李俊 李春霞 陳瑞瑞 張夏林 楊志明
【摘要】載脂蛋白(Apo)C3參與血脂代謝致動(dòng)脈粥樣硬化的作用是肯定的。近年來,研究還發(fā)現(xiàn)ApoC3通過參與炎癥反應(yīng)、內(nèi)皮細(xì)胞功能障礙、凝血反應(yīng)、胰島素抵抗等過程進(jìn)一步促進(jìn)動(dòng)脈粥樣硬化的形成。隨著對(duì)APOC3基因及信號(hào)通路的深入研究,反義寡核苷酸和小干擾RNA的出現(xiàn)開啟了降脂治療的新篇章?,F(xiàn)就ApoC3在代謝性心血管疾病中的作用機(jī)制、基因多態(tài)性及新治療策略做以下綜述。
【關(guān)鍵詞】載脂蛋白C3;動(dòng)脈粥樣硬化;基因多態(tài)性;反義寡核苷酸
【DOI】10.16806/j.cnki.issn.1004-3934.2023.12.000
Apolipoprotein C3 in Metabolic Cardiovascular Diseases
Li Jun1,Li Chunxia2,Chen Ruirui2,Zhang Xialin2,Yang Zhiming3
(1.Shanxi Medical University,Taiyuan 030000,Shanxi,China;2.Shanxi Bethune Hospital,Taiyuan 030000,Shanxi,China;Department of Cardiology,The Second Hospital of Shanxi Medical University,Taiyuan 030000,Shanxi,China)
【Abstract】It is an indisputable fact that apolipoprotein(Apo) C3 is involved in atherosclerosis caused by blood lipid metabolism. In recent years,studies have also found that ApoC3 further promotes the formation of atherosclerosis by participating in inflammatory reaction,endothelial cell dysfunction,coagulation reaction,insulin resistance and so on. With the gradual understanding of the gene sequence and signal pathway of APOC3,the emergence of antisense oligonucleotides and small interfering RNA opened a new chapter in lipid-lowering therapy. This article reviews the mechanism,gene polymorphism and new therapeutic strategies of ApoC3 in metabolic cardiovascular diseases.
【Key words】Apolipoprotein C3;Atherosclerosis;Gene polymorphism;Antisense oligonucleotides[基金項(xiàng)目:山西省基礎(chǔ)研究計(jì)劃(202103021223409)
通信作者:楊志明,E-mail:Zhimingyang800@sina.com]
載脂蛋白(apolipoprotein,Apo)C3是位于人體11號(hào)染色體長臂q23區(qū)(11q23.3),由APOC3基因編碼的一種相對(duì)分子質(zhì)量8.8×103的載脂蛋白,主要在肝臟和腸道中合成后釋放到血液循環(huán)中,在C族Apo中濃度最高[1]。ApoC3因與血漿中甘油三酯(triglyceride,TG)濃度呈強(qiáng)正相關(guān)性而受到廣泛研究,其主要是通過抑制脂蛋白脂肪酶(lipoprotein lipase,LPL)和肝脂肪酶(hepatic lipase,HL)等富含甘油三酯脂蛋白(triglyceriderich lipoproteins ,TRL)的水解關(guān)鍵酶,從而抑制肝臟對(duì)TRL的水解以及減少肝臟對(duì)TRL代謝殘余物的攝取,使血漿TG水平升高[2]。近年來發(fā)現(xiàn)ApoC3是一種多功能蛋白,不僅在調(diào)節(jié)脂代謝過程中十分重要,也在炎癥反應(yīng)、內(nèi)皮細(xì)胞功能障礙、糖代謝、動(dòng)脈粥樣硬化等代謝性心血管疾病中起關(guān)鍵作用。因此,如何使ApoC3降低是代謝性心血管疾病治療中的潛在目標(biāo)。
