收稿日期:2022-06-12
基金項目:國家重點研發(fā)計劃項目(2022YFB4201302);廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究基金海上風(fēng)電聯(lián)合基金(2022A1515240057);華能集團海
上風(fēng)電與智慧能源系統(tǒng)科技專項(HNKJ20-H88-01);國家自然科學(xué)基金(12172095)
通信作者:龍 凱(1978—),男,博士、副教授、碩士生導(dǎo)師,主要從事風(fēng)電機組結(jié)構(gòu)仿真與優(yōu)化設(shè)計方面的研究。longkai1978@163.com
DOI:10.19912/j.0254-0096.tynxb.2022-0853 文章編號:0254-0096(2023)08-0518-06
摘 要:為實現(xiàn)風(fēng)電機組主軸承座抗疲勞輕量化設(shè)計,提出基于增廣拉格朗日函數(shù)的抗疲勞拓撲優(yōu)化方法。采用準靜態(tài)法快速獲取時序應(yīng)力值,經(jīng)過雨流計數(shù)得到累積疲勞損傷值?;谧兠芏确ń⒖蛊谕負鋬?yōu)化列式,為解決單元損傷約束方程數(shù)龐大的困難,借助增廣拉格朗日函數(shù)將原拓撲優(yōu)化問題轉(zhuǎn)換為一系列無約束優(yōu)化問題實現(xiàn)優(yōu)化求解?;谏唐坊邢拊浖伍_發(fā)實現(xiàn)抗疲勞拓撲優(yōu)化功能,并在風(fēng)電機組主軸承座輕量化設(shè)計中得到工程應(yīng)用,證明了提出方法的可行性和適用性。
關(guān)鍵詞:風(fēng)電機組;結(jié)構(gòu)優(yōu)化;疲勞損傷;主軸承座;變密度法;拓撲優(yōu)化
中圖分類號:TH12 """"""""" 文獻標志碼:A
0 引 言
隨著海上風(fēng)電機組單機容量不斷增加,外部環(huán)境條件復(fù)雜,研發(fā)、制造和安裝成本高居不下;同時,減少甚至取消政策性補貼將成為國家宏觀調(diào)控的必然趨勢。在技術(shù)和經(jīng)濟的雙重壓力下,風(fēng)電產(chǎn)業(yè)發(fā)展迫切需要兼顧結(jié)構(gòu)安全可靠和低成本開發(fā)技術(shù),通過新理論方法和技術(shù)手段應(yīng)對這一挑戰(zhàn)[1-3],諸如支撐結(jié)構(gòu)和地基基礎(chǔ)一體化設(shè)計[4]、基于拓撲優(yōu)化方法的輕量化設(shè)計在風(fēng)電機組中得到應(yīng)用。
自Bends?e等[5]提出連續(xù)體結(jié)構(gòu)拓撲優(yōu)化概念和均勻化方法以來,拓撲優(yōu)化理論方法得到長足發(fā)展[6-7],含拓撲優(yōu)化功能的商品化軟件Optistruct[8-9]和TOSCA Structure等在工程中得到廣泛應(yīng)用。體積比約束下的靜態(tài)柔順度最小化列式在目前的工程應(yīng)用中最為成熟[6-7]。例如,田曉潔等[10-11]和Lee Yeon-Seung等[12]采用此優(yōu)化列式分別實現(xiàn)了海上風(fēng)電機組多導(dǎo)管架支撐結(jié)構(gòu)、支撐結(jié)構(gòu)和塔筒過渡段的拓撲優(yōu)化設(shè)計。
與剛度設(shè)計準則有所不同,風(fēng)電機組零部件結(jié)構(gòu)需滿足高周疲勞設(shè)計要求[13-14],但以降低應(yīng)力為目標或應(yīng)力約束的拓撲優(yōu)化類問題存在設(shè)計空間奇異性、約束數(shù)量龐大和優(yōu)化結(jié)果參數(shù)依賴性敏感的3類數(shù)值問題[15-16]。高周疲勞拓撲優(yōu)化問題是應(yīng)力優(yōu)化問題的延伸[17-20]。Holmberg等[17]較早開展了抗疲勞拓撲優(yōu)化研究;高興軍等[20]將缺陷模型引入到拓撲優(yōu)化中。上述典型性研究通常涉及到單軸疲勞問題。張尚龍等[21]提出考慮疲勞多軸性的拓撲優(yōu)化方法;陳卓等[22]提出損傷懲罰模型,可在一定程度上避免疲勞優(yōu)化結(jié)果陷入到局部最優(yōu)解。由于抗疲勞優(yōu)化理論方法不成熟,現(xiàn)有的商品化軟件也缺乏相應(yīng)功能,這一現(xiàn)狀與風(fēng)電機組零部件抗疲勞優(yōu)化設(shè)計需求形成強烈矛盾,限制了拓撲優(yōu)化方法在機組零部件輕量化設(shè)計中的應(yīng)用。
