畢建巍, 蘇 雷,, 解立波, 張 昱, 凌賢長,3
(1. 青島理工大學 土木工程學院,山東 青島 266520; 2. 大連理工大學 海岸與近海工程國家重點實驗室, 遼寧 大連 116024; 3. 哈爾濱工業(yè)大學 土木工程學院,哈爾濱 150090)
隨著我國海運事業(yè)和經(jīng)濟建設的快速發(fā)展,對外貿(mào)易規(guī)模不斷擴大,碼頭吞吐量逐年增加,推動了港口碼頭建設日益加快.高樁碼頭因其泊穩(wěn)條件好、受力明確合理等諸多優(yōu)點,在我國港口工程建設中廣泛應用.由于海岸線資源相對緊張,港口工程建設逐漸向外海發(fā)展.在外海復雜環(huán)境中,波浪作用對碼頭結構的影響不可忽視.因此,波浪作用對碼頭結構穩(wěn)定性的影響逐漸引起了學者的關注.調(diào)查表明[1-3],波浪作用對港工結構的影響主要分為兩個方面:一是波浪作用直接引起結構破壞;二是波浪作用引起海床液化進而導致結構失穩(wěn).后者引起的破壞更為常見.
波浪對海床的作用是一種循環(huán)動力作用,這種作用會引起海床土體孔壓上升,有效應力降低,導致海床失去承載能力.為明確波浪作用對海床的影響機理,許多學者從理論與試驗入手,展開了大量的研究.如王小雯等[4]提出了一種飽和砂土在隨機波浪作用下超靜孔壓瞬時變化和液化過程的彈塑性動力分析方法.王立忠等[5]通過試驗對比研究了不同粒徑土海床孔壓響應問題,并總結了3種超靜孔壓增長模式.李安龍等[6]通過水槽試驗研究了波浪作用下粉土海床的孔壓變化規(guī)律.Zhang等[7]通過一系列波浪水槽試驗研究了黏性土海床的液化機理.鐘佳玉等[8]對比研究了規(guī)則波和不規(guī)則波作用下砂質(zhì)海床的孔壓變化規(guī)律,發(fā)現(xiàn)二者存在明顯差異.Liu等[9]利用一維圓筒對深水作用下砂土孔壓及液化情況進行了研究.上述研究推動了波浪作用對自由場海床孔壓及液化機理的理解.
波浪作用對樁周海床土體孔壓的影響同樣引起了學者的廣泛關注.如金小凱等[10]通過縮尺試驗研究了樁周土孔壓變化規(guī)律及單樁對孔壓的影響,并分析了波浪對樁基承載力的影響.Qi等[11]通過水槽試驗研究了波流聯(lián)合作用下孔壓的響應,發(fā)現(xiàn)波流聯(lián)合作用產(chǎn)生的孔壓小于波浪單獨作用產(chǎn)生的孔壓.Qi等[12]進行了一系列的水槽試驗,觀測了波浪作用下樁周孔壓響應,并討論了孔壓與樁周局部沖刷的聯(lián)系.Wang等[13]進行水槽試驗研究了波浪作用下樁周孔壓和樁底孔壓的分布情況.張啟博[14]利用模型試驗研究了單樁附近海床的孔壓變化.試驗表明:樁前離樁越近孔壓越大,樁后則會減小.胡翔[15]通過試驗對比研究了波浪作用下有/無結構影響的海床響應試驗.試驗表明:樁的存在會增加孔壓的相位延遲,樁徑對孔壓的分布也有明顯的影響.呂豪杰等[16]利用圓筒試驗研究了波浪周期、波高和土體相對密實度對樁周土體孔壓的影響,發(fā)現(xiàn)樁端處孔壓會出現(xiàn)放大效應.Zhang等[17]基于COMSOL建立了波浪和海床的子模型,對比研究了波浪對有無平臺樁基周圍海床土響應的影響.結果表明:平臺的存在會減小樁身彎矩和位移最大值,而對孔壓并無影響.Tong等[18]進行了波浪作用下雙樁-海床響應三維模擬.結果表明:雙樁周圍的波動孔壓和液化深度沿雙樁的中心線有衰減趨勢且與單樁有明顯差異.前述研究說明了波浪作用下,樁的尺寸及群樁布置等因素對樁周土體孔壓的變化有直接的影響.
