潘國冠 李果明
【摘要】 左心疾病相關(guān)肺動脈高壓(PH-LHD)是肺動脈高壓(PH)最常見的形式,是左心疾病晚期常見并發(fā)癥,且PH患者預(yù)后差、病死率高。目前國內(nèi)外關(guān)于PH-LHD肺血管重塑的形成機(jī)制尚未完全明確,可能是多因素作用,與血管活性物質(zhì)、交感神經(jīng)系統(tǒng)激活、腎素-血管緊張素-醛固酮系統(tǒng)、炎癥因子、左心房功能障礙等相關(guān)。本文將對PH-LHD的定義、血流動力學(xué)及肺血管重塑的病理生理機(jī)制進(jìn)行綜述。
【關(guān)鍵詞】 左心衰竭 肺動脈高壓 血管重塑 病理生理
[Abstract] Pulmonary hypertension associated with left heart disease (PH-LHD) is the most common form of pulmonary hypertension (PH) and a common complication in the late stage of left ventricular disease, and PH patients have poor prognosis and high mortality. At present, the formation mechanism of PH-LHD pulmonary vascular remodeling is not completely clear in China and abroad. It may be due to multi-factor effects, which is related to vasoactive substances, activation of the sympathetic nervous system, renin-angiotensin-aldosterone system, inflammatory factors, left atrial dysfunction, etc. This article will review the definition, hemodynamics and pathophysiological mechanism of pulmonary vascular remodeling of PH-LHD.
[Key words] Left heart failure Pulmonary hypertension Vascular remodeling Pathophysiology
First-author's address: Guangdong Medical University, Zhanjiang 524023, China
doi:10.3969/j.issn.1674-4985.2023.16.043
肺動脈高壓(pulmonary hypertension,PH)是指在海平面、靜息狀態(tài)下經(jīng)右心導(dǎo)管檢查(right heart catheterization,RHC)測量的肺動脈平均壓(mean pulmonary artery pressure,mPAP)≥25 mmHg[1]。正常成年人靜息狀態(tài)下mPAP為(14.0±3.3)mmHg,上限不超過20 mmHg[2]。基于臨床數(shù)據(jù)表明mPAP在21~24 mmHg范圍內(nèi)的輕度升高與各種形式的PH患者的死亡率增加有關(guān)[3],《2022 ESC/ERS肺動脈高壓診斷和治療指南》中將PH血流動力學(xué)診斷標(biāo)準(zhǔn)修改為mPAP>20 mmHg[4]。
PH分為五大類:(1)動脈性PH;(2)左心疾病所致PH;(3)肺部疾病和/或低氧所致PH;(4)慢性血栓栓塞性PH和/或其他肺動脈阻塞性病變所致PH;(5)未明和/或多因素所致PH[1]。左心疾病相關(guān)肺動脈高壓(PH-LHD)是最常見的形式,約占PH病例的68.5%[5]。左心疾病主要包括缺血性心肌病、高血壓性心臟病、擴(kuò)張型心肌病、肥厚型心肌病、風(fēng)濕性心臟病及心臟瓣膜病,其中以缺血性心肌病、高血壓性心臟病常見[6]。心力衰竭是各種心臟疾病的嚴(yán)重表現(xiàn)或晚期階段,常并發(fā)PH,PH的進(jìn)展與臨床惡化及死亡風(fēng)險(xiǎn)顯著相關(guān)[7]。目前關(guān)于PH-LHD的發(fā)病機(jī)制尚不完全清楚,但肺血管重塑是PH-LHD的病理特征之一,了解PH-LHD肺血管重塑的病理生理機(jī)制,對患者的治療與管理具有重要意義。