1? ApoC3與脂代謝異常
TG在吸收、儲(chǔ)存、再包裝、使用等過程中受到高度的調(diào)控。ApoC3作為TG合成代謝過程中的關(guān)鍵調(diào)控蛋白,在血脂正常的人群中大部分ApoC3與高密度脂蛋白(high density lipoprotein,HDL)結(jié)合,而在高甘油三酯血癥(hypertriglyceridemia,HGT)人群中則與TRL中的極低密度脂蛋白(very low density lipoprotein,VLDL)、乳糜顆粒(chylomicron,CM)結(jié)合,說明ApoC3可以在TRL和HDL之間交換,在機(jī)體內(nèi)處于一種動(dòng)態(tài)平衡狀態(tài)[3]。Borén等[4]研究表明在肥胖人群的血漿中ApoC3升高是TG水平的主要決定因素,然而Tang等[5]研究發(fā)現(xiàn)ApoC3的缺乏可使肝臟中TRL的分解代謝增強(qiáng)。目前研究表明ApoC3主要通過以下途徑影響TRL的代謝:(1)ApoC3通過其C末端的芳香族殘基競爭LPL與TRL的結(jié)合,從而抑制LPL的活性,減少TRL降解[6];(2)ApoC3通過干擾ApoE與肝臟中內(nèi)吞TRL殘余物的低密度脂蛋白受體等主要受體結(jié)合,從而導(dǎo)致TRL殘余物的延遲分解代謝[7];(3)ApoC3促進(jìn)肝臟中VLDL的組裝和分泌,其主要是通過增加富含TG的VLDL1的產(chǎn)生[8],ApoC3的抑制作用增加TRL及其殘余物在血漿的濃度及停留時(shí)間(見圖1)。此外,ApoC3還可能與HDL功能障礙有關(guān),Luo等[9]研究發(fā)現(xiàn)血漿中ApoC3-HDL與ApoC3之比與膽固醇流出能力呈負(fù)相關(guān),ApoC3的存在會(huì)損害HDL介導(dǎo)的膽固醇流出能力;Morton等[10]研究表明HDL上的ApoC3強(qiáng)烈減弱HDL介導(dǎo)的膽固醇逆向轉(zhuǎn)運(yùn)。因此,ApoC3的增加導(dǎo)致HDL的功能障礙,從而促進(jìn)動(dòng)脈粥樣硬化的發(fā)生。
目前大多數(shù)研究都集中于對(duì)肝源性APOC3的轉(zhuǎn)錄調(diào)控及對(duì)TRL代謝的影響,而腸道中APOC3的轉(zhuǎn)錄調(diào)控及對(duì)血脂的影響研究甚少。肝臟中ApoC3表達(dá)通過多種途徑進(jìn)行調(diào)節(jié),葡萄糖通過激活轉(zhuǎn)錄因子肝細(xì)胞核因子4α(hepatocyte nuclear factor 4 alpha,HNF-4α)和碳水化合物反應(yīng)原件結(jié)合蛋白(carbohydrate-responsive element-binding protein,ChREBP)上調(diào)APOC3 mRNA的轉(zhuǎn)錄;相反,胰島素通過磷酸化肝臟叉頭框蛋白(Fork head Box O1,F(xiàn)ox1)從而抑制APOC3 mRNA的轉(zhuǎn)錄[11]。然而,動(dòng)物實(shí)驗(yàn)研究[12]表明腸道中ApoC3的表達(dá)不受葡萄糖、胰島素或脂肪酸濃度改變的影響。研究[13-14]發(fā)現(xiàn)基底外側(cè)脂質(zhì)底物轉(zhuǎn)運(yùn)通路在維持膳食脂質(zhì)吸收和乳糜微粒分泌方面發(fā)揮著重要作用,ApoC3的過量表達(dá)會(huì)抑制基底外側(cè)脂質(zhì)底物轉(zhuǎn)運(yùn)通路和CM的分泌,導(dǎo)致分泌更小、密度更低的CM,腸道在膳食脂質(zhì)吸收過程中分泌更小的脂蛋白,則更易穿透動(dòng)脈壁致動(dòng)脈粥樣硬化的發(fā)生。
注:ASO,反義寡核苷酸;LDLR,低密度脂蛋白受體。
圖1? ApoC3影響TRL的代謝機(jī)制及反義寡核苷酸靶向降低ApoC3的作用機(jī)制
2? ApoC3與動(dòng)脈粥樣硬化性心血管疾病