針對波浪作用對橋墩及其周圍土體的影響,研究者進行了大量的深入研究.如向?qū)毶降萚19]通過數(shù)值模擬表明:橋墩所受波浪力隨波浪入射角的增大而增大.潘良等[20]研究了波浪作用下單樁與群樁在不同土層中動力響應的差異.段倫良等[21]著重研究了極端波浪作用下箱梁下方海床液化響應情況,發(fā)現(xiàn)迎浪側海床瞬態(tài)液化深度大于背浪側.黃雯等[22]通過數(shù)值模擬分析了樁位置對樁受力的影響,優(yōu)化了群樁中樁基的布置.陳林雅等[23]通過數(shù)值模擬發(fā)現(xiàn):波浪條件、海床特性和結構埋置深度會顯著影響結構物所受波浪力.Zhang等[24]在Morison方程的基礎上,給出了一種可用于計算小尺度結構波浪力的方法.雷欣欣[25]通過試驗研究了規(guī)則波和不規(guī)則波作用下波浪引起群樁效應的差異性.陳連鑫[26]基于能量法來衡量波浪作用并研究波浪力對橋墩的影響.
針對高樁碼頭所受波浪力,學者通過數(shù)值模擬和模型試驗進行了深入研究.如王元戰(zhàn)等[27-28]對全直碼頭水平受力進行了深入研究,并提出了基于p-y曲線,以“塑性鉸”作水平承載力判斷標準的全直碼頭簡化計算方法和基于單自由度系統(tǒng)位移動力法的簡化計算方法,均得到了很好的驗證.肖文智等[29]通過高樁碼頭模型試驗發(fā)現(xiàn):結構所受最大波浪上托力和水平力并不同時出現(xiàn)、存在相位差.Zhang等[30]利用數(shù)值模擬研究了全直樁碼頭的動力特性,提出了全直樁碼頭動力響應的簡化模擬方法.盧生軍等[31]通過數(shù)值模擬發(fā)現(xiàn):波浪作用下碼頭結構內(nèi)力動力計算結果明顯小于靜力計算.
綜上所述,雖波浪作用對純海床、單樁、橋墩及其周圍土體孔壓的影響已有一定研究,但針對海工結構的研究需充分考慮波浪-結構-海床三者之間的相互所用,前述研究大多只考慮了波浪-海床或波浪-結構兩者之間的相互作用,少數(shù)研究考慮了波浪-結構-海床三者之間的相互作用,但也只針對于簡單的單樁結構,且研究只重視海床的孔壓響應,忽略了結構的響應.針對高樁碼頭的研究關注于高樁碼頭所受波浪力,且只考慮了波浪-高樁碼頭兩者之間的相互作用,并未考慮海床的影響,而綜合考慮波浪-高樁碼頭-海床三者相互作用的研究鮮有報道.鑒于此,本文利用大型造波設備進行波浪作用下液化場地高樁碼頭動力響應模型試驗,考慮波浪、結構和土層三者之間的相互作用,以高樁碼頭整體作為研究對象,真實再現(xiàn)高樁碼頭工作環(huán)境,對碼頭樁身彎矩、動水壓力、樁周土體孔壓等動力響應特性進行研究,探究高樁碼頭內(nèi)部動力響應的差異,分析液化場地高樁碼頭在波浪作用下的動力響應規(guī)律,對比研究自由場土與樁周土的孔壓和加速度響應.同時,探討了不同波高對高樁碼頭體系動力響應的影響.試驗結果對高樁碼頭的設計和防波浪侵襲提供一定的借鑒和參考.同時,試驗結果可為后續(xù)數(shù)值模擬可靠性驗證提供試驗數(shù)據(jù).
