亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        裂紋面分布加載裂尖SIFs分析的廣義參數(shù)Williams單元*

        2022-07-20 07:33:20鄒云鵬楊綠峰
        關(guān)鍵詞:裂尖無量邊界

        徐 華, 曹 政, 鄒云鵬, 楊綠峰

        (1.廣西大學(xué) 土木建筑工程學(xué)院 工程防災(zāi)與結(jié)構(gòu)安全教育部重點實驗室,南寧 530004;2.廣西大學(xué) 土木建筑工程學(xué)院 廣西防災(zāi)減災(zāi)與工程安全重點實驗室,南寧 530004;3.廣西桂能工程咨詢集團有限公司,南寧 530015)

        引 言

        工程結(jié)構(gòu)通常是帶裂縫工作的,如水文環(huán)境中的混凝土壩、海洋工程、地下工程和壓力容器等,其結(jié)構(gòu)表面的裂縫易遭受流體侵入,有可能加速裂縫擴展與連通,引起結(jié)構(gòu)的局部強度和整體承載力降低,甚至引發(fā)結(jié)構(gòu)失效破壞,這些重大工程一旦破壞將引起難以估量的損失.因此,對裂紋面受荷的工程結(jié)構(gòu)斷裂行為研究具有十分重要的現(xiàn)實意義.

        裂紋面受荷時,其裂尖附近應(yīng)力場和位移場較復(fù)雜,難以定量描述,通常仍以SIFs作為裂尖附近應(yīng)力-應(yīng)變場強弱程度的度量,并可據(jù)此進一步判斷結(jié)構(gòu)的安全性.基于此,國內(nèi)外學(xué)者圍繞裂紋面加載的裂尖SIFs開展了大量研究工作.劉鈞玉等[1-2]、Zhong等[3]和陳白斌等[4]基于比例邊界有限元法,分別對裂紋面受拉伸荷載的單邊裂紋、多裂紋和界面裂紋的裂尖SIFs進行了分析,該方法相較于普通有限單元法,需引入多個系數(shù)矩陣,增加了計算工作量.李亞等[5]采用線場分析方法,對無限大板中心裂紋面受均布荷載的應(yīng)力場進行修正,進而得到了有限寬板中心裂紋的裂尖SIFs,但不同的裂紋模型均需相對應(yīng)的應(yīng)力函數(shù).Fett等[6]利用ABAQUS有限元軟件擬合半無限大板邊界斜裂紋面上受集中力的權(quán)函數(shù),以此求解了裂尖復(fù)合型SIFs.文獻[5-6]針對不同的裂紋模型,均需找到相對應(yīng)的函數(shù)才能求解SIFs,不具有通用性.Li等[7]采用柔度法求解有限寬板邊界裂紋面受分布荷載的裂尖SIFs,需通過疊加法對原始模型進行拆分處理,不能直接求解.Walters等[8]針對三維模型中裂紋面受荷的平面裂紋SIFs,基于相互作用積分法分離出獨立的裂紋面荷載積分項,提高了計算精度.Muthu等[9]提出了一種基于擴展無網(wǎng)格Galerkin法的裂紋閉合積分理論,通過求解應(yīng)變能釋放率獲得裂尖SIFs的方法.在實際工程方面,賈金生等[10]基于斷裂力學(xué)理論估算了重力壩壩踵水平裂縫中含高壓水的裂尖SIFs,但基本假設(shè)較為粗略,與實際結(jié)果存在較大誤差.唐世斌等[11]建立了在土壓力、裂紋面和井筒內(nèi)水壓耦合作用下的射孔裂尖SIFs計算方程.綜上所述,當前的裂紋面受荷問題仍以有限單元法為主,但該方法本身仍存在較大的改進空間.廣義參數(shù)有限元法[12]是有限單元法的一個分支,該方法通過整體控制方程求解出與SIFs直接相關(guān)的廣義參數(shù),避免了線性外推擬合等繁瑣的后處理過程引起的二次誤差,從而具有很高的精度.但該方法建立的W單元需滿足奇異區(qū)內(nèi)裂紋面自由的邊界條件,即 σφ=0,τρφ=0(φ=±π),而裂紋面受荷時不滿足該邊界條件,仍需改進.