1 PH-LHD的定義及血流動力學(xué)
PH-LHD定義為海平面、靜息狀態(tài)下行RHC,mPAP≥25 mmHg且肺動脈楔壓(pulmonary artery wedge pressure,PAWP)>15 mmHg[1]。結(jié)合肺血管阻力(pulmonary vascular resistance,PVR),《2022 ESC/ERS肺動脈高壓診斷和治療指南》將PH-LHD分為兩個亞型:單純性毛細(xì)血管后PH(Ipc-PH):mPAP>20 mmHg,PAWP>15 mmHg,PVR≤2 WU;毛細(xì)血管前后混合性PH(Cpc-PH):mPAP>20 mmHg,PAWP>15 mmHg,PVR>2 WU[4]。
2 PH-LHD肺血管重塑的病理生理
PH-LHD形成早期是因?yàn)樽笮某溆瘔荷仙?,壓力逆向傳?dǎo),肺靜脈回流受阻,肺血管壓力升高[8],而肺血管結(jié)構(gòu)未有明顯變化,此階段稱為“Ipc-PH”或“被動性PH”。隨著病情進(jìn)展,肺動脈結(jié)構(gòu)和功能發(fā)生改變,涉及血管壁廣泛結(jié)構(gòu),表現(xiàn)為血管壁增厚變硬,管腔直徑縮小,血管舒張力降低及阻力增加[9],最終導(dǎo)致肺血管阻力持續(xù)升高和右心衰,此階段稱為“Cpc-PH”或“反應(yīng)性PH”。同時左右心室作為功能相互依賴的整體,為了適應(yīng)肺動脈高壓,右心室代償性肥厚及擴(kuò)張,室間隔向左心室偏移,使左心室舒張壓力-容量曲線上移,充盈及射血受損,左心功能進(jìn)一步惡化,加重肺血管血流動力障礙。PH-LHD肺血管系統(tǒng)的組織學(xué)特征包括肺動脈平滑肌細(xì)胞(PASMCs)增殖與肥大、彈性及膠原纖維成分增加、小動脈閉塞或機(jī)化、非平滑肌小動脈轉(zhuǎn)化為平滑肌小動脈、局部小血管形成等,其主要的病理生理機(jī)制尚未明確,可能是多種因素的共同結(jié)果。
2.1 肺血管內(nèi)皮功能障礙 肺血管內(nèi)皮功能障礙是PH進(jìn)展的關(guān)鍵啟動因素,而且左心功能不全進(jìn)一步導(dǎo)致血流紊亂、肺血管淤血、缺氧等,進(jìn)而破壞內(nèi)皮舒張與收縮因子平衡。肺血管內(nèi)皮分泌的舒張、收縮因子共同調(diào)控肺血管舒張和收縮,血管活性物質(zhì)主要包括一氧化氮(NO)、前列環(huán)素(PGI2)、內(nèi)皮素-1(endothelin-1,ET-1)、血栓素A2(TXA2)等。NO在內(nèi)源性因素如緩激肽、乙酰膽堿和兒茶酚胺或機(jī)械(剪切應(yīng)力或拉伸)等刺激下,由內(nèi)皮型一氧化氮合酶(eNOS)連續(xù)合成并立即釋放,迅速擴(kuò)散到周圍的平滑肌細(xì)胞,通過鳥苷酸環(huán)化酶(GC)-cGMP-PKG途徑舒張血管[10]。同時NO可通過其他途徑抑制PASMCs增殖,減緩肺血管重塑的進(jìn)展。大量實(shí)驗(yàn)研究發(fā)現(xiàn)了PH-LHD存在肺血管內(nèi)皮功能障礙、NO合成受損、血管擴(kuò)張劑反應(yīng)性降低等現(xiàn)象[11-14]。在炎癥、缺氧、損傷等環(huán)境下,機(jī)體發(fā)生氧化應(yīng)激,NO過量轉(zhuǎn)化為過氧亞硝酸鹽(ONOO-),導(dǎo)致NO生物利用度降低[14];同時PKG氧化導(dǎo)致PKG活性受損,通過RhoA/Rho激酶激活誘導(dǎo)血管收縮和血管重塑[15]。
