從而對(duì)宿主產(chǎn)生多種影響[2]。
2.1 有益菌群的萎縮
IBD的發(fā)病與進(jìn)展常伴隨著部分有益菌群的豐度下降,其中以厚壁菌屬產(chǎn)丁酸的菌最為突出,如羅氏桿菌和普拉梭菌[2],食物中未消化或部分消化的多糖會(huì)被分布在近端結(jié)腸的產(chǎn)丁酸菌酵解生成乙酸、丙酸、丁酸等短鏈脂肪酸(short-chain fatty acids,SCFAs)[3],其代謝過程中所產(chǎn)生的丁酸鹽是腸細(xì)胞的重要能量來源,能滋養(yǎng)腸黏膜細(xì)胞并保持腸道內(nèi)壁的完整性[4],除供能外其還深度參與了免疫反應(yīng)并促進(jìn)免疫耐受。細(xì)胞層面SCFAs可通過抑制CD4+ T細(xì)胞[5]、激活調(diào)節(jié)性T細(xì)胞(Tregs)[6]等方式增進(jìn)免疫耐受。分子層面,目前認(rèn)為SCFAs抑制炎癥及免疫反應(yīng)主要機(jī)制包含兩種:第一種是通過抑制組蛋白去乙?;福℉DACs)以激活相關(guān)基因并增加轉(zhuǎn)錄從而調(diào)節(jié)炎癥因子的釋放,如SCFAs通過促進(jìn)芳烴受體(AhR)和缺氧誘導(dǎo)因子1a(HIF1a)的表達(dá)來促進(jìn)IL-22的產(chǎn)生從而抑制腸道炎癥[7];第二種是SCFAs激活腸黏膜表面的G蛋白偶聯(lián)受體以調(diào)控免疫,如激活GPR43相關(guān)通路可以促進(jìn)腸上皮細(xì)胞產(chǎn)生IL-18、抑制單核細(xì)胞產(chǎn)生TNF-a從而減輕炎癥反應(yīng)[8] 。
2.2 有害菌群的定植
有害菌群的增殖是IBD重要的發(fā)病因素,CD患者腸道內(nèi)的有害菌群侵襲相比UC患者而言更為多見且更加嚴(yán)重。
侵襲性病菌(如腸桿菌與真菌)的定植與CD的發(fā)生密切相關(guān),其中變形桿菌屬的黏附侵襲性大腸埃希菌(adherent-invasive Escherichia coli,AIEC)最具代表性,1998年Darfeuille-Michaud等[9]首次從20例CD患者切除的回腸中分離出一種侵襲性腸桿菌,其黏附于腸黏膜并通過產(chǎn)生的a-溶血素(alpha-hemolysin)破壞腸屏障。AIEC可穿透黏膜層并定植在黏膜下層的腸上皮細(xì)胞,通過分泌細(xì)胞因子,活化免疫細(xì)胞,增加腸屏障通透性等多種方式促進(jìn)腸道炎癥反應(yīng)[10]。Viladomiu等[11]發(fā)現(xiàn)編碼丙二醇脫水酶(PduC)大亞基的AIEC可促進(jìn)巖藻糖發(fā)酵產(chǎn)物1,2-丙二醇的利用,在CD患者的微生物組中增加并驅(qū)動(dòng)AIEC誘導(dǎo)的腸道T細(xì)胞炎癥。Elhenawy等[12]研究了AIEC在不同環(huán)境中的適應(yīng)性演變(如抗生素環(huán)境),發(fā)現(xiàn)AIEC的定植與演進(jìn)和正常腸桿菌有著顯著區(qū)別,在適應(yīng)宿主環(huán)境的過程AIEC相關(guān)基因組的變化引起侵襲性、毒力、促炎作用并不斷增強(qiáng),這或許意味著CD患者的AIEC感染程度與疾病病程存在正相關(guān)。
有關(guān)AIEC的研究延伸出了新的CD診斷思路,Buisson等[13]發(fā)現(xiàn)存在AIEC定植的CD患者血清中可檢測(cè)出較高的抗全部大腸埃希菌的抗體(anti‐total E. coli antibodies,AEcAb),且其濃度與AIEC的定植程度存在著正相關(guān),因此AEcAb等血清學(xué)指標(biāo)有可能會(huì)具有篩選CD患者的價(jià)值。