本次試驗在大連理工大學海岸和近海工程國家重點實驗室抗震分室中地震-波流聯(lián)合試驗模擬系統(tǒng)中進行,如圖1所示.該系統(tǒng)是世界上首套可同時實現(xiàn)在地震、流、波浪等多種荷載聯(lián)合作用下海工結構動力響應的大型物理模擬試驗系統(tǒng),可滿足大型試驗使用需求.該系統(tǒng)主要由振動臺、造波機、造流機、消波板和控制系統(tǒng)組成.本次試驗主要用到造波機、消波板和控制系統(tǒng),主要技術參數(shù)如下:水槽幾何尺寸長×寬×高為21.6 m×5.0 m×1.0 m,工作水深為0.2~0.8 m;試驗最大波高為0.33 m,穩(wěn)態(tài)波高誤差小于3%;試驗波浪周期為0.5~4 s,穩(wěn)態(tài)周期誤差小于1%.
圖1 地震-波流聯(lián)合試驗模擬系統(tǒng)
為了考查波浪作用下液化場地高樁碼頭動力響應,將海床置于長×寬×高為3 m×1 m×0.6 m的土箱,如圖2所示.考慮到造波機位于水槽底部,為了防止波浪經(jīng)過土箱時發(fā)生破碎,使用光滑塑料板制作引水坡道、過渡段和流出段,引水坡道采用較緩的坡度設計,過渡段和流出段頂面與土箱同高,從而更好地引導和穩(wěn)定波浪沿著土箱頂部流過,最終流入消波板處,如圖3所示.
圖2 試驗所用土箱
圖3 引水坡道
考慮到試驗時需要施加波浪荷載,海床表面若采用斜坡體將會影響作用于高樁碼頭波浪的穩(wěn)定性,不利于波浪作用下高樁碼頭及周圍土體響應規(guī)律的分析;同時,考慮到試驗條件的限制和試驗的可重復性;最終將復雜的近岸斜坡海床表面簡化為表面水平海床.采用單一標準砂進行制作.試驗標準砂采用福州砂,試驗前需對該砂進行基本參數(shù)測定.圖4為試驗用砂的顆粒級配曲線.圖中:D為小于指定粒徑的比例;d為粒徑.試驗用砂基本物理特性為:密度ρ=1.68 g/cm3;最大孔隙比emax=0.69;最小孔隙比emin=0.47;砂土曲率系數(shù)Cc為1.02;砂土不均勻系數(shù)Cu為1.16,小于5,因此,試驗用砂級配不良.
圖4 試驗用砂顆粒級配
為盡可能模擬天然海床的實際狀態(tài),確保海床砂層達到較大飽和度與均勻度,采用砂雨法進行飽和砂層制作.填筑時始終保持水位線高于砂層表面10 cm左右,保證干砂緩慢而均勻地落入水中.由于填砂量大,為保證飽和地基密度均勻,將填筑等分為6次,每次填砂完成后需靜置1 h,直至完成整個砂層鋪筑.試驗地基成型后,需靜置24 h,確保地基完全飽和.
本次試驗為模型試驗,但是對于碼頭結構,參考墨西哥曼薩尼約港的全直樁鋼管樁碼頭結構,按照剛度相似進行設計.實際高樁碼頭結構中,樁基采用圓形截面Q345B鋼管樁,彈性模量E=206 GPa,樁徑R=1 m,壁厚r=18 mm,樁長約為35 m,埋深約為22 m,計算得到樁的慣性矩(I)和抗彎剛度(EI)分別如下:
(1)
EI=7.09×108N·m2
(2)
根據(jù)剛度相似法則要求:
(EI)p/(EI)m=n3.5
(3)
式中:n為原型與模型幾何相似比;p和m分別代表原型和模型.
考慮到試驗條件的限制,設計相似比n=1/50,計算得到樁長為0.7 m,入土深度為0.44 m.按照相似比,可得模型樁EI約為8.02×102N·m2.
試驗中,模型結構材質(zhì)選用6061鋁,其彈性模量為6.9 GPa.考慮材料的加工精度和試驗土箱尺寸,管樁尺寸確定為外徑為30 mm,壁厚為 4 mm,樁長0.7 m,入土深度為0.45 m.計算得到其慣性矩和抗彎剛度分別為
(4)
EI=1.17×103N·m2
(5)
可見,選用的6061鋁管樁其抗彎剛度近似滿足相似比.模型的具體尺寸如圖5所示,樁與面板通過螺栓連接.由于樁為空心圓管樁,為防止試驗時砂與水進入樁內(nèi),影響高樁碼頭模型的動力響應,采用定制的橡膠堵頭,堵在樁底的空心處.最終成型的高樁碼頭模型如圖6所示.