與NO相比,ET-1是有效的血管收縮活性物質(zhì),其產(chǎn)生和釋放受血管緊張素Ⅱ(AngⅡ)、活性氧(ROS)、炎癥細(xì)胞因子等多種因素調(diào)節(jié)[16],通過觸發(fā)平滑肌細(xì)胞增殖和膠原蛋白生成促進(jìn)血管重塑[17-18]。ET-1主要在肺組織中表達(dá),與血管平滑肌細(xì)胞(SMC)ETA、ETB受體結(jié)合后,可激活磷脂酶C(PLC),產(chǎn)生第二信使三磷酸肌醇(IP3)和二?;视停―AG),觸發(fā)細(xì)胞內(nèi)儲存的鈣釋放,產(chǎn)生持續(xù)的血管收縮反應(yīng)[10]。另外,ET-1過量生成可抑制eNOS表達(dá),導(dǎo)致NO分泌減少[19]。在一項(xiàng)動物實(shí)驗(yàn)研究中,通過行肺靜脈束帶術(shù)后發(fā)現(xiàn)肺前ET-1及內(nèi)皮素轉(zhuǎn)化酶-1的mRNA表達(dá)增強(qiáng),肺內(nèi)皮素通路上調(diào),肺血管阻力增加,并提出了抑制ET通路可為早期Cpc-PH提供藥物治療靶點(diǎn)[20]。
2.2 神經(jīng)體液機(jī)制
2.2.1 交感神經(jīng)過度激活 交感神經(jīng)過度激活是心力衰竭的重要始動因素和促發(fā)因素,同時是PH-LHD進(jìn)展中不可忽視的重要因素。已有大量研究數(shù)據(jù)表明,交感神經(jīng)系統(tǒng)過度激活與PH進(jìn)展相關(guān)。肺血管中存在廣泛的交感神經(jīng)支配,PH患者,特別是臨床癥狀惡化患者,往往存在血兒茶酚胺濃度升高、心率變異性降低、肌肉交感神經(jīng)活動增加等交感神經(jīng)系統(tǒng)過度激活的表現(xiàn)。
腎上腺素受體(adrenergic receptor,AR)主要為α腎上腺素受體(α-AR)和β腎上腺素受體(β-AR),α-AR(α1、α2)主要介導(dǎo)血管收縮,而β-AR(β1、β2、β3)介導(dǎo)血管舒張。已有研究發(fā)現(xiàn)肺血管內(nèi)皮細(xì)胞的β2-AR可調(diào)節(jié)eNOS產(chǎn)生NO,通過GC-cGMP-PKG途徑誘導(dǎo)平滑肌細(xì)胞松弛及血管舒張[21],并且可改善內(nèi)皮功能障礙、抑制平滑肌細(xì)胞異常增殖[22]。血漿中NE通過與肺動脈平滑肌上的α1-AR相結(jié)合,與G蛋白偶聯(lián)激活PLC,產(chǎn)生IP3和DAG[23],促進(jìn)鈣離子釋放及內(nèi)流,細(xì)胞內(nèi)鈣離子濃度升高,導(dǎo)致平滑肌的持續(xù)強(qiáng)直收縮;同時可誘導(dǎo)PASMCs和外膜成纖維細(xì)胞肥大與增生,出現(xiàn)肺血管阻力增加、肺動脈重塑[23-24]。
研究表明α/β受體拮抗劑阿羅洛爾可減緩野百合堿(monocrotaline,MCT)誘導(dǎo)大鼠PH的發(fā)展[25];非選擇性α/β受體阻滯劑卡維地洛通過逆轉(zhuǎn)缺氧或MCT誘導(dǎo)的PH模型中的右心室衰竭改善MCT大鼠的生存情況[26]。奈必洛爾是選擇性β1受體阻滯劑,且具有β2、β3激動劑功能,可減少炎癥因子生成,改善內(nèi)皮功能障礙及平滑肌細(xì)胞異常增殖[22]。目前去交感神經(jīng)術(shù)治療在動物實(shí)驗(yàn)和臨床階段均表明其具有改善肺動脈阻力作用,減緩PH進(jìn)展。一項(xiàng)98例Cpc-PH患者的臨床研究結(jié)果顯示,肺動脈去神經(jīng)術(shù)(pulmonary artery denervation,PADN)手術(shù)組與對照組相比,PVR顯著降低,臨床惡化率下降[27]。
2.2.2 腎素-血管緊張素-醛固酮系統(tǒng)(RAAS)激活 RAAS在維持心血管穩(wěn)態(tài)、水電解質(zhì)平衡中起著重要作用。左心功能不全,心輸出量減少,RAAS長期激活,嚴(yán)重?fù)p傷心臟、肺血管結(jié)構(gòu)與功能,并與疾病進(jìn)展和死亡率密切相關(guān)。局部RAAS功能可起到調(diào)節(jié)血管血流、控制刺激反應(yīng),并參與細(xì)胞增殖、分化與凋亡等[28]。在PH的動物模型中可反復(fù)觀察到血循環(huán)中醛固酮升高。醛固酮誘導(dǎo)氧化應(yīng)激產(chǎn)生ROS,損害內(nèi)皮素-B(ETB)受體信號通路,降低肺動脈內(nèi)皮細(xì)胞中ETB依賴性NO合成,同時降低NO生物利用度[29]。ACE作用AngⅠ轉(zhuǎn)化為AngⅡ主要發(fā)生在肺部,且肺內(nèi)皮細(xì)胞的ACE活性增加及表達(dá)上調(diào),AngⅡ的生成在PH中局部升高[30]。持續(xù)暴露的AngⅡ?qū)е卵芷交〖?xì)胞肥大與增殖,并與血管炎癥、纖維化及血管內(nèi)皮功能受損有關(guān)。AngⅡ激活RhoA/Rho激酶信號通路,通過抑制肌球蛋白輕鏈磷酸酶(MLCP)介導(dǎo)血管收縮,且負(fù)性調(diào)節(jié)eNOS和PI3-激酶(PI3K)活性導(dǎo)致內(nèi)皮功能障礙[31]。