        針對同樣不滿足邊界條件的曲線裂紋[13],課題組在裂尖建立等效區(qū),將等效區(qū)內(nèi)的曲線轉(zhuǎn)換為折線以滿足W單元的邊界條件,受此思想啟發(fā),對裂紋面直接受荷模型,本文提出了一種基于SIFs互等的裂紋面裂尖奇異區(qū)荷載等效處理方法,即將奇異區(qū)內(nèi)的分布荷載等效為奇異區(qū)邊界的集中荷載,避免奇異區(qū)裂紋面受荷而無法使用W單元求解,充分發(fā)揮了W單元求解SIFs的高精高效優(yōu)勢.同時,通過算例分析,給定荷載類型等效系數(shù)建議值,為裂紋面受荷求解裂尖SIFs提供了新的思路.

        1 裂尖局部分布荷載的等效處理

        以一含邊界裂紋的矩形板為例,其板高為2H,板寬為W,裂紋長度為a,在裂紋張口處建立整體坐標系XOY,取裂尖局部等效區(qū)邊長為2c,裂紋面受到分布壓力 σ(X)=σ0|1-X/a|λ, σ0為O點處壓力值,如圖1所示.

        圖1 裂尖局部面荷載等效Fig.1 Crack tip local surface load equivalence

        筆者嘗試推導(dǎo)整個裂紋面加載時裂尖應(yīng)力場和位移場的Williams級數(shù)表達式,即裂紋面為非自由面,此時,因邊界條件較難處理,其表達式異常復(fù)雜.根據(jù)《應(yīng)力強度因子手冊》[14],裂尖局部加載和裂紋面上作用集中力情況均有高精度的參考解.基于此,現(xiàn)提出利用SIFs互等,即將裂尖局部分布力等效為裂紋面上一對集中力Q,如圖1所示.以λ=0為例,裂尖局部均布荷載σ0和裂紋面集中荷載Q作用時,其裂尖Ⅰ型SIFs表達式為

        式中,KI,分別表示僅裂尖局部受分布壓力和裂紋面受一對集中壓力的Ⅰ型SIFs;p,p′分別表示裂尖局部加載和裂紋面作用集中力時的荷載系數(shù),詳見文獻[14].

        假定KI=則集中力Q與裂尖局部荷載σ0有如下關(guān)系:

        由此,可得到裂紋面局部受均布荷載的等效公式.同理,可以推導(dǎo)裂紋面裂尖局部長度c上受分布荷載σ (X)的等效公式,即

        式中,P表示等效荷載系數(shù),

        2 基于W單元確定裂紋面受荷的SIFs

        2.1 裂紋面奇異區(qū)受荷的W單元模型

        如圖1所示,綠色正方形區(qū)域為裂尖奇異區(qū),其外圍為常規(guī)區(qū),因W單元對奇異區(qū)尺寸不敏感,假定本文選取的奇異區(qū)尺寸等于上節(jié)中的裂尖局部尺寸.奇異區(qū)內(nèi)采用W單元,外圍常規(guī)區(qū)選用四邊形8節(jié)點等參單元;常規(guī)區(qū)網(wǎng)格可通過ANSYS有限元軟件進行自由離散,奇異區(qū)的網(wǎng)格劃分規(guī)則如下:將奇異區(qū)均分為8個三角形條元,各條元離散為n個基于徑向離散比例因子α自相似的梯形子單元和一個裂尖三角形微單元,因裂尖三角形微單元極小,可忽略其剛度貢獻,則將內(nèi)部n個位移場由Williams級數(shù)控制的子單元集成的梯形條元定義為W單元.W單元最外層子單元因其一條邊(圖2中的綠色邊界)為奇異區(qū)與常規(guī)區(qū)的交界,保留邊界上3個實節(jié)點,內(nèi)部5個節(jié)點轉(zhuǎn)化為虛節(jié)點,稱該單元為過渡單元.奇異區(qū)內(nèi)分布荷載σ (X)可通過等效處理為奇異區(qū)邊界一對集中力Q,如圖2所示.