圖5 模型尺寸示意(cm)
圖6 高樁碼頭物理模型
如圖7所示,本次模型試驗飽和砂層厚度為0.6 m,與土箱上表面齊平.高樁碼頭群樁入土深度為0.45 m,水中0.15 m,露出水面0.1 m.為了減小邊界效應對試驗的影響,沿土箱寬度方向,將高樁碼頭模型居中放置于土箱內(nèi);沿土箱長度方向,高樁碼頭模型分別距兩側壁距離為0.8 m和1.48 m.同時,將距碼頭結構前端0.68 m、距土箱前壁0.8 m處假定為自由場,認為此處受碼頭結構和土箱前壁的影響可忽略不計.
圖7 高樁碼頭試驗模型與傳感器布置(cm)
試驗時選取B1、B2、E1和E2共4根樁(見圖7)作為測試樁,每根樁沿波浪傳播方向?qū)ΨQ布置5對防水應變片.應變片布置位置如圖7所示,用于測量樁身應變.應變片采用半橋的接線方式連接,可抵消溫度效應對測量結果的影響,同時可提高數(shù)據(jù)測量的靈敏度,更好地捕捉結構的動態(tài)響應.
加速度傳感器分別布置于飽和地基和面板上,主要用于測量飽和地基和面板的加速度,其中埋設于飽和地基中的加速度傳感器需進行防水處理.為測量飽和砂土中孔壓的變化,采用微型孔壓傳感器測量由波浪作用產(chǎn)生的樁周土孔壓變化和自由場土層孔壓變化.考慮到試驗條件與數(shù)據(jù)采集問題,將加速度傳感器和孔壓傳感器布置于樁B2和E2附近及自由場,具體埋設位置如圖7和圖8所示.高精度激光位移計安裝在面板兩側,用于測量模型在波浪作用下的位移,并可通過測量數(shù)據(jù)分析模型結構在波浪作用下是否發(fā)生扭轉,其安裝位置如圖7所示.在樁B2和E2側邊距水面10 cm處安裝波壓傳感器用于測量作用于群樁上的動水壓力.為了測量作用于模型的波高變化且盡可能減少波高儀與結構之間的距離,根據(jù)所選波浪參數(shù),將波高儀布設于面板前10 cm處且伸入水中10 cm.
圖8 樁B2和E2附近傳感器布置 (cm)
試驗中,波高的選取是基于以下兩個方面.
(1) 施加的工況應在保證波浪不破碎的前提下選取,試驗所施加的波浪參數(shù)應滿足以下條件之一:
H/L≤0.142tanh(kh)
H/h≤0.78
其中:H表示波高;h表示水深;L表示波長;k表示波數(shù).
(2) 根據(jù)現(xiàn)場試驗時的現(xiàn)場造波效果,選擇周期、波高穩(wěn)定的工況進行響應分析.
根據(jù)試驗要求與試驗能力,參考已有的試驗方案,試驗時施加波高1.5 cm,周期0.75 s的規(guī)則波浪作為激勵荷載.圖9為試驗時實測值與理論值的對比.圖中:t為時間.由圖可見,試驗波浪規(guī)則穩(wěn)定,二者高度吻合,說明引水坡道和消波板起到了良好的作用,作用于模型的波浪符合試驗要求.
圖9 波高實測值與理論值對比
在以下試驗結果分析中,因為本文僅針對模型試驗結果展開分析,所以目前試驗結果很難與規(guī)范結果進行直接對比.對此,下面針對試驗模型中動水壓力、碼頭結構響應和地基響應展開分析.