為實現(xiàn)風(fēng)電機組主軸承座抗疲勞設(shè)計,本文提出基于增廣拉格朗日函數(shù)的拓撲優(yōu)化方法,運用商品化軟件ANSYS開發(fā)相應(yīng)功能?;跍熟o態(tài)分析快速獲取時序應(yīng)力,運用雨流計數(shù)和設(shè)計S-N曲線計算得到主軸承座疲勞累積損傷分布,通過優(yōu)化求解獲得主軸承座結(jié)構(gòu)設(shè)計方案,并與常見主軸承座結(jié)構(gòu)進行對比,驗證提出方法和開發(fā)程序的可行性和有效性。
1 基于增廣拉格朗日函數(shù)的抗疲勞拓撲優(yōu)化方法
1.1 抗疲勞拓撲優(yōu)化列式
假設(shè)設(shè)計域采用[Nj]個有限單元離散,第[j]個單元賦予物理密度[ρj],以設(shè)計域總體積最小為目標,每個單元累積疲勞損傷為約束,建立拓撲優(yōu)化列式:
[Find": "ρMinimize":" g0=j=1Njρjvj/V0Subject" to":" MUt+CUt+KUt=Ft"""""""""""""""""""""""""""""""""""""" gj=Djδ-1≤0"""""""""""""""""""""""""""""""""""""""""""""""""""""""" 0≤ρj≤1," j=1,2,…," NE]""" (1)
式中:ρ——單元設(shè)計變量組成的向量;[g0]——目標函數(shù),即體積比;[ρj]——單元j的設(shè)計變量;[vj]——單元[j]的體積;[V0]——設(shè)計域填充實體材料時的體積;[M]——總質(zhì)量陣;[U]——時變位移向量;[C]——總阻尼陣;[K]——總剛度陣;[F(t)]——時變載荷向量;[gj]——第[j]個約束函數(shù);[Dj]——單元[j]的疲勞損傷值;[δ]——疲勞損傷懲罰參數(shù),在一定程度上避免優(yōu)化陷入到局部優(yōu)化解,這里取值為2[22];NE——設(shè)計域單元數(shù)量。
根據(jù)固體各向同性懲罰(solid isotropic material with penalization,SIMP)模型,單元[j]的彈性模量插值[7]為:
[Ej=Emin+ρζjE0-Emin]""" (2)
式中:[Emin]——孔洞材料對應(yīng)彈性模量,為避免有限元分析奇異性,可取值為[E0/106];[E0]——實體材料對應(yīng)彈性模量;[ζ]——SIMP模型參數(shù),取值為3。
物理密度[ρe]由過濾密度[ρe]投影得到,即[23]:
[ρj=tanhβη+tanhβρj-ηtanhβη+tanhβ1-η]"" (3)
式中:[β]——投影函數(shù)陡峭度參數(shù);[η]——投影函數(shù)閾值;[ρj]——過濾密度。
為消除棋盤格現(xiàn)象和網(wǎng)格依賴性問題,過濾密度[ρj]由鄰域內(nèi)單元設(shè)計變量ρm和權(quán)函數(shù)ω(ρm)共同確定,即[23]:
[ρj=m∈?jωρmvmρmm∈?jωρmvm]""" (4)
式中:[?j]——單元[j]的領(lǐng)域單元集合。
式(4)中權(quán)函數(shù)定義為:
[ωρm=max0,rmin-Δρm,ρe]" (5)
式中:[rmin]——過濾半徑值;[Δρm,ρe]——單元[e]和單元[m]的中心距離。
1.2 基于準靜態(tài)結(jié)構(gòu)分析方法和疲勞損傷計算
當(dāng)采用時間差分格式求解瞬態(tài)動力學(xué)平衡方程時,求解計算量龐大,這里采用準靜態(tài)法實現(xiàn)結(jié)構(gòu)時序應(yīng)力的快速獲取。將載荷[F]分解為不同方向的分量形式,即:
[Ft=q=13qFt=q=13qft?qF,t∈0,T]" (6)
式中:[q]——上標取值1~3,代表[x、][y]和[z]方向;[qF]——不同方向的單位載荷;[qft]——隨時間變化的矢量。
單位載荷作用下的靜力平衡方程為[KqU=qF],根據(jù)線性疊加原理可得單元[j]的時序應(yīng)力:
[σjt=q=13qftqσj] (7)
式中:[qσj]——單位載荷作用下單元應(yīng)力,由單元位移[uj]求得。
采用帶符號的等效應(yīng)力[σSVMj]計算疲勞損傷,即:
[σSVMjt=signWT?σjt?σTjtMσjt]"" (8)
[M=1-0.5-0.50001-0.50001000300sys303]"" (9)
[W=111000T] (10)
式中:[sign?]——符號函數(shù)。