ACE2-Ang(1-7)-Mas軸是RAAS系統(tǒng)主要成員之一,負(fù)向調(diào)節(jié)ACE-AngⅡ-AT1R軸。Ang(1-7)與Mas受體結(jié)合后,可促進(jìn)ECs釋放NO和前列腺素,產(chǎn)生血管舒張、抗增殖、抗炎、抗血栓及改善內(nèi)皮等作用[32]。臨床研究證實(shí)了PH患者血清中ACE2、Ang(1-7)水平或活性降低,而AngⅡ水平升高[33]。ACE2活性增強(qiáng)可降低AngⅡ/Ang(1-7)比值,并通過超氧化物歧化酶2(SOD2)降低活性氧并抑制炎癥,從而改善異常的肺血流動力學(xué)[34];ACE2活化誘導(dǎo)eNOS的磷酸化,NO釋放增加[35]。Ang(1-7)通過NO/cGMP信號通路阻止AngⅡ介導(dǎo)的病理重構(gòu)[36],且抑制血小板衍生的生長因子和AngⅡ介導(dǎo)的PASMCs增殖,以及具有抗血管生成功能[37]。一項(xiàng)對5例PH受試者的臨床研究表明,使用人重組可溶性ACE2(rhACE2)制劑可改善肺動脈壓力、降低氧化應(yīng)激[34]。另外,ACE2-Ang(1-7)-Mas軸可通過抑制心肌重構(gòu)、保護(hù)心肌細(xì)胞、減少炎癥因子產(chǎn)生等作用以抵抗ACE-AngⅡ-AT的不良影響,進(jìn)一步研究ACE2-Ang(1-7)-Mas軸的機(jī)制可為PH提供新的潛在藥物靶點(diǎn)。
2.3 炎癥因子 肺血管炎癥因子浸潤是PH的主要病理特征之一,炎癥反應(yīng)與血管內(nèi)皮損傷、PASMCs增殖、間質(zhì)纖維化等有著密切關(guān)系。已有研究表明心力衰竭患者表現(xiàn)出高水平表達(dá)的循環(huán)炎癥因子,包括白細(xì)胞介素-6(IL-6)、腫瘤壞死因子(TNF)-α和C反應(yīng)蛋白等[38];同時由于心臟泵血功能障礙,左心壓力升高傳導(dǎo)至肺靜脈,肺血管進(jìn)一步淤血,導(dǎo)致肺血管痙攣收縮、內(nèi)皮損傷、缺氧、血栓形成等,會促進(jìn)炎癥細(xì)胞活化,浸潤肺血管病變部位。PH患者及相關(guān)動物模型表明肺動脈血管結(jié)構(gòu)聚集大量巨噬細(xì)胞、T淋巴細(xì)胞等,釋放大量細(xì)胞因子、趨化因子,如IL-1、IL-6、TNF、CX3CL1,參與PH的發(fā)生與進(jìn)展[39]。
在動物實(shí)驗(yàn)中,小鼠IL-6的過表達(dá)導(dǎo)致促血管生長因子、血管內(nèi)皮生長因子、增殖轉(zhuǎn)錄因子、抗凋亡蛋白等上調(diào),以及出現(xiàn)毛細(xì)血管前小動脈嚴(yán)重閉塞;另一方面,缺氧誘導(dǎo)的PH轉(zhuǎn)基因IL-6缺陷小鼠卻表現(xiàn)出較少炎癥及肺血管重塑病變,應(yīng)用IL-6受體特異性拮抗劑可有效減輕PH小鼠的肺血管重塑[40]。核因子κB(NF-κB)是炎癥的主要調(diào)節(jié)因子,誘導(dǎo)促炎細(xì)胞因子和趨化因子的基因表達(dá)[41]。Sawada等[42]研究表明NF-κB導(dǎo)致血管細(xì)胞黏附分子(VCAM)-1的激活,與MCT誘導(dǎo)的大鼠PH的發(fā)展有關(guān),且使用NF-κB抑制劑吡咯烷二硫代氨基甲酸酯(PDTC)可減輕小動脈閉塞,緩解PH癥狀。Luo等[43]研究發(fā)現(xiàn)NF-κB可介導(dǎo)低氧誘導(dǎo)因子(HIF)-1α的轉(zhuǎn)錄程序并促進(jìn)PH模型中的血管重塑,同時此研究表明了控制HIF-1α驅(qū)動的血管重塑可為PH治療提供新的途徑。心血管疾病患者多合并肥胖、血脂異常、胰島素抵抗、糖尿病等代謝綜合征(metabolic syndrome,MS),MS可誘發(fā)全身炎癥反應(yīng),而且炎癥因子浸潤及免疫調(diào)節(jié)失衡是血管重塑的關(guān)鍵致病驅(qū)動因素,免疫治療應(yīng)用于PH-LHD可能是新的治療策略。