3 益生菌制劑用于治療IBD的機(jī)制
益生菌治療IBD的機(jī)制尚不完全清楚,主要的解釋包括抑制致病菌如AIEC的黏附、調(diào)節(jié)腸道免疫功能、緩解氧化應(yīng)激與炎癥、調(diào)節(jié)腸道黏膜屏障功能等。
3.1 抑制炎癥反應(yīng)
大量研究表明益生菌可通過調(diào)節(jié)腸道中的免疫細(xì)胞從而改善腸黏膜致炎因子的表達(dá)水平,Atarashi等[14]分離出了正常人菌群中的某種特定梭狀芽孢桿菌,發(fā)現(xiàn)其可誘導(dǎo)Tregs有效地增殖并促進(jìn)重要抗炎因子IL-10的分泌。輔助性T細(xì)胞17(T helper cell 17,Th17)的異常激活被認(rèn)為是誘發(fā)結(jié)腸炎的重要因素,一些經(jīng)過篩選的特殊益生菌如雙歧桿菌[15]、副干酪乳桿菌[16]等可以抑制Th17的活化;在臨床試驗(yàn)中,Oliva等[17]發(fā)現(xiàn)兒童和青少年UC患者經(jīng)一段時(shí)間的羅氏桿菌灌腸后,與安慰劑組相比應(yīng)用益生菌的患者腸道內(nèi)IL-10、IL-1β、IL-8、TNF-α等炎癥因子的表達(dá)均有所下降。
3.2 調(diào)節(jié)微生態(tài)平衡
益生菌制劑在調(diào)節(jié)微生態(tài)平衡方面最顯著的作用是改善致病菌群對(duì)腸道的侵襲,Piewngam 等[18]采集200例來自泰國(guó)農(nóng)村的健康人群樣本,發(fā)現(xiàn)腸道內(nèi)金黃色葡萄球菌的缺失與芽孢桿菌定植存在顯著相關(guān)性,芽孢桿菌在特定條件下可通過生成脂肽芬薺素(fengycin)抑制金黃色葡萄球菌的群體感應(yīng)(quorum sensing,QS),從而限制致病菌生長(zhǎng)。
3.3 緩解氧化應(yīng)激
氧化應(yīng)激反應(yīng)是IBD的重要發(fā)生因素,氧化應(yīng)激過程中產(chǎn)生的活性氧(reactive oxygen species,ROS)增多將提高生物膜通透性,促進(jìn)炎癥反應(yīng)并引發(fā)蛋白修飾異常、DNA損傷、細(xì)胞凋亡、癌變等一系列損害[19],益生菌可通過增強(qiáng)抗氧化酶活性,分泌抗氧化活性代謝產(chǎn)物、激活抗氧化信號(hào)通路以降低氧化應(yīng)激水平[20]。Ballini團(tuán)隊(duì)[21]開展的一項(xiàng)隨機(jī)、雙盲、安慰劑對(duì)照試點(diǎn)研究中,20例IBD患者接受3個(gè)月的Hyperbiotics復(fù)合益生菌片治療后,血清中的反應(yīng)性氧代謝物(d-ROMs)測(cè)量值及生物抗氧化能力測(cè)試(BAP test)顯著低于安慰劑對(duì)照組,且整體降低至亞臨床水平。
4 益生菌制劑的應(yīng)用
4.1 現(xiàn)有益生菌制劑
單菌種制劑有著悠久的使用歷史,其療效與適應(yīng)證效果相較于多菌種制劑更為直接且明確,表1介紹了在目前已開展的單菌種制劑的相關(guān)臨床試驗(yàn)情況。
復(fù)合益生菌制劑是多種菌株按照一定比例配制成的活體生物藥,VSL#3益生菌制劑是臨床上應(yīng)用最多的益生菌制劑,其配方包含嗜熱球桿菌、短雙歧桿菌、長(zhǎng)雙歧桿菌、嗜酸乳桿菌等多種菌株。大量研究肯定了VSL#3對(duì)于成人和兒童輕至中度UC的治療效果,尤其是與美沙拉嗪等傳統(tǒng)藥物聯(lián)合用藥時(shí)[22-23],VSL#3對(duì)于UC結(jié)腸儲(chǔ)袋炎的治療得到了肯定。多項(xiàng)雙盲試驗(yàn)肯定了VSL#3在結(jié)腸儲(chǔ)袋炎的緩解維持治療[24-25]及預(yù)防復(fù)發(fā)的效果[26],第三次歐洲潰瘍性結(jié)腸炎診斷和治療循證共識(shí)指出VSL#3可以用于結(jié)腸儲(chǔ)袋炎的緩解期治療[27]。