脂質(zhì)代謝紊亂、血管內(nèi)皮損傷和血栓形成,是動(dòng)脈粥樣硬化性心血管疾病發(fā)生發(fā)展的主要原因。ApoC3與心血管疾病存在因果關(guān)系,F(xiàn)ramingham心臟研究表明血漿ApoC3水平每升高0.01 g/L,心血管疾病風(fēng)險(xiǎn)增加4%,并獨(dú)立于傳統(tǒng)的心血管疾病危險(xiǎn)因素[1]。有研究[15]表明APOC3基因罕見突變攜帶者與非攜帶者相比較,其血漿中TG水平降低39%、、ApoC3水平降低46%、高密度脂蛋白膽固醇(high-density lipoprotein cholesterol,HDL-C)水平升高22%,同時(shí)他們患冠心病的風(fēng)險(xiǎn)降低40%。ApoC3通過抑制LPL的脂解作用以及阻止肝臟對(duì)TRL殘余物的清除,導(dǎo)致血漿中TRL和TRL殘留物的水平上升。TRL及其殘余物可穿透動(dòng)脈壁到達(dá)內(nèi)皮下間隙,導(dǎo)致內(nèi)皮細(xì)胞脂質(zhì)沉積,而較小的TRL殘留物不僅通過動(dòng)脈壁運(yùn)輸,還促進(jìn)與結(jié)締組織基質(zhì)的結(jié)合,二者在動(dòng)脈中的潴留與動(dòng)脈斑塊的形成和進(jìn)展相關(guān)[16]。此外,TRL殘留物與低密度脂蛋白膽固醇(low-density lipoprotein cholesterol,LDL-C)相比,其膽固醇含量約高出40倍且更易誘導(dǎo)巨噬泡沫細(xì)胞的形成[17]。
ApoC3參與單核細(xì)胞與內(nèi)皮細(xì)胞的黏附和平滑肌細(xì)胞(smooth muscle cells,SMC)的增殖進(jìn)一步促進(jìn)動(dòng)脈粥樣硬化的形成。ApoC3誘導(dǎo)的內(nèi)皮細(xì)胞激活和單核細(xì)胞黏附是導(dǎo)致動(dòng)脈粥樣硬化的主要機(jī)制之一。核因子κB(nuclear factor-κB,NF-κB)是200多個(gè)炎癥反應(yīng)的關(guān)鍵調(diào)節(jié)因子,可驅(qū)動(dòng)各種致動(dòng)脈粥樣化分子的表達(dá)[18]。Kawakami等[19]研究首次證明ApoC3通過激活NF-κB,從而增加血管內(nèi)皮細(xì)胞中血管細(xì)胞黏附分子-1(vascular cell adhesion molecule-1,VCAM-1)和細(xì)胞間黏附分子-1(intercelluar adhesion molecule-1,ICAM-1)的表達(dá),進(jìn)而激活內(nèi)皮細(xì)胞和促進(jìn)單核細(xì)胞黏附;NF-κB還促進(jìn)單核細(xì)胞中β1整合素的表達(dá),從而進(jìn)一步促進(jìn)單核細(xì)胞與內(nèi)皮細(xì)胞的黏附,加快動(dòng)脈粥樣硬化的進(jìn)程[20]。相反,Zheng等[21]研究表明NF-κB是ApoC3誘導(dǎo)的內(nèi)皮細(xì)胞激活的中央調(diào)節(jié)因子,臨床上一定濃度的他汀類藥物可抑制ApoC3誘導(dǎo)的VCAM-1表達(dá)和單核細(xì)胞黏附,NF-κB信號(hào)通路的抑制可能是他汀類藥物減少ApoC3誘導(dǎo)的內(nèi)皮細(xì)胞激活的主要機(jī)制。脂蛋白相關(guān)磷脂酶A2(lipoprotein-associated phospholipase A2,Lp-PLA2)是心血管疾病的新生炎癥生物標(biāo)志物和潛在治療靶點(diǎn),ApoC3還可通過NF-κB信號(hào)通路上調(diào)Lp-PLA2的mRNA和蛋白表達(dá),并促進(jìn)單核細(xì)胞釋放腫瘤壞死因子-α、白細(xì)胞介素-6等炎癥因子進(jìn)一步促進(jìn)動(dòng)脈粥樣硬化的發(fā)生[22]。ApoC3還參與內(nèi)質(zhì)網(wǎng)氧化應(yīng)激反應(yīng)和SMC增殖促進(jìn)動(dòng)脈粥樣硬化的發(fā)生,Yingchun等[23]在APOC3轉(zhuǎn)基因小鼠模型中發(fā)現(xiàn)含有ApoC3的TRL,會(huì)以劑量依賴的方式誘導(dǎo)氧化應(yīng)激以及內(nèi)皮細(xì)胞和巨噬細(xì)胞中內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)蛋白的表達(dá),且含有ApoC3的TRL比不含有ApoC3的TRL在上述細(xì)胞中能誘導(dǎo)出更高的炎癥水平。蛋白激酶B磷酸化的改變是SMC增殖的主要途徑之一,氧化應(yīng)激是SMC增殖的重要促進(jìn)因素,富含ApoC3的TRL可通過蛋白激酶B磷酸化和增加活性氧的產(chǎn)生促進(jìn)SMC增殖導(dǎo)致動(dòng)脈粥樣硬化[24]。