圖10給出了樁B2和E2處所受的動水壓力.圖中:p0為動水壓力;p0,max為最大動水壓力.由圖可見,樁B2處受到的動水壓力略大于樁E2處受到的動水壓力.由Morison方程可知,樁所受動水壓力與波速和加速度有關,由于樁B2位于迎水面,樁E2位于群樁內(nèi)部,群樁會阻礙波浪的傳播,導致波浪產(chǎn)生繞流,降低傳播速度.同時,樁B2和E2所受動水壓力的最大值差距很小,這是因為前排樁造成的波浪衍射疊加作用于后排樁,增加了后排樁所受的動水壓力.
圖10 動水壓力時程
2.2.1碼頭結構加速度 圖11為高樁碼頭面板的加速度響應時程.圖中:a0表示面板加速度;a0,max表示面板峰值加速度.可以發(fā)現(xiàn)面板中部峰值加速度為面板角部峰值加速度的1.7倍左右,說明模型產(chǎn)生一定的扭轉,且扭轉導致角部加速度在波浪傳播方向的分量小于中部加速度.同時可以看出,在波浪作用初期,面板中部加速度響應與角部加速度響應差異明顯,說明面板產(chǎn)生了輕微扭轉;隨著波浪作用的持續(xù),二者差異逐漸減小,說明扭轉響應減弱.這主要是由于波浪作用初期,群樁的存在會破壞原有的穩(wěn)定波浪場,導致各樁受力不同,使模型產(chǎn)生扭轉;隨著作用的持續(xù),波浪場趨于穩(wěn)定,模型扭轉劇烈程度降低.
圖11 面板加速度時程
2.2.2樁身彎矩 根據(jù)試驗中樁上粘貼的應變片記錄的應變值,按照彈性梁基本理論,計算出樁身彎矩.圖12給出了樁B1、B2、E1和E2的樁身彎矩時程圖.圖中:M表示樁身彎矩,Mmax表示樁身彎矩最大值.由圖可見,由于面板的慣性作用,樁與面板連接處彎矩較大,最大彎矩可達0.058 N·m.對于埋入飽和砂土中的樁而言,樁B2所受彎矩大于其余樁的同位置處.這可能是兩個原因造成的:一是樁B2位于最前排,其受到波浪的直接沖擊;二是波浪對土層造成沖刷和擾動,導致土層對樁身產(chǎn)生擠壓,增大樁身彎矩.
對比圖12(a)~12(d)發(fā)現(xiàn),除S7和S17位置外,樁B2的彎矩均大于樁E2,這是由于波浪作用于前排樁產(chǎn)生繞流,造成波浪一定程度的衰減,減弱了波浪對后排樁的作用.而S7和S17位于自由水體中,S17位置處樁身受前排樁和兩側樁造成的波浪衍射作用,導致該位置處彎矩大于S7.值的注意的是,邊樁的變化規(guī)律與中間樁并不相同,進一步對邊樁研究可以發(fā)現(xiàn):樁B1露出土層部分和0.15 m埋深處的樁身彎矩大于樁E1,而地表處和0.30 m埋深處的彎矩則為樁E1大于樁B1.這可能是因為樁E1地表處受到前樁下潛流的作用從而增大了樁身彎矩;同時波浪對樁E1較深處土層作用較小,樁周土對其有較大的約束作用,造成埋深0.30 m處樁E1彎矩大于B1.
同時可以發(fā)現(xiàn),除樁排B水面處彎矩,其余中間樁樁身彎矩大于邊樁樁身彎矩,這是由于波浪作用在兩側樁時會產(chǎn)生波浪衍射,這種衍射會疊加作用于中間樁排,一定程度上會增強波浪作用,從而增大樁的動力響應.位于樁排B水面處的彎矩為兩側大于中間,這可能是由于波浪經(jīng)過前排樁時會產(chǎn)生不同程度破碎導致的.值的注意的是,后排中間樁會受前排兩側樁產(chǎn)生的衍射影響,與同排兩側樁產(chǎn)生的衍射疊加,自由水體中的樁身直接承受波浪作用,因此這種衍射的疊加對后排自由水體中的樁身動力響應增強更為明顯.