4.2 安全性
益生菌制劑的使用安全性一直存在爭(zhēng)議,盡管目前包括美國(guó)FDA、歐洲EUFA及中國(guó)國(guó)家市場(chǎng)監(jiān)督管理總局在內(nèi)的大部分監(jiān)管機(jī)構(gòu)認(rèn)為人體適當(dāng)補(bǔ)充益生菌是安全的[33],然而一些文獻(xiàn)綜述認(rèn)為益生菌現(xiàn)有的安全性數(shù)據(jù)主要基于食品添加劑及小規(guī)模臨床試驗(yàn),其在某些特殊疾病患者中使用的安全性尚需要討論[34]。益生菌制劑的短期不良反應(yīng)包括全身炎癥反應(yīng)綜合征、過敏、有害代謝產(chǎn)物堆積、基因移位等,有文獻(xiàn)指出兒童、危重癥患者等特殊人群攝入益生菌會(huì)大幅增加短期內(nèi)胃腸道感染、菌血癥及感染性休克的風(fēng)險(xiǎn)[35]。從長(zhǎng)期來看,益生菌在人體環(huán)境中可進(jìn)化出相關(guān)耐抗生素基因。Tóth等[36]對(duì)市場(chǎng)上常見的食品添加劑中的益生菌菌株進(jìn)行基因譜分析,發(fā)現(xiàn)在12種常見益生菌的579個(gè)分離株中有169個(gè)檢測(cè)出抗生素耐藥基因(ARG),在感染條件下這類抗生素耐藥性基因存在轉(zhuǎn)移至致病菌的風(fēng)險(xiǎn)。
4.3 使用范圍與限制
益生菌制劑用于IBD的治療目前尚處于小規(guī)模臨床試驗(yàn)階段,目前的觀點(diǎn)認(rèn)為益生菌僅適用于輕中度的UC患者,CD患者從中獲益的證據(jù)較少[37-38]。目前國(guó)內(nèi)外的相關(guān)指南與專家共識(shí)均未將益生菌列為IBD治療的常規(guī)用藥,2019年ACG成人UC臨床治療指南認(rèn)為益生菌在輕度UC緩解治療中的效果不夠明確,依然需要進(jìn)一步研究以確認(rèn)其有效性[39]。2020年AGA益生菌制劑使用指南中認(rèn)為現(xiàn)有的研究樣本過少以及益生菌制劑的異質(zhì)性較大,在CD和UC的治療中益生菌只適合在臨床試驗(yàn)中使用[40]。2018國(guó)內(nèi)發(fā)布的炎癥性腸病診斷與治療的共識(shí)意見中認(rèn)為益生菌對(duì)于IBD的治療效果還需要進(jìn)一步探究[41]。
5 益生菌相關(guān)新技術(shù)
5.1 新一代益生菌
新一代益生菌(next generation probiotics,NGP)是一種基于腸道特定共生菌開發(fā)的新型益生菌,新一代益生菌旨在通過基因組學(xué)、代謝組學(xué)、生物信息學(xué)等新興生物學(xué)技術(shù)從大量的共生菌中篩選出能產(chǎn)生特定產(chǎn)物、發(fā)揮特定功能的絕對(duì)有效菌,當(dāng)下嗜黏蛋白阿克曼菌(Akkermansia muciniphila)、普拉梭菌(Faecalibacterium prausnitzii)是NGP開發(fā)的熱點(diǎn)菌屬。例如嗜黏蛋白阿克曼菌可以在DSS誘導(dǎo)的結(jié)腸炎小鼠中減少巨噬細(xì)胞和CD8+ T細(xì)胞與細(xì)胞毒性T淋巴細(xì)胞(CTL)的浸潤(rùn),從而保護(hù)腸黏膜屏障并減輕結(jié)腸炎[42]。
5.2 工程型益生菌的開發(fā)