ApoC3通過調(diào)節(jié)外源性和內(nèi)源性凝血途徑促進(jìn)血管內(nèi)血栓形成,進(jìn)一步導(dǎo)致動(dòng)脈粥樣硬化性心血管疾病的發(fā)生。凝血因子VII(factor VII ,F(xiàn)VII)-抗凝血酶復(fù)合物是反映外源性凝血途徑中活化的凝血因子VII(activated factor VII,F(xiàn)VIIa)-組織因子促血栓形成的潛在生物標(biāo)志物,Martinelli等[25]研究發(fā)現(xiàn)在未服用抗凝藥物的心血管疾病患者中ApoC3和FVII-抗凝血酶復(fù)合物水平之間存在很強(qiáng)的相關(guān)性,在ApoC3血漿濃度較高的患者中血管內(nèi)FVIIa-組織因子復(fù)合體的數(shù)量增加且與其他危險(xiǎn)因素?zé)o關(guān)。凝血因子II,(factor II ,F(xiàn)II))G20210A基因突變是目前公認(rèn)的靜脈血栓形成的遺傳性危險(xiǎn)因素,Olivieri等[26]研究表明ApoC3濃度增加與內(nèi)源性凝血酶活性呈正相關(guān);此外,一定濃度的ApoC3使FII活性增加的程度與G20210A基因變異的攜帶者相當(dāng)。Olivieri等[27]研究還發(fā)現(xiàn),即使在使用華法林抗凝的高危心血管患者中,高濃度的ApoC3依然會(huì)增加患者發(fā)生缺血性腦卒中的風(fēng)險(xiǎn)。因此,ApoC3濃度升高是動(dòng)靜脈血栓形成的危險(xiǎn)因素,但其中的復(fù)雜調(diào)節(jié)機(jī)制還需進(jìn)一步研究。
3? ApoC3與糖尿病相關(guān)心血管疾病
糖尿病不僅只是糖代謝異常,而且是一種血糖血脂紊亂性疾病,ApoC3參與糖尿病致動(dòng)冠狀動(dòng)脈粥樣硬化的形成。循環(huán)中ApoC3的表達(dá)受葡萄糖、胰島素的調(diào)節(jié),在糖尿病患者中血糖升高、胰島素抵抗和胰島素缺乏都會(huì)上調(diào)APOC3的基因表達(dá),導(dǎo)致血漿中ApoC3濃度增多,而ApoC3的過表達(dá)則會(huì)使胰島素信號(hào)轉(zhuǎn)導(dǎo)減弱和胰島β細(xì)胞凋亡,加劇胰島素抵抗和高血糖的發(fā)生[28]。糖尿病患者的胰島素抵抗、高血糖和氧化應(yīng)激等復(fù)雜的病理生理過程導(dǎo)致冠狀動(dòng)脈血管內(nèi)膜的鈣化,Yahagi等[29]和Buckner等[30]研究表明,糖尿病患者血漿中ApoC3與胰島素敏感性呈負(fù)相關(guān),與冠狀動(dòng)脈鈣化呈正相關(guān)。糖尿病患者相比于非糖尿病患者,其冠狀動(dòng)脈斑塊負(fù)荷增加且具有更大的壞死核心區(qū)域,盡管糖尿病患者應(yīng)用他汀類藥物后血漿中LDL-C水平顯著降低,但仍有很高的殘余心血管疾病風(fēng)險(xiǎn),其主要表現(xiàn)為殘余脂蛋白膽固醇(residual lipoprotein cholesterol,RLP-C)的增加[31]。RLP-C是含ApoB48的CM和含ApoB100的VLDL持續(xù)脂解的動(dòng)態(tài)產(chǎn)物且其膽固醇含量高于LDL-C,生理情況下胰島素刺激新合成的ApoB的降解,但糖尿病患者的胰島素抵抗使肝臟對(duì)含ApoB的攝取減少以及相對(duì)胰島素缺乏使血漿中ApoC3的水平升高,共同來阻止肝臟對(duì)TRL及RLP-C的清除,使其在血漿中濃度增加促進(jìn)動(dòng)脈粥樣硬化的形成[32-33]。然而動(dòng)物實(shí)驗(yàn)研究[34]表明經(jīng)過ApoC3的反義寡核苷酸(antisense oligonucleotides,ASO)治療后的糖尿病小鼠,病變處壞死核心區(qū)域顯著減小。ApoC3水平升高會(huì)加劇糖尿病的程度和阻礙血漿中TRL及RLP-C的清除,導(dǎo)致冠狀動(dòng)脈粥樣硬化心血管疾病的發(fā)生。因此,如何降低ApoC3可作為糖尿病相關(guān)心血管疾病治療的新靶點(diǎn)。
4? APOC3的基因多態(tài)性
APOC3基因中常見的單核苷酸多態(tài)性包括啟動(dòng)子胰島素反轉(zhuǎn)錄元件中的T-455C(Rs2854116)和C-482T(Rs2854117),外顯子3中的C1100T(Rs4520)和3‘-非編碼區(qū)的SSTI(Rs5128)等基因多態(tài)性位點(diǎn)在代謝性心血管疾病中被廣泛研究[35]。SSTI是APOC3基因中發(fā)現(xiàn)的第一個(gè)多態(tài)性位點(diǎn),其形成是因?yàn)锳POC3基因的3‘-非編碼區(qū)中核苷酸3 238處從胞嘧啶(cytosine,C)到鳥嘌呤(guanine,G)的轉(zhuǎn)換,導(dǎo)致限制性核酸內(nèi)切酶的識(shí)別序列丟失,從而產(chǎn)生兩個(gè)獨(dú)立的等位基因S1(常見等位基因)和S2(稀有等位基因)[36]。