        圖2 裂尖奇異區(qū)網(wǎng)格劃分及分布荷載等效Fig.2 Discretization and distributed load equivalence in the crack tip singular region

        以裂尖為局部坐標原點o,建立局部直角坐標系xoy,如圖2所示.以Williams級數(shù)表示裂尖奇異區(qū)位移場,并取級數(shù)的前m+ 1項:

        式中,u,v分別表示裂尖局部直角坐標系下x,y軸對應(yīng)的位移分量;ρ,φ分別表示裂尖局部極坐標系下的極徑和極角分量,fl,11(φ),fl,12(φ),fl,21(φ),fl,22(φ)為三角函數(shù),具體取值可參考文獻[12].

        2.2 奇異區(qū)剛度方程集成

        以任一W單元為例,根據(jù)四邊形8節(jié)點等參單元理論,該條元內(nèi)任意第k層子單元的剛度方程可表示為

        結(jié)合式(4),將任意第k層子單元位移列陣表示為矩陣形式:

        式中,T(k)表示第k層子單元轉(zhuǎn)換矩陣;?表示廣義參數(shù)列陣.

        將式(5)等號兩邊同時左乘T(k)T得

        并可改寫為

        式中,K(k),p(k)分 別為第k層子單元的廣義剛度矩陣和廣義荷載列陣,且當k=2 ~n時,p(k)=0.

        根據(jù)式(11)可知,各層子單元剛度矩陣大小相同,且存在相同乘數(shù)?,故可將條元內(nèi)第2 ~n層子單元剛度方程進行疊加:

        即Kss?=0,Kss表示第2~n層子單元廣義剛度矩陣之和.

        奇異區(qū)最外層的過渡單元,即W單元中第1層子單元,有3個實節(jié)點位于常規(guī)區(qū)與奇異區(qū)交界處,5個虛節(jié)點位于奇異區(qū)內(nèi)部.根據(jù)節(jié)點所在區(qū)域不同,將過渡單元的位移向量分塊表示為

        將過渡單元的廣義剛度方程按照虛、實節(jié)點分塊表示,并與第2~n層子單元的剛度方程進行疊加,因此可得一個W單元的剛度方程:

        根據(jù)式(14),將8個W單元剛度方程進行集成,并將奇異區(qū)邊界的裂紋面等效荷載Q疊加至相應(yīng)節(jié)點可得到奇異區(qū)的整體剛度方程:

        2.3 整體剛度方程的集成

        將常規(guī)區(qū)所有單元的剛度方程進行集成,并以奇異區(qū)外圍節(jié)點為界,分塊表示為

        計算模型分為常規(guī)區(qū)和奇異區(qū)兩個部分,即將式(15)和(16)的剛度方程進行集成,得到整個模型的剛度方程:

        2.4 SIFs求解

        通過引入模型的應(yīng)力、位移邊界條件,對整體剛度方程式(17)進行求解,即可獲得裂尖奇異區(qū)的廣義參數(shù)列陣?.將列陣中的廣義參數(shù)a1,b1分別代入式(18),計算獲得裂尖應(yīng)力強度因子:

        3 算例分析

        3.1 裂紋面受均布壓力

        例1如圖1所示的邊界裂紋矩形板,其板高為2H,寬為W,且有 W=2H=100cm,裂紋長度為a,板厚t取單位厚度,奇異區(qū)范圍取邊長為2c的正方形.裂紋面施加均布壓力( λ=0), σ0=1kN/cm2, 彈性模量E=3×104MPa ,Poisson比ν =0.3.因篇幅所限,本文先研究此方法在Ⅰ型裂紋中的適用性,Ⅱ型裂紋另做研究.

        取 a /W=0.3的 模型為例,根據(jù)前期研究成果建議奇異區(qū)尺寸取 c =a/20,使用ANSYS有限元軟件對模型常規(guī)區(qū)進行網(wǎng)格自由離散,此時離散為146個單元,501個節(jié)點,如圖3所示.將常規(guī)區(qū)的單元、節(jié)點信息以及約束等導(dǎo)入自編程的FORTRAN程序,通過求解模型整體剛度方程以獲得裂尖SIFs.P=1.94+0.57(a/W)-1.51(a/W)2.本模型參數(shù)的具體取值如表1所示.