近年來利用轉(zhuǎn)基因、外殼包裝、納米顆粒等技術(shù)對(duì)野生菌株進(jìn)行改造的工程型轉(zhuǎn)基因益生菌的開發(fā)積累了大量的技術(shù)成果,其中EcN是各類研究中選用最多的載體益生菌。Liu等[43]將HPN納米顆粒偶聯(lián)到修飾的EcN表面并在EcN細(xì)胞內(nèi)包裹了聚去甲腎上腺素(NE)層,該方式有效延長(zhǎng)了EcN在腸道中的滯留時(shí)間并顯示出顯著增強(qiáng)的預(yù)防和治療效果。
6 展望
隨著生活水平的提高和城市化的進(jìn)程,我國(guó)乃至世界范圍內(nèi)IBD的發(fā)病率逐年增長(zhǎng),腸道微生態(tài)干預(yù)是未來IBD防治的重要措施,益生菌制劑不僅在改善腸道微生態(tài)平衡、增強(qiáng)腸黏膜屏障功能、調(diào)節(jié)腸黏膜免疫等方面有著不錯(cuò)的效果,相比5-ASA等傳統(tǒng)藥物益生菌制劑還具有耐受度高、不良反應(yīng)小、維持期長(zhǎng)、給藥方式多樣等優(yōu)點(diǎn)。然而目前用于治療IBD的益生菌制劑大多是經(jīng)驗(yàn)性地配置一種或幾種可能有效的菌株,這些藥物在IBD治療方面還缺乏大范圍的臨床試驗(yàn)數(shù)據(jù)以支持其療效與安全性。在未來的研究中,我們需要進(jìn)一步認(rèn)識(shí)到不同人群在種族、飲食、遺傳背景和腸道微生物組配置方面的高度個(gè)體間差異,并在此基礎(chǔ)上實(shí)施更加精準(zhǔn)化個(gè)性化的微生態(tài)干預(yù)。
參考文獻(xiàn)
[1] Ni J, Wu GD, Albenberg L, et al. Gut microbiota and IBD: causation or correlation?[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(10): 573-584.
[2] Machiels K, Joossens M, Sabino J, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis[J]. Gut, 2014, 63(8): 1275-1283.
[3] Tan J, McKenzie C, Potamitis M, et al. The role of short-chain fatty acids in health and disease[J]. Adv Immunol, 2014, 121: 91-119.
[4] Rivière A, Selak M, Lantin D, et al. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut[J]. Front Microbiol, 2016, 7: 979.
[5] Fontenelle B, Gilbert KM. n-Butyrate anergized effector CD4+ T cells independent of regulatory T cell generation or activity[J]. Scand J Immunol, 2012, 76(5): 457-463.
[6] Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic T-reg cell homeostasis[J]. Science, 2013, 341(6145): 569-573.
[7] Yang WJ, Yu TM, Huang XS, et al. Intestinal microbiotaderived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity[J]. Nat Commun, 2020, 11(1): 4457.