2.4 左心房功能障礙 在心肺循環(huán)中,左心房是銜接左心室與肺循環(huán)之間的橋梁,通過規(guī)律收縮與舒張使左心室充盈,同時保護(hù)肺循環(huán)免受左心室反復(fù)的壓力沖擊。左心房是一個動態(tài)結(jié)構(gòu),具體功能分為:(1)儲集功能:左室收縮期左心房接受肺靜脈血液回流;(2)通道功能:左室舒張?jiān)缙诔槲饔猛ㄟ^左心房將血液運(yùn)輸?shù)阶笮氖?;?)增壓泵功能:舒張末期,左心房主動收縮將剩余血流泵入左心室[44]。
HFpEF、HFrEF、VHD等可導(dǎo)致左心房壓力(LAP)升高、容量增加,進(jìn)而出現(xiàn)左心房增大、收縮性受損、間質(zhì)纖維化等重構(gòu)表現(xiàn),以至于左心房僵硬、順應(yīng)性下降及房室運(yùn)動不協(xié)調(diào),作為左心房壓力升高和肺循環(huán)之間的屏障作用減弱,壓力被動傳導(dǎo)至肺血管,導(dǎo)致肺靜脈壓力升高、肺淤血。在結(jié)構(gòu)形態(tài)方面,左心房重構(gòu)發(fā)生球形變化和擴(kuò)張,正常曲率改變,打破了左心房三維不對稱結(jié)構(gòu),干擾正常生理血流動力學(xué),可增加肺靜脈淤血風(fēng)險(xiǎn)[45]。此外,LAP的突然升高可能導(dǎo)致“肺泡-毛細(xì)血管應(yīng)激衰竭”,這是一種可逆的氣壓性損傷,破壞內(nèi)皮單層結(jié)構(gòu)完整性及肺泡毛細(xì)血管屏障,血管內(nèi)皮通透性改變使紅細(xì)胞、蛋白質(zhì)和液體滲漏到肺泡腔內(nèi),出現(xiàn)肺間質(zhì)及肺泡水腫[9]。左心房壓力持續(xù)變化在內(nèi)皮功能障礙、神經(jīng)體液因素、炎癥因子浸潤等作用下,導(dǎo)致肺血管系統(tǒng)結(jié)構(gòu)異常、肺血管阻力增加。左心疾病容易出現(xiàn)房顫等心律失常并發(fā)癥,心房正常功能喪失,可加重或加快PH-LHD的進(jìn)展。已有研究表明心房顫動是PH-LHD的危險(xiǎn)因素之一[46],與竇性心律相比,房顫心律患者中mPAP、PAWP、肺血管阻力等血流動力學(xué)參數(shù)值更高。左心房參與肺動脈系統(tǒng)病理生理變化的主要機(jī)制很大程度上是未知的,進(jìn)一步研究可能為PH-LHD提供新的治療靶點(diǎn)。
3 總結(jié)與展望
PH-LHD發(fā)病率高,且預(yù)后差、病死率高,是嚴(yán)重影響生命健康的心肺血管疾病。目前PH-LHD肺血管重塑的形成機(jī)制尚未完全明確,可能是多因素作用,與血管活性物質(zhì)、交感神經(jīng)系統(tǒng)激活、RAAS、炎癥因子、左心房功能障礙等相關(guān),各個因素之間相互影響相互作用。另外,不同類型心力衰竭(HFpEF、HFrEF、HFmrEF)PH的病理生理與血流動力學(xué)存在一定差異,完善相關(guān)侵入性及非侵入性的血流動力學(xué)檢查是明確診斷及治療選擇的關(guān)鍵。目前多項(xiàng)關(guān)于PH-LHD藥物治療的大規(guī)模臨床試驗(yàn)已在開展[47],期待其可提供新的證據(jù)及治療方向。進(jìn)一步研究及完善PH-LHD肺血管重塑的病理生理機(jī)制,尋找新的靶點(diǎn)及其他治療途徑,以期改善或逆轉(zhuǎn)心肺血管結(jié)構(gòu)病變,降低發(fā)病率及病死率。
參考文獻(xiàn)
[1]中華醫(yī)學(xué)會呼吸病學(xué)分會肺栓塞與肺血管病學(xué)組,中國醫(yī)師協(xié)會呼吸醫(yī)師分會肺栓塞與肺血管病工作委員會,全國肺栓塞與肺血管病防治協(xié)作組,等.中國肺動脈高壓診斷與治療指南(2021版)[J].中華醫(yī)學(xué)雜志,2021,101(1):11-51.