        表1 模型參數(shù)(λ=0)Table 1 Model parameters (λ=0)

        圖3 常規(guī)區(qū)網(wǎng)格離散Fig.3 Discretization in the regular region

        根據(jù)《應(yīng)力強度因子手冊》(P303、P304)的裂尖局部面荷載作用下荷載系數(shù)p,p′隨a/W變化曲線圖[14],通過GetData軟件提取荷載系數(shù)p,p′代表性點的坐標,利用Excel軟件擬合即可獲得P與a/W的關(guān)系式:

        由表1可以看出,隨著a/W的變化,等效荷載系數(shù)P在1.60~2.00范圍取值.鑒于此,本算例適當放大P的取值范圍,研究在P取不同值時,a/W的變化對SIFs的影響.

        W單元的3個重要參數(shù)的建議值[12]為 α =0.9, m =20, n =300.將W單元計算結(jié)果與文獻[14]的解對比,為直觀體現(xiàn)各計算結(jié)果的區(qū)別,將SIFs無量綱化如圖4所示.

        圖4 邊界裂紋面受均布壓力計算結(jié)果Fig.4 Calculation results for uniformly distributed pressure on the crack surface

        均布壓力作用于邊界裂紋面時,若忽略奇異區(qū)裂紋面的荷載(P=0),計算誤差為4%~17%,且隨著a/W的增大而減小,表明隨著裂紋長度的增加,裂尖局部荷載對SIFs的影響逐漸變小.對奇異區(qū)裂紋面荷載等效處理后,現(xiàn)選取1%為誤差限,根據(jù)疊加法可知,當P的取值范圍為[2.0,2.1]時,任意a/W均滿足該誤差限.整體上,隨著a/W的增加,無量綱SIFs呈增大的趨勢,且增大的趨勢愈加顯著.

        例2當均布壓力作用于中心裂紋上,如圖5所示,其板高為2H,寬為2W,且有W=H=100cm,矩形板厚度t為單位厚度,裂紋長度為2a,奇異區(qū)邊長2c,材料參數(shù)同本算例的邊界裂紋板.

        圖5 中心裂紋面受均布荷載Fig.5 The uniformly distributed load on the central

        根據(jù)對稱性,取半模型進行分析,以a/W=0.3的 模型為例,根據(jù)前期研究成果建議奇異區(qū)尺寸取c=a/20,使用ANSYS有限元軟件對模型常規(guī)區(qū)進行網(wǎng)格自由離散,此時離散為181個單元,602個節(jié)點,如圖6所示.將常規(guī)區(qū)的單元、節(jié)點信息以及約束等導(dǎo)入自編程的FORTRAN程序,通過求解模型整體剛度方程以獲得裂尖SIFs.

        圖6 常規(guī)區(qū)網(wǎng)格離散Fig.6 Discretization in the regular region

        根據(jù)《應(yīng)力強度因子手冊》[14]擬合出中心裂紋的等效荷載公式P=2.03+0.11(a/W)+0.11(a/W)2.當a/W取值在[0.01,0.8]區(qū)間時,P的取值范圍為[2.03,2.18].適當放大P的取值范圍,研究P取不同值的情況下,a/W的變化對SIFs的影響.

        W單元的3個重要參數(shù)的建議值[12]為 α =0.9,m=20,n=300.將W單元計算結(jié)果與文獻[14]的解對比,如圖7所示.

        圖7 中心裂紋面受均布壓力計算結(jié)果Fig.7 Calculation results for uniformly distributed pressure on the central crack surface

        均布壓力作用于中心裂紋面時,若忽略奇異區(qū)裂紋面的荷載(P=0),計算誤差均在11%以上,最大達到20.2%,且該誤差隨著a/W的增大而逐漸減小.同樣以1%為誤差限,根據(jù)疊加原理可以推斷出,對任意a/W,均滿足該誤差限要求的P取值范圍為[1.95, 2.05].隨著中心裂紋板的裂紋長度增加,無量綱SIFs呈遞增的趨勢,且遞增幅度逐漸變大.