對時序應(yīng)力雨流計數(shù)后可計算得到累計疲勞損傷。在第i個應(yīng)力循環(huán)中,[σSVMj]最大/小值記為[σSVMj,i]和[σSVMj,i],應(yīng)力幅值和均值為:
[σaj,i=σSVMj,i-σSVMj,i2," i=1,2,…,Ij," j=1,2,…,Njσmj,i=σSVMj,i+σSVMj,i2," i=1,2,…,Ij," j=1,2,…,Nj]" (11)
由Goodman修正可得:
[σeqj,i=σaj,i1-maxσmj,i,0σu-1]"""" (12)
式中:[σu]——材料抗拉強度。
根據(jù)累積疲勞損傷定義有:
[Dj=iIjnj,iXj,i]"""""" (13)
式中:[nj,i]——[j]單元在第[i]個疲勞循環(huán)中的次數(shù);[Xj,i]——[j]單元在第[i]個疲勞循環(huán)中的許用次數(shù)。
假設(shè)S-N曲線表達式為:
[σeqj,i=σf2Xj,ib]"""""" (14)
式中:[σf]——疲勞強度系數(shù);b——疲勞強度指數(shù)。
將式(12)代入式(14),再代入式(13)即可計算求得[Dj]。
1.3 基于增廣拉格朗日函數(shù)的優(yōu)化求解
大規(guī)模設(shè)計變量和約束方程構(gòu)造的優(yōu)化列式(式(1))在優(yōu)化求解上較為困難,將約束方程納入到目標函數(shù)并構(gòu)造增廣拉格朗日(augmented Lagrangian,AL)函數(shù)[24-25],則式(1)可轉(zhuǎn)換為:
[Minimizeρ: J=g0+1Njj=1Njλjhj+μ2h2j]"""""" (15)
式中:[hj=maxgj,-λjμ]。
將式(15)中的系數(shù)根據(jù)優(yōu)化迭代步更新,可得:
[μl+1=min1.1 μl,10000]"" (16)
[λl+1j=λlj+μlhlj]""""" (17)
式中:[l]——優(yōu)化迭代的第l步。
1.4 增廣拉格朗日函數(shù)的敏度分析
當(dāng)[hj≠-λjμ]時,定義[κj=λj+μhjδDδ-1j],式(15)兩邊求偏導(dǎo)可得:
[?P?ρe=λj+μhj?hj?ρe=j=1Njκj?Dj?ρe] (18)
[?Dj?ρe=q=13qcj?qσj?ρe]""" (19)
[qcj=i=1Ij?Dj?Xj,i·?Xj,i?σeqj,i·?σeqj,i?qσj]""""" (20)
令:
[q?=j=1Njκjqcj?qσj?ρe]"""""" (21)
則:
[?P?ρe=q=13q?]"" (22)
單元應(yīng)力定義為:
[σj=ργjC0Bcuj] (23)
式中:[γ]——應(yīng)力懲罰指數(shù);[C0]——實體材料對應(yīng)的彈性矩陣;[Bc]——單元中心位置對應(yīng)的應(yīng)變矩陣。
對式(23)兩邊求偏導(dǎo)可得:
[?qσj?ρe=?ργj?ρeC0Bcquj+ργjC0BcLj?qU?ρe]"" (24)
式中:[Lj]——單元位移[uj]對時變位移向量[U]的映射。
注意到當(dāng)且僅當(dāng)[j=e]時,式(24)右端第一項不為0,將式(24)代入式(21)中:
[q?=κqeceγργ-1eC0Bqcue+j=1NjκjqcjργjC0BcLj?qU?ρe]" (25)
由任意矢量[qη]滿足[qηTKqU-qF=0]可得[qηT?K?ρeqU+K?qU?ρe=0],代入式(25)中,可得:
[q?=κqeceγργ-1eD0Bqcue+qηT?K?ρeqU+"""""" j=1NjκqjcjργjD0BcLj+qηTK?qU?ρe]"""""" (26)
建立伴隨方程以消除式(26)中[?qU?ρe]的關(guān)聯(lián)項:
[Kqη=-j=1NjκjργjqLTjBTcCT0cTj]""""" (27)
將求解后得到的[qη]代入式(26)、式(21)和式(18)中得到:
[?P?ρe=q=13κqeceγργ-1eD0Bqcue+qηT?K?ρeqU]"""" (28)
根據(jù)鏈式求導(dǎo)法則可得:
[?J?ρm=e∈?m?J?ρe·?ρe?ρe·?ρe?ρm=e∈?m?g0?ρe+1Nj·?P?ρe?ρe?ρe·?ρe?ρm]" (29)
在獲取敏度(式(29))基礎(chǔ)上,可采用移動漸進線法求解(式(15)),具體過程可參考文獻[24]。
2 主軸承座拓撲優(yōu)化的優(yōu)化設(shè)計