2.2.3碼頭結構位移 圖13為高樁碼頭結構面板的位移響應時程.圖中:d0表示面板位移;d0,max表示面板位移峰值.由圖可見,高樁碼頭結構的位移較小,最大位移僅為2.5×10-4mm,這主要是由于面板的約束使得模型的剛度相對較大,而施加的波浪荷載相對較小.在模型承受波浪作用初期,群樁的存在造成波浪場產(chǎn)生復雜的衍射,模型兩側位移并不同步,發(fā)生輕微扭轉.隨著波浪作用時間的持續(xù),波浪場逐漸穩(wěn)定,面板兩側位移扭轉程度減小.位移的響應隨著波浪的持續(xù)作用逐漸明顯,這主要是由于波浪對表面樁周土的沖刷,造成飽和砂土松散,從而減小了對整個模型的約束.
圖13 面板位移時程
2.3.1孔壓響應 圖14為自由場與樁B2和E2附近土層孔壓變化時程.圖中:p表示樁周土層孔壓;pmax表示樁周土層孔壓最大值.由圖可知,在波浪循環(huán)作用下,孔壓呈現(xiàn)振蕩變化,但并未看出明顯的孔壓積累.這主要是因為飽和砂土較松散,波浪作用后其松散程度進一步加大,排水效果良好,使得孔壓快速消散.
圖14 孔壓時程
進一步,由圖14可知,除位于土層表層的孔壓外,自由場孔壓與樁周土層孔壓變化幅值沿深度逐漸減小.這主要是由于隨著埋深的增加,波浪形成的動水壓力逐漸降低,水力梯度減小,滲流減弱.同時可以看出,自由場孔壓的衰減速率沿深度逐漸減慢,這是由于隨著土層深度的增加,孔壓的消散率降低.而對于土層表層的孔壓而言,其受到波浪的直接作用,造成表層砂土較為松散,導致孔壓的消散速率增大,孔壓的變化幅值較小.
對比圖14(a)~14(c)可知,自由場孔壓的變化幅值和衰減均大于樁周土層孔壓.這可能是兩方面原因造成:一是波浪作用時會對樁周土層造成擾動,增大了滲流阻力,降低了孔壓的消散速率,進而影響樁周土層孔壓的變化;二是群樁的存在改變了原有的波浪場,削弱了波浪對砂層孔壓的影響.
2.3.2土層加速度 圖15為自由場與樁B2和E2附近土層加速度變化時程.圖中:a表示土層加速度;amax表示土層加速度最大值.考慮到施加的波浪作用較小,對自由場土層深處擾動作用小,因此僅在地表處與埋深0.15 m處布置加速度傳感器.試驗中,由于波浪的沖刷作用,埋置于樁附近土層表面的加速度傳感器被沖出而暴露于水中,所以其所測的加速度并非土層加速度,故此處對其不再討論.而埋置于自由場表面的加速度并未沖出,說明群樁的存在會增大波浪對砂土表面的沖刷作用.
圖15 土層加速度時程
對比圖15(b)~15(c)可以發(fā)現(xiàn),t=0~7 s時,樁B2附近土層加速度響應大于樁E2附近土層,t=7~10 s時,樁E2附近土層加速度明顯增大,在0.15 m埋深處的加速度響應大于樁B2附近土層加速度.這是因為群樁的存在既會影響波浪的傳播,也會增強波浪對土層的作用.在波浪作用初期,群樁的存在阻礙波浪的傳播,削弱了波浪對群樁內(nèi)部土層作用.隨著波浪作用的持續(xù),群樁會增強波浪與土層的相互作用,且樁也會對土層造成擾動,從而增大了樁E2附近土層加速度響應.
對比圖15(a)~15(c)可以發(fā)現(xiàn),群樁附近土層的加速度響應比自由場更加劇烈.這是由于高樁碼頭樁底無嵌固,波浪作用時,群樁會對樁周土體造成一定程度的擾動;且群樁的存在也會增強波浪對土層的作用,增大樁附近土層加速度的響應.
為更好研究波浪作用對碼頭結構和周圍土體響應的影響,增加兩組波高分別為2.0 cm和2.7 cm的同周期波浪,分析波高對碼頭體系最大值響應的影響.