        綜上,對奇異區(qū)荷載進行等效處理是有必要的,在1%的誤差限下,現(xiàn)給出P建議取值為2.0,不僅對裂紋面受均布壓力的邊界裂紋和中心裂紋都有良好的適用性,且保證了計算精度.均布荷載和線性荷載是工程中常見的荷載類型,故下文將以裂紋面受線性壓力為例,驗證P建議取值的通用性.

        3.2 裂紋面受線性壓力

        算例各參數(shù)具體取值與模型網(wǎng)格劃分同本文的例1和例2,僅荷載形式不一樣,此時施加于裂紋面的分布壓力為σ (X)=σ0|1-X/a|λ,σ0=1kN/cm2,λ =1.結(jié)合本文的荷載等效處理方法和W單元求解算例中的SIFs.

        將常規(guī)區(qū)的單元、節(jié)點信息以及約束等導(dǎo)入自編程的FORTRAN程序,通過求解模型整體剛度方程以獲得裂尖SIFs.本算例中,W單元重要參數(shù)建議值為α =0.9,m=20,n=300.

        ① 裂紋面受到線性壓力時,由于文獻[14]無荷載系數(shù)p,p′的具體取值,故無法擬合出等效荷載系數(shù)P的關(guān)系式.現(xiàn)嘗試P=2.0的建議取值時,研究不同a/W模型下的邊界裂紋和中心裂紋SIFs,并與文獻[14]的參考解進行比較.無量綱SIFs的計算結(jié)果如圖8所示.

        由圖8可知,當P=2.0時,計算結(jié)果誤差均滿足1%的誤差限,證明在分析裂紋面受線性壓力的中心裂紋或邊界裂紋問題時,荷載等效的處理方法均有很好的通用性和高精性.當裂紋長度較小時,邊界裂紋與中心裂紋的無量綱SIFs接近,而隨著a/W的增大,無量綱SIFs呈增大的趨勢,且邊界裂紋的增長幅度大于中心裂紋.

        圖8 裂紋面受線性壓力計算結(jié)果Fig.8 Calculation results for linear pressure on the crack surface

        ② 當P=2.0 時 ,現(xiàn)取邊界裂紋和中心裂紋的矩形板寬為W=100cm,研究不同的H/W情況下,a/W的變化對SIFs的影響,并與文獻[14]的參考解進行比較.無量綱SIFs結(jié)果如圖9所示.

        由圖9可看出,H/W和a/W取不同值時,W單元計算結(jié)果均滿足1%的誤差限,這說明在奇異區(qū)尺寸取建議值的情況下,等效荷載系數(shù)P對裂紋位置或模型尺寸都不敏感,且適用于常見的裂紋面分布荷載類型,證明了本文的荷載等效處理方法具有很強的適用性,但由于篇幅所限,算例中只對均布荷載與線性荷載進行了論證.當H/W增大時,無量綱SIFs呈減小的趨勢;當a/W增大時,無量綱SIFs呈增大的趨勢,這表明裂紋模型是存在尺寸效應(yīng)的.

        圖9 無量綱SIFs隨尺寸變化的計算結(jié)果Fig.9 Calculation results for dimensionless SIFs varying with sizes

        4 結(jié) 論

        本文對裂紋面奇異區(qū)荷載進行等效處理,使得等效奇異區(qū)內(nèi)裂紋面滿足W單元裂紋面自由的邊界條件,通過裂紋面受不同荷載的邊界裂紋和中心裂紋奇異區(qū)荷載等效算例分析,驗證了本文等效處理的正確性與通用性,得到了以下結(jié)論:

        1) 確定等效奇異區(qū)尺寸后,結(jié)合算例簡化了等效荷載系數(shù)P的關(guān)系式,并建議取值為2.0.算例結(jié)果表明,本文方法與《應(yīng)力強度因子手冊》對比,其SIFs誤差均小于1%;而且《應(yīng)力強度因子手冊》所采用的權(quán)函數(shù)法,當模型、荷載變化時,均需重新確定權(quán)函數(shù),相較于W單元缺乏靈活性.