2.1 主軸承座S-N曲線
如圖1所示的主軸承座設(shè)計S-N曲線,其中[N1]和[ND]為S-N曲線橫坐標分段點,應(yīng)力變程分別為[Δσ1]和[Δσ*A]。確定該S-N曲線所需數(shù)據(jù)包括:彈性模量206 GPa,泊松比0.28,抗拉強度和屈服強度分別為500 MPa和300 MPa。該S-N曲線對應(yīng)的應(yīng)力比為[-1],應(yīng)力集中系數(shù)和缺口敏感度系數(shù)均為1;主軸承座表面粗糙度為12.5 μm。根據(jù)GL 2010[26]計算得到S-N曲線參數(shù)[Δσ1]=521.7 MPa,[Δσ*A]=126.3 MPa,[N1]=5.547和[ND=2.562×106]。
2.2 主軸承座拓撲優(yōu)化中模型設(shè)計
為了實現(xiàn)抗疲勞拓撲優(yōu)化功能,通過提取有限元軟件ANSYS的分析結(jié)果,在Matlab中完成雨流計數(shù)、疲勞分析、伴隨方程求解、敏度分析和優(yōu)化求解等部分,根據(jù)式(2)更新設(shè)計域單元彈性模量值,并更新賦值到ANSYS模型中,直至滿足優(yōu)化收斂條件,其基本流程如圖2所示。
如圖3所示,在主軸承座設(shè)計區(qū)域全部填充材料,并采用六面體單元離散,圖3中兩側(cè)全固定。約束位置與軸承座內(nèi)圈設(shè)為非設(shè)計區(qū)域。網(wǎng)格模型共包含81000個體單元和89962個節(jié)點。軸承座兩側(cè)全約束,軸承座中心處施加垂直于中心對稱軸且大小、方向隨機變化的時變載荷,時變載荷通過多點約束單元MPC184傳遞至軸承座內(nèi)圈。施加強迫對稱以保證拓撲優(yōu)化結(jié)果的對稱性。選擇如圖4所示的常見主軸承座形式進行結(jié)果對比。拓撲優(yōu)化目標函數(shù)體積比迭代歷程如圖5所示。參考結(jié)構(gòu)和優(yōu)化結(jié)構(gòu)的累積疲勞損傷分布如圖6所示。
由圖6可知,參考結(jié)構(gòu)存在明顯的應(yīng)力集中點,最大疲勞損傷值達到1×107量級,無法滿足抗疲勞設(shè)計要求。優(yōu)化結(jié)構(gòu)最大累積損傷值為0.99,所在的臨近區(qū)域均為高損傷區(qū)域,優(yōu)化整體損傷較參考結(jié)構(gòu)分布更加均勻,說明結(jié)構(gòu)潛力得到充分發(fā)揮。由圖5可知,模型的體積分數(shù)在迭代前100步快速下降,優(yōu)化進程在迭代至280步時逐漸達到最優(yōu)解,且結(jié)構(gòu)體積優(yōu)化曲線整體穩(wěn)定并持續(xù)下降,說明優(yōu)化求解具有穩(wěn)定性。上述結(jié)果證明了本文提出的拓撲優(yōu)化列式和求解算法的可行性和正確性。
3 結(jié) 論
為實現(xiàn)風(fēng)電機組主軸承座的抗疲勞輕量化設(shè)計,本文基于變密度法建立抗疲勞拓撲優(yōu)化列式,推導(dǎo)了增廣拉格朗日函數(shù)的敏度表達式和求解算法,借助商品化軟件實現(xiàn)了抗疲勞拓撲優(yōu)化功能的二次開發(fā),得到如下主要結(jié)論:
1)增廣拉格朗日函數(shù)法能穩(wěn)健、高效地求解龐大變量和累計疲勞損傷約束的抗疲勞拓撲優(yōu)化問題。
2)基于提出算法對有限元軟件進行二次開發(fā),以某風(fēng)電機組主軸承座為例,通過拓撲優(yōu)化設(shè)計,在滿足疲勞強度設(shè)計準則前提下,實現(xiàn)了主軸承座結(jié)構(gòu)輕量化設(shè)計,證明了提出方法的可行性和優(yōu)越性。
[參考文獻]
[1]"""" COLMENAR-SANTOS A, PERERA-PEREZ J, BORGE-DIEZ D. Offshore wind energy: a review of the current status, challenges and future development in Spain[J]. Renewable and sustainable energy reviews, 2016, 64: 1-18.
[2]"""" KOH J H, NG E Y K. Downwind offshore wind turbines: opportunities,""" trends""" and""" technical""" challenges[J]. Renewable and sustainable energy reviews, 2016, 54: 797-808.