[8] Venegas DP, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Front Immunol, 2019, 10: 277.
[9] Darfeuille-Michaud A, Neut C, Barnich N, et al. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease[J]. Gastroenterology, 1998, 115(6): 1405-1413.
[10] Palmela C, Chevarin C, Xu ZL, et al. Adherent-invasive Escherichia coli in inflammatory bowel disease[J]. Gut, 2018, 67(3): 574-587.
[11] Viladomiu M, Metz ML, Lima SF, et al. Adherent-invasive E. coli metabolism of propanediol in Crohn’s disease regulates phagocytes to drive intestinal inflammation[J]. Cell Host Microbe, 2021, 29(4): 607-619.e8.
[12] Elhenawy W, Tsai CN, Coombes BK. Host-specific adaptive diversification of Crohn’s disease-associated adherent-invasive Escherichia coli[J]. Cell Host Microbe, 2019, 25(2): 301-312.e5.
[13] Buisson A, Vazeille E, Fumery M, et al. Faster and less invasive tools to identify patients with ileal colonization by adherent-invasive E. coli in Crohn’s disease[J]. United European Gastroenterol J, 2021, 9(9): 1007-1018.
[14] Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota[J]. Nature, 2013, 500(7461): 232-236.
[15] Leccese G, Bibi A, Mazza S, et al. Probiotic Lactobacillus and Bifidobacterium strains counteract adherent-invasive Escherichia coli (AIEC) virulence and hamper IL-23/Th17 axis in ulcerative colitis, but not in Crohn’s disease[J]. Cells, 2020, 9(8): 1824.
[16] Huang J, Yang ZY, Li YY, et al. Lactobacillus paracasei R3 protects against dextran sulfate sodium (DSS)-induced colitis in mice via regulating Th17/Treg cell balance[J]. J Transl Med, 2021, 19(1): 356.
[17] Oliva S, Di Nardo G, Ferrari F, et al. Randomised clinical trial: the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis[J]. Aliment Pharmacol Ther, 2012, 35(3): 327-334.
[18] Piewngam P, Zheng Y, Nguyen TH, et al. Pathogen elimination by probiotic Bacillus via signalling interference[J]. Nature, 2018, 562(7728): 532-537.
[19] Piechota-Polanczyk A, Fichna J. Review article: the role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases[J]. Naunyn-Schmiedebergs Arch Pharmacol, 2014, 387(7): 605-620.
[20] Wang Y, Wu YP, Wang YY, et al. Antioxidant properties of probiotic bacteria[J]. Nutrients, 2017, 9(5): 521.
[21] Ballini A, Santacroce L, Cantore S, et al. Probiotics efficacy on oxidative stress values in inflammatory bowel disease: a randomized double-blinded placebo-controlled pilot study[J]. Endocr Metab Immune Disord-Drug Targets, 2019, 19(3): 373-381.
[22] Tursi A, Brandimarte G, Papa A, et al. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study[J]. Am J Gastroenterol, 2010, 105(10): 2218-2227.
[23] Sood A, Midha V, Makharia GK, et al. The probiotic preparation, VSL#3 induces remission in patients with mildto-moderately active ulcerative colitis[J]. Clin Gastroenterol Hepatol, 2009, 7(11): 1202-1209.
[24] Gionchetti P, Rizzello F, Venturi A, et al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial[J]. Gastroenterology, 2000, 119(2): 305-309.
[25] Singh S, Stroud AM, Holubar SD, et al. Treatment and prevention of pouchitis after ileal pouch-anal anastomosis for chronic ulcerative colitis[J]. Cochrane Database Syst Rev, 2015(11): CD001176.
[26] Gionchetti P, Rizzello F, Helwig U, et al. Prophylaxis of pouchitis onset with probiotic therapy: a double-blind, placebo-controlled trial[J]. Gastroenterology, 2003, 124(5): 1202-1209.