        2) 等效荷載系數(shù)P的取值不再是由模型尺寸、裂紋長度決定的關(guān)系式,無需通過《應(yīng)力強度因子手冊》擬合,且適用于裂紋面受均布或線性壓力的邊界裂紋和中心裂紋,證明了本文對奇異區(qū)荷載進行等效處理方法具有很強的簡便性與通用性.

        3) 含裂紋的矩形板,裂紋面受荷時,隨著a/W的增大,Ⅰ型無量綱SIFs均呈增大的趨勢,且增大幅度愈加明顯;隨著H/W的增大,無量綱SIFs呈減小的趨勢,這些都表明結(jié)構(gòu)內(nèi)部缺陷的增多會加速其破壞進程.相同模型尺寸下,邊界裂紋的無量綱SIFs整體大于中心裂紋,說明了裂紋的約束條件對SIFs的影響較大.

        參考文獻( References ):

        [1]劉鈞玉, 林皋, 范書立, 等.裂紋面受荷載作用的應(yīng)力強度因子的計算[J].計算力學(xué)學(xué)報, 2008, 25(5): 621-626.(LIU Junyu, LIN Gao, FAN Shuli, et al.The calculation of stress intensity factor including the effects of surface tractions[J].Chinese Journal of Computational Mechanics, 2008, 25(5): 621-626.(in Chinese))

        [2]LIU J Y, LIN G, LI X C, et al.Evaluation of stress intensity factors for multiple cracked circular disks under crack surface tractions with SBFEM[J].China Ocean Engineering, 2013, 27(3): 417-426.

        [3]ZHONG H, LI C L, LI H J, et al.Stress intensity factors of interfacial crack with arbitrary crack tractions[J].IOP Conference Series:Earth and Environmental Science, 2019, 304(5): 052111.

        [4]陳白斌, 李建波, 林皋.無需裂尖增強函數(shù)的擴展比例邊界有限元法[J].水利學(xué)報, 2015, 46(4): 489-496, 504.(CHEN Baibin, LI Jianbo, LIN Gao.An extended scaled boundary finite element method without asymptotic enrichment of the crack tip[J].Journal of Hydraulic Engineering, 2015, 46(4): 489-496, 504.(in Chinese))

        [5]李亞, 易志堅, 王敏, 等.裂紋面局部均布荷載下Ⅰ型裂紋有限寬板應(yīng)力強度因子[J].應(yīng)用數(shù)學(xué)和力學(xué), 2020, 41(10):1083-1091.(LI Ya, YI Zhijian, WANG Min, et al.The stress intensity factor of a finite-width plate with a mode-Ⅰcenter crack subjected to uniform stress on the crack surface near the crack tip[J].Applied Mathematics and Mechanics, 2020, 41(10): 1083-1091.(in Chinese))

        [6]FETT T, RIZZI G.Weight functions for stress intensity factors and T-stress for oblique cracks in a halfspace[J].International Journal of Fracture, 2005, 132(1): L9-L16.

        [7]LI J, WANG X, TAN C L.Weight functions for the determination of stress intensity factor and T-stress for edge-cracked plates with built-in ends[J].International Journal of Pressure Vessels and Piping, 2004, 81(3): 285-296.

        [8]WALTERS M C, PAULINO G H, DODDS JR R H.Interaction integral procedures for 3-D curved cracks including surface tractions[J].Engineering Fracture Mechanics, 2005, 72(11): 1635-1663.

        [9]MUTHU N, MAITI S K, FALZON B G, et al.A comparison of stress intensity factors obtained through crack closure integral and other approaches using extended element-free Galerkin method[J].Computational Mechanics, 2013, 52(3): 587-605.