[2] SIMONNEAU G,MONTANI D,CELERMAJER D S,et al.Haemodynamic definitions and updated clinical classification of pulmonary hypertension[J].Eur Respir J,2019,53(1):1801913.
[3] DOUSCHAN P,KOVACS G,AVIAN A,et al.Mild elevation of pulmonary arterial pressure as a predictor of mortality[J].Am J Respir Crit Care Med,2018,197(4):509-516.
[4] HUMBERT M,KOVACS G,HOEPER M M,et al.2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension[J].Eur Respir J,2022,43(38):3618-3731.
[5] WIJERATNE T D,LAJKOSZ K,BROGLY S B,et al.Increasing incidence and prevalence of WHO groups 1-4 pulmonary hypertension: a population-based cohort study in Ontario, Canada[J/OL].Circ Cardiovasc Qual Outcomes,2018,11(2):e003973.https://pubmed.ncbi.nlm.nih.gov/29444925/.
[6] VOS T,BARBER R M,BELL B,et al.Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013[J].Lancet,2015,386(9995):743-800.
[7] BARYWANI S B,F(xiàn)U M.Impact of systolic pulmonary artery pressure on all-cause mortality in elderly cardiac patients[J].Scand Cardiovasc J,2018,52(2):80-84.
[8] VACHI?RY J L,ADIR Y,BARBER? J A,et al.Pulmonary hypertension due to left heart diseases[J].J Am Coll Cardiol,2013,62(25):D100-D108.
[9] ROSENKRANZ S,GIBBS J S R,WACHTER R,et al.Left ventricular heart failure and pulmonary hypertension[J].Eur Heart J,2016,37(12):942-954.
[10] BREITLING S, RAVINDRAN K,GOLDENBERG N M,et al.The pathophysiology of pulmonary hypertension in left heart disease[J].Am J Physiol Lung Cell Mol Physiol,2015,309(9):L924-L941.
[11] DRISS A B,DEVAUX C,HENRION D,et al.Hemodynamic stresses induce endothelial dysfunction and remodeling of pulmonary artery in experimental compensated heart failure[J].Circulation,2000,101(23):2764-2770.
[12] SCOTT D,TAN Y,SHANDAS R,et al.High pulsatility flow stimulates smooth muscle cell hypertrophy and contractile protein expression[J].Am J Physiol Lung Cell Mol Physiol,2013,304(1):L70-L81.