研究[37]表明APOC3等位基因SSTI的多態(tài)性與發(fā)生冠心病風(fēng)險(xiǎn)顯著相關(guān),G等位基因增強(qiáng)了APOC3的轉(zhuǎn)錄活性并導(dǎo)致血漿中更高的ApoC3水平,使S2攜帶者的血漿中總膽固醇、TG和LDL-C水平顯著升高。APOC3基因啟動(dòng)子區(qū)域中T-455C和C-482T之間的序列與負(fù)性胰島素反應(yīng)元件有很強(qiáng)的同源性,T-455C和C-482T可抵抗胰島素介導(dǎo)的APOC3基因轉(zhuǎn)錄下調(diào),導(dǎo)致ApoC3過表達(dá)、血漿中TG水平升高和胰島素抵抗的發(fā)生;且研究表明T-455C多態(tài)性與冠心病的風(fēng)險(xiǎn)顯著相關(guān),C等位基因使冠心病風(fēng)險(xiǎn)增加22%[36,38]。將多個(gè)單核苷酸多態(tài)性的信息聚合到一個(gè)遺傳風(fēng)險(xiǎn)評(píng)分中,這已經(jīng)成為檢驗(yàn)已知基因座遺傳變異對(duì)心血管疾病結(jié)局和相關(guān)表型的累積預(yù)測(cè)能力的有用工具[39]。有研究[15]發(fā)現(xiàn)編碼APOC3基因編碼中存在4個(gè)罕見突變,分別是一個(gè)無義突變(R19X)、兩個(gè)剪接位點(diǎn)突變(IVS2+1G→A和IVS3+1G→T)和一個(gè)錯(cuò)義突變(A43T),APOC3基因中的罕見突變,使血漿中TG、ApoC3水平和心血管疾病的發(fā)病風(fēng)險(xiǎn)降低。Reyes-Soffer等[40]研究表明無義突變(R19X)攜帶者血漿中ApoC3水平降低50%、TG水平降低35%。因此,APOC3基因中的罕見突變是基因?qū)用嬷委煾咧Y、心血管疾病的基石。
5? 降低ApoC3的治療新策略
ApoC3是TRL代謝中的主要調(diào)節(jié)因子,傳統(tǒng)的他汀和貝特類降脂藥物僅使血漿中ApoC3濃度平均下降約20%,這使得發(fā)生心血管疾病風(fēng)險(xiǎn)依然很高[41]。隨著遺傳學(xué)、分析技術(shù)的進(jìn)步以及對(duì)信號(hào)通路的深入了解,單克隆抗體、ASO和小干擾RNA(small interference RNA,siRNA)的工程改造已成為調(diào)節(jié)脂質(zhì)代謝的現(xiàn)實(shí)。ApoC3的單克隆抗體通過促進(jìn)其與脂蛋白的解離和清除來降低血漿中ApoC3,但由于ApoC3在人血漿中含量高導(dǎo)致單克隆抗體難以靶向作用;因此,ASO和siRNA在如何降低ApoC3中被廣泛研究[42]。ApoC3 ASO通過Watson-Crick雜交與ApoC3 mRNA互補(bǔ)結(jié)合,激活核糖核酸酶H1使ApoC3 mRNA降解,減少ApoC3的產(chǎn)生;ApoC3 siRNA通過形成RNA誘導(dǎo)沉默復(fù)合物,與同源反義序列的ApoC3 mRNA分子結(jié)合,導(dǎo)致該mRNA的切割和降解,從而減少ApoC3的生成[42]。
Volanesorsen是一種經(jīng)2'-O-甲基修飾和硫代磷酸酯取代的第二代抗ApoC3 ASO,相比于第一代ASO具有更高的RNA結(jié)合親和力、更高的核酸酶降解抵抗性和更低的免疫刺激活性[42]。一項(xiàng)對(duì)Volanesorsen的2期和3期臨床試驗(yàn)薈萃分析[43]表明與安慰劑治療的對(duì)照組相比,在接受Volanesorsen治療的嚴(yán)重HGT患者中,其血漿TG平均降低約74%、VLDL-C平均降低約71%、ApoB48平均降低約69%、并且發(fā)生急性胰腺炎的風(fēng)險(xiǎn)明顯降低,而HDL-C水平升高約46%。Volanesorsen于2019年已被歐盟批準(zhǔn)用于治療成年家族性乳糜微粒血癥綜合征[44]。Volanesorsen不僅抑制肝臟中ApoC3的產(chǎn)生,同時(shí)也使糖尿病患者的全身胰島素敏感性提高,降低糖尿病致動(dòng)脈粥樣硬化的發(fā)生[45]。在3期臨床APPROACH試驗(yàn)研究中發(fā)現(xiàn)與安慰劑治療相比,Volanesorsen治療與血小板計(jì)數(shù)減少相關(guān),而AKCEA-APOCⅢ-LRx的出現(xiàn)使ApoC3 ASO的安全性得到提高。AKCEA-APOCⅢ-LRx是一種與N-乙酰半乳糖胺偶聯(lián),靶向肝細(xì)胞中去唾液酸糖蛋白受體的ASO。