[3]"""" WU X N, HU Y, LI Y, et al. Foundations of offshore wind turbines: a review [J]. Renewable and sustainable energy reviews, 2019, 104: 379-393.
[4]"""" 林毅峰. 海上風(fēng)電機組支撐結(jié)構(gòu)與地基基礎(chǔ)一體化分析設(shè)計[M]. 北京: 機械工業(yè)出版社, 2020.
LIN Y F. Integrated analysis and design for support structure"" and"" foundation" of" offshore" wind" turbine[M]. Beijing: China Machine Press, 2020.
[5]"""" BENDS?E M P,KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer methods in applied mechanics and engineering, 1988, 71(2):197-224.
[6]"""" DEATON J D, GRANDHI R V. A survey of structural and multidisciplinary continuum topology optimization: post 2000[J]. Structural and multidisciplinary optimization, 2014, 49: 1-38.
[7]"""" SIGMUND O. EML webinar overview: topology optimization-status and perspective[J]. Extreme mechanics letters, 2020, 39: 100855.
[8]"""" THOMAS H, ZHOU M, SCHRAMM U. Issues of commercial optimization software development[J]. Structural and multidisciplinary optimization, 2002, 23: 97-110.
[9]"""" ZHOU M, PAGALDIPTI N, THOMAS H L, et al. An integrated approach to topology, sizing and shape optimization[J].""""" Structural""""" and"""""" multidisciplinary optimization, 2004, 26: 308-317.
[10]""" TIAN X J, WANG Q Y, LIU G J, et al. Topology optimization design for offshore platform jacket structure[J]. Ocean engineering, 2019, 84: 38-50.
[11]""" TIAN X J, SUN X Y, LIU G J, et al. Optimization design of the jacket support structure for offshore wind turbine using topology optimization method[J]. Ocean engineering, 2021, 243:110084.
[12]""" LEE Y S, GONZALEZ J A, LEE J H, et al. Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation[J]. Renewable energy, 2016, 85: 1214-1225.
[13]""" 龍凱, 賈嬌. 大型水平軸風(fēng)力機塔筒渦激振動焊縫疲勞分析[J]. 太陽能學(xué)報, 2015, 36(10): 2455-2459.
LONG K, JIA J. Analysis of fatigue damage of tower of large scale horizontal axis wind turbine by wind-induced transverse" vibration[J]." Acta" energiae" solaris" sinica, 2015, 36(10): 2455-2459.