[13] KEREM A,YIN J,KAESTLE S M,et al.Lung endothelial dysfunction in congestive heart failure[J].Circulation Research,2010,106(6):1103-1116.
[14] EVANS C E,ZHAO Y Y.Molecular basis of nitrative stress in the pathogenesis of pulmonary hypertension[J].Adv Exp Med Biol,2017,967:33-45.
[15] HAO Y D,CAI L,MIRZA M K,et al.Protein kinase G-I deficiency induces pulmonary hypertension through Rho A/Rho kinase activation[J].Am J Pathol,2012,180(6):2268-2275.
[16] KR?GER-GENGE A,BLOCKI A,F(xiàn)RANKE R P,et al.Vascular endothelial cell biology: an update[J].Int J Mol Sci,2019,20(18):4411.
[17] KIM F Y,BARNES E A,YING L,et al.Pulmonary artery smooth muscle cell endothelin-1 expression modulates the pulmonary vascular response to chronic hypoxia[J].Am J Physiol Lung Cell Mol Physiol,2015,308(4):L368-L377.
[18] ROSSI G P,SECCIA T M,BARTON M,et al.Endothelial factors in the pathogenesis and treatment of chronic kidney disease Part Ⅱ: Role in disease conditions: a joint consensus statement from the European Society of Hypertension working group on endothelin and endothelial factors and the Japanese Society of Hypertension[J].J Hypertens,2018,36(3):462-471.
[19] GUPTA R M,LIBBY P,BARTON M.Linking regulation of nitric oxide to endothelin-1: the Yin and Yang of vascular tone in the atherosclerotic plaque[J].Atherosclerosis,2020,292:201-203.
[20] VAN DUIN R W B,STAM K,CAI Z,et al.Transition from post-capillary pulmonary hypertension to combined pre-and post-capillary pulmonary hypertension in swine: a key role for endothelin[J].J Physiol,2019,597(4):1157-1173.
[21] BANQUET S,DELANNOY E,AGOUNI A,et al.Role of G(i/o)-Src kinase-PI3K/Akt pathway and caveolin-1 in β2-adrenoceptor coupling to endothelial NO synthase in mouse pulmonary artery[J].Cellular Signalling,2011,23(7):1136-1143.
[22] PERROS F,RANCHOUX B,IZIKKI M,et al.Nebivolol for improving endothelial dysfunction, pulmonary vascular remodeling, and right heart function in pulmonary hypertension[J].J Am Coll Cardiol,2015,65(7):668-680.
[23] VISWANATHAN G,MAMAZHAKYPOV A,SCHERMULY R T,et al.The role of G protein-coupled receptors in the right ventricle in pulmonary hypertension[J].Front Cardiovasc Med,2018,5:179.
[24] LIU R,ZHANG Q,LUO Q,et al.Norepinephrine stimulation of alpha1D-adrenoceptor promotes proliferation of pulmonary artery smooth muscle cells via ERK-1/2 signaling[J].Int J Biochem Cell Biol,2017,88:100-112.
[25] ISHIKAWA M,SATO N,ASAI K,et al.Effects of a pure α/β-adrenergic receptor blocker on monocrotaline-induced pulmonary arterial hypertension with right ventricular hypertrophy in rats[J].Circulation Journal,2009, 3(12):2337-2341.
[26] BOGAARD H J,NATARAJAN R,MIZUNO S,et al.Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats[J].Am J Respir Crit Care Med,2010,182(5):652-660.
[27] ZHANG H,ZHANG J,CHEN M,et al.Pulmonary artery denervation significantly increases 6-min walk distance for patients with combined pre-and post-capillary pulmonary hypertension associated with left heart failure: the PADN-5 study[J].JACC Cardiovasc Interv,2019,12(3):274-284.
[28] FORRESTER S J,BOOZ G W,SIGMUND C D,et al.Angiotensin Ⅱ signal transduction: an update on mechanisms of physiology and pathophysiology[J].Physiological Reviews,2018,98(3):1627-1738.
[29] MARON B A,ZHANG Y Y,WHITE K,et al.Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension[J].Circulation,2012,126(8):963-974.
[30] MARON B A,LEOPOLD J A.Emerging concepts in the molecular basis of pulmonary arterial hypertension (PAH): Part Ⅱ: neurohormonal signaling contributes to the pulmonary vascular and right ventricular pathophenotype of PAH[J].Circulation,2015,31(23):2079-2091.