研究[46]表明APOCⅢ-LRx在降低血漿ApoC3和TG水平方面具有與Volanesorsen相當(dāng)?shù)牧Χ龋涓鼜?qiáng)的靶向性不僅降低給藥頻率和劑量,也顯示出更少的副作用。ApoC2通過激活LPL促進(jìn)脂質(zhì)代謝,其與ApoC3具有拮抗作用。然而,研究[47]發(fā)現(xiàn)ApoC3 ASO除降低血漿ApoC3外,還將血漿中ApoC2降低大約一半。ApoC2模擬肽的出現(xiàn)則彌補(bǔ)ApoC3 ASO降低血漿中ApoC2這一弊端,動(dòng)物實(shí)驗(yàn)研究[48]表明ApoC2模擬肽通過激活LPL和拮抗ApoC3來降低TG。ARO-ApoC31001是一種抗ApoC3的siRNA,在目前的1期臨床試驗(yàn)中也顯示出對(duì)ApoC3、TG的明顯降低作用。然而,目前的臨床試驗(yàn)尚缺乏靶向降低ApoC3的心血管疾病終點(diǎn)試驗(yàn)。
6? 總結(jié)
ApoC3不僅是血脂代謝過程中的關(guān)鍵調(diào)控蛋白,同時(shí)也參與炎癥、內(nèi)皮細(xì)胞功能障礙、凝血級(jí)聯(lián)反應(yīng)、糖代謝等致動(dòng)脈粥樣硬化形成的過程。近年來,降脂不僅只局限于無機(jī)物分子水平,ApoC3的ASO及siRNA已經(jīng)表現(xiàn)出明顯降低血漿TG和殘余膽固醇的積極作用。然而,ASO和siRNA在體內(nèi)的靶向遞送技術(shù)較為困難,以及其安全性和不同患者的耐受性研究相對(duì)空缺。未來,需要進(jìn)一步明確ApoC3在代謝性心血管疾病中的不同作用機(jī)制,闡明藥物抑制ApoC3在治療HGT、糖尿病和心血管疾病方面的有效性和安全性。
參考文獻(xiàn)
[1] Ramms B,Gordts PLSM. Apolipoprotein C-Ⅲ in triglyceride-rich lipoprotein metabolism[J]. Curr Opin Lipidol,2018,29(3):171-179.
[2] Basu D,Goldberg IJ. Regulation of lipoprotein lipase-mediated lipolysis of triglycerides[J]. Curr Opin Lipidol,2020,31(3):154-160.
[3] DErasmo L,Di Costanzo A,Gallo A,et al. ApoCⅢ:a multifaceted protein in cardiometabolic disease[J]. Metabolism,2020,113:154395.
[4] Borén J,Watts GF,Adiels M,et al. Kinetic and related determinants of plasma triglyceride concentration in abdominal obesit:multicenter tracer kinetic study[J]. Arterioscler Thromb Vasc Biol,2015,35(10):2218-2224.
[5] Tang X,Zhou H,Yan H,et al. Is apoCⅢ-Lowering a double-edged sword?[J]. J Atheroscler Thromb,2022,29(7):1117-1124.
[6] Meyers NL,Larsson M,Vorrsj? E,et al. Aromatic residues in the C terminus of apolipoprotein C-Ⅲ mediate lipid binding and LPL inhibition[J]. J Lipid Res,2017,58(5):840-852.
[7] Gordts PL,Nock R,Son NH,et al. ApoC-Ⅲ inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors[J]. J Clin Invest,2016,126(8):2855-2866.
[8] Yao Z. Human apolipoprotein C-Ⅲ—A new intrahepatic protein factor promoting assembly and secretion of very low density lipoproteins[J]. Cardiovasc Hematol Disord Drug Targets,2012,12(2):133-140.