[27] Magro F, Gionchetti P, Eliakim R, et al. Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 1: definitions, diagnosis, extra-intestinal manifestations, pregnancy, cancer surveillance, surgery, and ileo-anal pouch disorders[J]. J Crohns Colitis, 2017, 11(6): 649-670.
[28] Caviglia GP, De Blasio F, Vernero M, et al. Efficacy of a preparation based on calcium butyrate, Bifidobacterium bifidum, Bifidobacterium lactis, and fructooligosaccharides in the prevention of relapse in ulcerative colitis: a prospective observational study[J]. J Clin Med, 2021, 10(21): 4961.
[29] Tamaki H, Shibatoge M, Nakase H. Efficacy of probiotic treatment with Bifidobacterium longum 536 for induction of remission in active ulcerative colitis: a randomized, doubleblinded, placebo-controlled multicenter trial[J]. J Crohns Colitis, 2015, 9: S347.
[30] Matthes H, Krummenerl T, Giensch M, et al. Clinical trial: probiotic treatment of acute distal ulcerative colitis with rectally administered Escherichia coli Nissle 1917 (EcN)[J]. BMC Complement Altern Med, 2010, 10: 13.
[31] Guslandi M, Giollo P, Testoni PA. A pilot trial of Saccharomyces boulardii in ulcerative colitis[J]. Eur J Gastroenterol Hepatol, 2003, 15(6): 697-698.
[32] Bamola VD, Dubey D, Samanta P, et al. Role of a probiotic strain in the modulation of gut microbiota and cytokines in inflammatory bowel disease[J]. Anaerobe, 2022, 78: 102652.
[33] Koutsoumanis K, Allende A, Alvarez-Ordó?ez A, et al. Scientific opinion on the update of the list of QPSrecommended biological agents intentionally added to food or feed as notified to EFSA (2017-2019)[J]. EFSA J, 2020, 18(2): e05966.
[34] Suez J, Zmora N, Segal E, et al. The pros, cons, and many unknowns of probiotics[J]. Nat Med, 2019, 25(5): 716-729.
[35] Vahabnezhad E, Mochon AB, Wozniak LJ, et al. Lactobacillus bacteremia associated with probiotic use in a pediatric patient with ulcerative colitis[J]. J Clin Gastroenterol, 2013, 47(5):437-439.
[36] Tóth AG, Judge MF, Nagy SA, et al. A survey on antimicrobial resistance genes of frequently used probiotic bacteria, 1901 to 2022[J]. Eurosurveillance, 2023, 28(14): 2200272.
[37] Derwa Y, Gracie DJ, Hamlin PJ, et al. Systematic review with meta-analysis: the efficacy of probiotics in inflammatory bowel disease[J]. Aliment Pharmacol Ther, 2017, 46(4): 389-400.
[38] Butterworth AD, Thomas AG, Akobeng AK. Probiotics for induction of remission in Crohn’s disease[J]. Cochrane Database Syst Rev, 2008(3): CD006634.
[39] Rubin DT, Ananthakrishnan AN, Siegel CA, et al. ACG clinical guideline: ulcerative colitis in adults[J]. Am J Gastroenterol, 2019, 114(3): 384-413.
[40] Su GL, Ko CW, Bercik P, et al. AGA clinical practice guidelines on the role of probiotics in the management of gastrointestinal disorders[J]. Gastroenterology, 2020, 159(2): 697-705.
[41] 中華醫(yī)學(xué)會(huì)消化病學(xué)分會(huì)炎癥性腸病學(xué)組. 炎癥性腸病診斷與治療的共識(shí)意見(2018年,北京)[J]. 中華消化雜志, 2018, 38(5): 292-311.
[42] Wang LJ, Tang L, Feng YM, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice[J]. Gut, 2020, 69(11): 1988-1997.
[43] Liu J, Wang YX, Heelan WJ, et al. Mucoadhesive probiotic backpacks with ROS nanoscavengers enhance the bacteriotherapy for inflammatory bowel diseases[J]. Sci Adv, 2022, 8(45): eabp8798.