[31] ZOLTY R.Novel experimental therapies for treatment of pulmonary arterial hypertension[J].J Exp Pharmacol,2021,13:817-857.
[32] LAHM T,HESS E,BAR?N A E,et al.Renin-angiotensin-aldosterone system inhibitor use and mortality in pulmonary hypertension[J].Chest,2021,159(4):1586-1597.
[33] SANDOVAL J,DEL VALLE-MONDRAG?N L,MASSO F,et al.Angiotensin converting enzyme 2 and angiotensin (1-7) axis in pulmonary arterial hypertension[J].Eur Respir J,2020,56(1):1902416.
[34] HEMNES A R,RATHINASABAPATHY A,AUSTIN E A,et al.A potential therapeutic role for angiotensin converting enzyme 2 in human pulmonary arterial hypertension[J].Eur Respir J,2018,51(6):1702638.
[35] LI G,ZHANG H,ZHAO L,et al.Angiotensin-converting enzyme 2 activation ameliorates pulmonary endothelial dysfunction in rats with pulmonary arterial hypertension through mediating phosphorylation of endothelial nitric oxide synthase[J].J Am Soc Hypertens,2017,11(12):842-852.
[36] GOMES E R M,LARA A A,ALMEIDA P W M,et al.Angiotensin-(1-7) prevents cardiomyocyte pathological remodeling through a nitric oxide/guanosine 3',5'-cyclic monophosphate-dependent pathway[J].Hypertension,2010,55(1):153-160.
[37] ZHANG F,CHEN A,PAN Y,et al.Research Progress on pulmonary arterial hypertension and the role of the angiotensin converting enzyme 2-angiotensin-(1-7)-mas axis in pulmonary arterial hypertension[J].Cardiovasc Drugs Ther,2022,36(2):363-370.
[38] ABERNETHY A,RAZA S,SUN J,et al.Pro-inflammatory biomarkers in stable versus acutely decompensated heart failure with preserved ejection fraction[J/OL].J Am Heart Assoc,2018,7(8):e007385.https://pubmed.ncbi.nlm.nih.gov/29650706/.
[39] FUNK-HILSDORF T C,BEHRENS F,GRUNE J,et al.Dysregulated immunity in pulmonary hypertension: from companion to composer[J].Front Physiol,2022,13:819145.
[40] ZOLTY R.Novel experimental therapies for treatment of pulmonary arterial hypertension[J].J Exp Pharmacol,2021,13:817-857.
[41] ZENG X,ZHU L,XIAO R,et al.Hypoxia-induced mitogenic factor acts as a nonclassical ligand of calcium-sensing receptor, therapeutically exploitable for intermittent hypoxia-induced pulmonary hypertension[J].Hypertension,2017,69(5):844-854.
[42] SAWADA H,MITANI Y,MARUYAMA J,et al.A nuclear factor-kappaB inhibitor pyrrolidine dithiocarbamate ameliorates pulmonary hypertension in rats[J].Chest,2007,132(4):1265-1274.
[43] LUO Y,TENG X,ZHANG L,et al.CD146-HIF-1α hypoxic reprogramming drives vascular remodeling and pulmonary arterial hypertension[J].Nature Communications,2019,10:3551.
[44] BISBAL F,BARANCHUK A,BRAUNWALD E,et al.Atrial failure as a clinical entity: JACC review topic of the week[J].J Am Coll Cardiol,2020,75(2):222-232.
[45] KILNER P J,YANG G Z,WILKES A J,et al.Asymmetric redirection of flow through the heart[J].Nature,2000,404(6779):759-761.
[46] LEUNG C C,MOONDRA V,CATHERWOOD E,et al.Prevalence and risk factors of pulmonary hypertension in patients with elevated pulmonary venous pressure and preserved ejection fraction[J].Am J Cardiol,2010,106(2):284-286.
[47] LTEIF C,ATAYA A,DUARTE J D.Therapeutic challenges and emerging treatment targets for pulmonary hypertension in left heart disease[J/OL].J Am Heart Assoc,2021,10(11):e020633.https://pubmed.ncbi.nlm.nih.gov/34032129/.
(收稿日期:2022-11-11) (本文編輯:陳韻)
中國醫(yī)學(xué)創(chuàng)新2023年16期