[9] Luo M,Liu A,Wang S,et al. ApoCⅢ enrichment in HDL impairs HDL-mediated cholesterol efflux capacity[J]. Sci Rep,2017,7(1):2312.
[10] Morton AM,Koch M,Mendivil CO,et al. Apolipoproteins E and CⅢ interact to regulate HDL metabolism and coronary heart disease risk[J]. JCI Insight,2018,3(4):e98045.
[11] Hieronimus B,Stanhope KL. Dietary fructose and dyslipidemia:new mechanisms involving apolipoprotein CⅢ[J]. Curr Opin Lipidol,2020,31(1):20-26.
[12] West G,Rodia C,Li D,et al. Key differences between apoC-Ⅲ regulation and expression in intestine and liver[J]. Biochem Biophys Res Commun,2017,491(3):747-753.
[13] Jattan J,Rodia C,Li D,et al. Using primary murine intestinal enteroids to study dietary TAG absorption,lipoprotein synthesis,and the role of apoC-Ⅲ in the intestine[J]. J Lipid Res,2017,58(5):853-865.
[14] Li D,Rodia CN,Johnson ZK,et al. Intestinal basolateral lipid substrate transport is linked to chylomicron secretion and is regulated by apoC-Ⅲ[J]. J Lipid Res,2019,60(9):1503-1515.
[15] TG and HDL Working Group of the Exome Sequencing Project,National Heart,Lung,and Blood Institute; Crosby J,Peloso GM,et al. Loss-of-function mutations in APOC3,triglycerides,and coronary disease[J]. N Engl J Med,2014,371(1):22-31.
[16] Ginsberg HN,Packard CJ,Chapman MJ,et al. Triglyceride-rich lipoproteins and their remnants:metabolic insights,role in atherosclerotic cardiovascular disease,and emerging therapeutic strategies—A consensus statement from the European Atherosclerosis Society[J]. Eur Heart J,2021,42(47):4791-4806.
[17] Miura Y,Suzuki H. Hypertriglyceridemia and atherosclerotic carotid artery stenosis[J]. Int J Mol Sci,2022,23(24):16224.
[18] Welty FK. How do elevated triglycerides and low HDL-cholesterol affect inflammation and atherothrombosis?[J]. Curr Cardiol Rep,2013,15(9):400.
[19] Kawakami A,Aikawa M,Alcaide P,et al. Apolipoprotein CⅢ induces expression of vascular cell adhesion molecule-1 in vascular endothelial cells and increases adhesion of monocytic cells[J]. Circulation,2006,114(7):681-687.
[20] Kawakami A,Aikawa M,Nitta N,et al. Apolipoprotein CⅢ-induced THP-1 cell adhesion to endothelial cells involves pertussis toxin-sensitive G protein- and protein kinase C alpha-mediated nuclear factor-kappaB activation[J]. Arterioscler Thromb Vasc Biol,2007,27(1):219-225.
[21] Zheng C,Azcutia V,Aikawa E,et al. Statins suppress apolipoprotein CⅢ-induced vascular endothelial cell activation and monocyte adhesion[J]. Eur Heart J,2013,34(8):615-624.
[22] Han X,Wang T,Zhang J,et al. Apolipoprotein CⅢ regulates lipoprotein-associated phospholipase A2 expression via the MAPK and NFκB pathways[J]. Biol Open,2015,4(5):661-665.
[23] Yingchun H,Yahong M,Jiangping W,et al. Increased inflammation,endoplasmic reticulum stress and oxidative stress in endothelial and macrophage cells exacerbate atherosclerosis in ApoCⅢ transgenic mice[J]. Lipids Health Dis,2018,17(1):220.
[24] Li H,Han Y,Qi R,et al. Aggravated restenosis and atherogenesis in ApoCⅢ transgenic mice but lack of protection in ApoCⅢ knockouts:the effect of authentic triglyceride-rich lipoproteins with and without ApoCⅢ[J]. Cardiovasc Res,2015,107(4):579-589.
[25] Martinelli N,Baroni M,Castagna A,et al. Apolipoprotein C-Ⅲ strongly correlates with activated factor Ⅶ-anti-thrombin complex:an additional link between plasma lipids and coagulation[J]. Thromb Haemost,2019,119(2):192-202.
[26] Olivieri O,Martinelli N,Baroni M,et al. FactorⅡactivity is similarly increased in patients with elevated? apolipoprotein CⅢ and in carriers of the factorⅡ20210A allele[J]. J Am Heart Assoc,2013,2(6):e000440.
[27] Olivieri O,Turcato G,Cappellari M,et al. High plasma concentration of apolipoprotein C-Ⅲ confers an increased risk of cerebral ischemic events on cardiovascular patients anticoagulated with warfarin[J]. Front Cardiovasc Med,2022,8:781383.