圖16給出了動水壓力峰值隨波高的變化趨勢.從圖中可以看出,隨著波高的增加,樁所受動水壓力峰值也逐漸增大.對比樁B2和E2所受動水壓力可以發(fā)現(xiàn),二者的差值逐漸變大,這是由于隨著波高的增大,群樁對波浪的破碎作用也進一步加強,減弱波浪對后排樁的作用.隨著波高的增大,波浪對土層的沖刷作用增強,損耗的能量增大,從而減小樁E2所受動水壓力.
圖16 波高對動水壓力的影響
圖17顯示了波高對碼頭面板加速度和位移響應峰值的影響.由圖可知,面板加速度和位移的最大值整體上隨波高的增大而增大.進一步分析可知,隨著波高的增加,面板的扭轉程度逐漸變小.這可能是由于隨著波浪高度的增加,群樁導致波浪的衍射對邊樁的作用增強,這在一定程度上減弱了面板的扭轉.
圖17 波高對面板加速度和位移的影響
圖18呈現(xiàn)了波高對樁身彎矩峰值的影響.由圖可得,樁身彎矩的空間變化規(guī)律基本不變,但當波高增大到一定程度時,除樁E1外,其余各樁的樁身彎矩峰值呈現(xiàn)出下降趨勢.進一步分析可得,波高較高時,各樁的受力更加均勻.這是由于較大的波高對土層的作用更明顯,導致土層的松散程度增大,對各樁的約束作用減小.同時,群樁對波浪的破碎作用隨著波高的增大而更明顯,產(chǎn)生的波浪衍射造成各樁的受力均勻.
圖18 波高對樁身彎矩的影響
圖19為波高變化對土層孔壓峰值的影響.由圖可得,隨著波高的增加,孔壓峰值也逐漸增大,且對自由場孔壓峰值的影響更大.這是因為隨著波浪高度的增加,波浪的勢能增大,對土層的作用明顯;但群樁的存在也會一定程度消耗波浪所含能量,減弱波浪對樁周土層孔壓的影響.值的注意的是,波高對孔壓的影響程度隨波高的增加而減弱,但這一現(xiàn)象對群樁內(nèi)部孔壓的影響并不明顯.同時也可看出,波浪高度的增加也會減小孔壓沿深度的衰減速率.
圖19 波高對孔壓的影響
圖20為波高對土層加速度峰值的影響.可以看出隨著波高的增加,土層加速度峰值總體呈上升趨勢,對土層的擾動隨著深度逐漸減弱.對比相同埋深的自由場與樁周土層加速度可以發(fā)現(xiàn),群樁的存在一定程度上增強波浪對周圍土體的擾動.
圖20 波高對土層加速度的影響
利用大連理工大學海岸和近海工程國家重點實驗室地震-波流聯(lián)合模擬系統(tǒng),考慮波浪、結構和土層三者之間的相互作用,完成了波浪作用下高樁碼頭-土層體系模型試驗研究,分析了模型結構內(nèi)部響應差異,對比了群樁結構對土層加速度及孔壓響應的影響,總結了波高變化對各響應的影響,為高樁碼頭設計和防護提供了參考與借鑒.通過對試驗結果的分析,主要得到以下結論:
(1) 波浪作用會造成模型輕微扭轉,隨波浪作用時間的增加,面板的位移和加速度響應逐漸明顯,面板中部加速度大于面板角部加速度.
(2) 高樁碼頭內(nèi)部響應差異明顯,碼頭樁身所受動水壓力和樁身彎矩大小與樁位置有直接聯(lián)系,邊樁與中間樁的彎矩變化規(guī)律并不相同;位于中間排的樁彎矩大于邊樁,且后排樁在水表面處的彎矩響應尤為明顯.
(3) 自由場和樁周土層孔壓變化隨埋深增大而減小,孔壓衰減速率減小.樁的存在會影響孔壓的傳遞變化,自由場孔壓大于樁周土層孔壓.
(4) 樁的存在會增大土層加速度,波浪作用初期,前排樁附近土層加速度響應大于后排樁,后排樁附近土層加速度隨著波浪的作用逐漸變大.
(5) 除樁身彎矩外,其余各響應整體隨波高的增高而增大,波高對土層的影響隨深度的增加而降低.