[14]""" 龍凱, 丁文杰, 陳卓, 等. 考慮螺栓疲勞損傷約束的法蘭輕量化設(shè)計方法[J]. 太陽能學(xué)報, 2021, 42(9): 326-331.
LONG K, DING W J, CHEN Z, et al. Lightweight design method for tower flange subject to constraint on bolt fatigue damage[J]. Acta energiae solaris sinica, 2021, 42(9): 326-331.
[15]""" LE" C," NORATO" J," BRUNS" T." Stress-based" topology optimization"""""" for"""""" continua[J].""""" Structural""""""" and multidisciplinary optimization, 2010, 41(4): 605-620.
[16]""" LONG K, WANG X, LIU H L. Stress-constrained topology optimization of continuum structures subject to harmonic force excitation using sequential quadratic programming[J]. Structural and multidisciplinary optimization, 2019, 59(5): 1747-1759.
[17]""" HOLMBERG E, TORSTENFELT B, KLARBRING A. fatigue" constrained" topology"" optimization[J]." Structural and multidisciplinary optimization, 2014, 50(2): 207-219.
[18]""" JEONG S H, CHOI D H, YOON G H. Fatigue and static failure considerations using a topology optimization method[J]." Applied" mathematical" modelling," 2015," 39(3): 1137-1162.
[19]""" NABAKI K, SHEN J H, HUANG X D. Evolutionary topology optimization of continuum structures considering fatigue failure[J]. Material amp; design, 2019, 166: 107586.
[20]""" GAO X J, CAIVANO R, TRIDELLO A, et al. Innovative formulation for fatigue optimization based on material defects distribution and TopFat algorithm[J]. International journal of fatigue, 2021, 147: 106176.
[21]""" ZHANG S L, LE C, GAIN A L, et al. Fatigue-based topology"" optimization"" with"" non-proportional"" loads[J]. Computer methods in applied mechanics and engineering, 2019, 345: 805-825.
[22]""" CHEN Z, LONG K, WEN P, et al. Fatigue-resistance topology optimization of continuum structure by penalizing the cumulative fatigue damage[J]. Advance in engineering and software, 2020, 150: 102924.
[23]""" WANG F W,LAZAROV B S,SIGMUND O, et al. On projection methods, convergence and robust formulations in topology optimization[J]. Structural and multidisciplinary optimization, 2011, 43: 767-784.
[24]""" SILVA G A, AAGE N, BECT A T, et al. Local versus global stress constraint strategies in topology optimization: a comparative study[J]. International journal for numerical methods in engineering, 2021, 122(21): 6003-6636.
[25]""" SENHORA F V, LONDONO O G, MENEZES I F M, et al. Topology optimization with local stress constraints: a stress""" aggregation-free""" approach[J].""" Structural""" and multidisciplinary optimization, 2020, 62: 1639-2668.
[26]""" GL wind guideline: Guideline for the certification of wind turbines[S]. Hamburg: Germanischer Lloyd Wind Energie GmbH, 2010.
FATIGUE-RESISTANCE TOPOLOGY OPTIMIZATION METHOD FOR
MAIN BEARING SEAT OF WIND TURBINES
Lu Feiyu1,Zhang Chengwan1,Long Kai1,Chen Zhuo2,Tao Tao3,Liu Jie4
(1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(NCEPU), Beijing 102206, China;
2. School of Mechanical amp; Automotive Engineering, South China University of Technology, Guangzhou 510640, China;
3. China Southern Power Grid Technology Co., Ltd., Guangzhou 510080, China;
4. School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China)
Abstract:A fatigue-resistance topology optimization (TO) method based on augmented Lagrange function was proposed, in order to achieve a lightweight design for wind turbine main bearing seats. The quasi-static method was employed to efficiently obtain the time-varying stress. Consequently, the cumulative fatigue damage was determined by rain-flow counting. Using variable density method, the fatigue-resistance topology optimization formula was established. To address the difficulty of a large number of constraint equations imposed on unit fatigue damage, the original topology optimization problem was converted into a sequence of unconstrained optimization problems by means of augmented Lagrange function. The fatigue-resistance topology optimization function was realized by implementing the secondary development of commercial finite element software. The software has been successfully applied in the lightweight design of the main bearing seats of" wind turbines, demonstrating the practicability and applicability of the proposed method.
Keywords:wind turbines; structural optimization; fatigue damage; main bearing seat; variable density method; topology optimization