        [10]賈金生, 汪洋, 馮煒, 等.重力壩高壓水劈裂模擬方法與特高重力壩設(shè)計準則初步探討[J].水利學(xué)報, 2013, 44(2):127-133.(JIA Jinsheng, WANG Yang, FENG Wei, et al.Simulation method of hydraulic fracturing and discussions on design criteria for super high gravity dams[J].Journal of Hydraulic Engineering, 2013, 44(2): 127-133.(in Chinese))

        [11]唐世斌, 劉向君, 羅江, 等.水壓誘發(fā)裂縫拉伸與剪切破裂的理論模型研究[J].巖石力學(xué)與工程學(xué)報, 2017, 36(9):2124-2135.(TANG Shibin, LIU Xiangjun, LUO Jiang, et al.Theoretical model for tensile and shear crack initiation at the crack tip in rock subjected to hydraulic pressure[J].Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9): 2124-2135.(in Chinese))

        [12]楊綠峰, 徐華, 李冉, 等.廣義參數(shù)有限元法計算應(yīng)力強度因子[J].工程力學(xué), 2009, 26(3): 48-54.(YANG Lüfeng,XU Hua, LI Ran, et al.The finite element with generalized coefficients for stress intensity factor[J].Engineering Mechanics, 2009, 26(3): 48-54.(in Chinese))

        [13]徐華, 鄧鵬, 藍淞耀, 等.曲線裂紋裂尖SIFs等效分析的廣義參數(shù)Williams單元確定方法[J].工程力學(xué), 2020, 37(6):34-41.(XU Hua, DENG Peng, LAN Songyao, et al.The determination method of Williams element with generalized degrees of freedom for equivalent analysis of SIFs at the curved crack tip[J].Engineering Mechanics, 2020,37(6): 34-41.(in Chinese))

        [14]中國航空研究院.應(yīng)力強度因子手冊[M].增訂版.北京: 科學(xué)出版社, 1993.(Chinese Aeronautical Establishment.Handbook of Stress Intensity Factors[M].Revised ed.Beijing: Science Press, 1993.(in Chinese))

        猜你喜歡
        裂尖無量邊界
        烏雷:無量之物
        拓展閱讀的邊界
        含缺陷礦用圓環(huán)鏈裂尖應(yīng)力應(yīng)變對材料力學(xué)參量的敏感性分析
        礦山機械(2021年3期)2021-03-25 07:12:32
        劉少白
        藝術(shù)品(2020年8期)2020-10-29 02:50:02
        氧化膜對不同時期應(yīng)力腐蝕裂尖力學(xué)場的影響
        焊接(2020年12期)2020-03-01 03:26:34
        基于顯微網(wǎng)格法/數(shù)字圖像相關(guān)技術(shù)的疲勞裂紋尖端變形場
        論中立的幫助行為之可罰邊界
        論書絕句·評謝無量(1884—1964)
        炳靈寺第70 窟無量壽經(jīng)變辨識
        西藏研究(2017年3期)2017-09-05 09:45:07
        核電關(guān)鍵結(jié)構(gòu)材料應(yīng)力腐蝕裂 紋裂尖微觀力學(xué)特性分析*
        日本特黄a级高清免费大片| 亚洲精品v欧洲精品v日韩精品| 无码人妻一区二区三区在线视频| 人妻少妇偷人精品无码| 男男互吃大丁视频网站| 亚洲美女毛片在线视频| 国产精品成人aaaaa网站 | 波多野结衣av一区二区全免费观看| 少妇高清精品毛片在线视频| 自拍 另类 综合 欧美小说| 国语对白三级在线观看| 人妻久久久一区二区三区蜜臀| 少妇无码太爽了不卡视频在线看| 色综合另类小说图片区| 国产又色又爽的视频在线观看91 | 91久久精品一区二区喷水喷白浆| 日韩亚洲一区二区三区四区| 欧美人与动牲交a精品| 国产a级网站| 精品蜜桃在线观看一区二区三区| 国精产品一区一区三区有限在线| 999久久久无码国产精品| 国产精品原创av片国产日韩| 国产精品毛片一区二区三区| 亚洲综合av永久无码精品一区二区| 一道久在线无码加勒比| 一区二区三区婷婷中文字幕| 中文字幕隔壁人妻欲求不满| 激情第一区仑乱| 国产亚洲sss在线观看| 女人天堂国产精品资源麻豆| 无码爆乳护士让我爽| 亚洲自偷自偷偷色无码中文| 男女上床视频在线观看| 国内久久婷婷六月综合欲色啪| 成片免费观看视频大全| 在线视频青青草猎艳自拍69 | 午夜人妻中文字幕福利| 成人性生交大片免费入口| 搡老熟女中国老太| 色婷婷精品综合久久狠狠|