[28] Juntti-Berggren L,Berggren PO. Apolipoprotein CⅢ is a new player in diabetes[J]. Curr Opin Lipidol,2017,28(1):27-31.
[29] Yahagi K,Kolodgie FD,Lutter C,et al. Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus[J]. Arterioscler Thromb Vasc Biol,2017,37(2):191-204.
[30] Buckner T,Shao B,Eckel RH,et al. Association of apolipoprotein C3 with insulin resistance and coronary artery calcium in patients with type 1 diabetes[J]. J Clin Lipidol,2021,15(1):235-242.
[31] Chait A,Ginsberg HN,Vaisar T,et al. Remnants of the triglyceride-rich lipoproteins,diabetes,and cardiovascular disease[J]. Diabetes,2020,69(4):508-516.
[32] Haas ME,Attie AD,Biddinger SB. The regulation of ApoB metabolism by insulin[J]. Trends Endocrinol Metab,2013,24(8):391-397.
[33] Sandesara PB,Virani SS,F(xiàn)azio S,et al. The forgotten lipids:triglycerides,remnant cholesterol,and atherosclerotic cardiovascular disease risk[J]. Endocr Rev,2019,40(2):537-557.
[34] Ginsberg HN,Reyes-Soffer G. Is APOC3 the driver of cardiovascular disease in people with type I diabetes mellitus?[J]. J Clin Invest,2019,129(10):4074-4076.
[35] Jo G,Kwak SY,Kim JY,et al. Association between genetic variant of apolipoprotein C3 and incident hypertension stratified by obesity and physical activity in Korea[J]. Nutrients,2018,10(11):1595.
[36] Li Y,Li C,Gao J. Apolipoprotein C3 gene variants and the risk of coronary heart disease:a meta-analysis[J]. Meta Gene,2016,9:104-109.
[37] Song Y,Zhu L,Richa M,et al. Associations of the APOC3 rs5128 polymorphism with plasma APOC3 and lipid levels:a meta-analysis[J]. Lipids Health Dis,2015,14:32.
[38] Lin B,Huang Y,Zhang M,et al. Association between apolipoprotein C3 Sst I,T-455C,C-482T and C1100T polymorphisms and risk of coronary heart disease[J]. BMJ Open,2014,4(1):e004156.
[39] Smith JA,Ware EB,Middha P,et al. Current applications of genetic risk scores to cardiovascular outcomes and subclinical phenotypes[J]. Curr Epidemiol Rep,2015,2(3):180-190.
[40] Reyes-Soffer G,Sztalryd C,Horenstein RB,et al. Effects of APOC3 heterozygous deficiency on plasma lipid and lipoprotein metabolism[J].Arterioscler Thromb Vasc Biol,2019,39(1):63-72.
[41] Kim K,Ginsberg HN,Choi SH. New,novel lipid-lowering agents for reducing cardiovascular risk:beyond Statins[J]. Diabetes Metab J,2022,46(4):517-532.
[42] Gareri C,Polimeni A,Giordano S,et al. Antisense oligonucleotides and small interfering RNA for the treatment of dyslipidemias[J]. J Clin Med,2022,11(13):3884.
[43] Calcaterra I,Lupoli R,Di Minno A,et al. Volanesorsen to treat severe hypertriglyceridaemia:a pooled analysis of randomized controlled trials[J]. Eur J Clin Invest,2022,52(11):e13841.
[44] Paik J,Duggan S. Volanesorsen:First global approval[J]. Drugs,2019,79(12):1349-1354.
[45] Digenio A,Dunbar RL,Alexander VJ,et al. Antisense-mediated lowering of plasma apolipoprotein C-Ⅲ by volanesorsen improves dyslipidemia and insulin sensitivity in type 2 diabetes[J]. Diabetes care,2016,39(8):1408-1415.
[46] Alexander VJ,Xia S,Hurh E,et al. N-acetyl galactosamine-conjugated antisense drug to APOC3 mRNA,triglycerides and atherogenic lipoprotein levels[J]. Eur Heart J,2019,40(33):2785-2796.
[47] Pechlaner R,Tsimikas S,Yin X,et al. Very-low-density lipoprotein-associated apolipoproteins predict cardiovascular? events and are lowered by inhibition of APOC-Ⅲ[J]. J Am Coll Cardiol,2017,69(7):789-800.
[48] Wolska A,Lo L,Sviridov DO,et al. A dual apolipoprotein C-II mimetic-apolipoprotein C-Ⅲ antagonist peptide lowers plasma triglycerides[J]. Sci Transl Med,2020,12(528):eaaw7905.
收稿日期:2023-02-14