[摘? 要] 文章闡述試卷講評(píng)課存在的誤區(qū)與原則,提出試卷講評(píng)課有效性策略,即詳盡分析,把握試題;集中火力,攻破“痛點(diǎn)”;以點(diǎn)帶面,歸類總結(jié);一題多變,拓展思維;講后再練,亡羊補(bǔ)牢.
[關(guān)鍵詞] 試卷;講評(píng)課;高中數(shù)學(xué)
試卷講評(píng),是高中數(shù)學(xué)教學(xué)的重要組成部分. 通過(guò)試卷講評(píng),可以幫助學(xué)生查漏補(bǔ)缺,進(jìn)一步提高學(xué)生的認(rèn)知水平,提升學(xué)生的核心素養(yǎng). 因此,作為數(shù)學(xué)教師,不可對(duì)試卷講評(píng)課掉以輕心,應(yīng)把其作為一個(gè)課題加以研究,以提高數(shù)學(xué)試卷講評(píng)課的有效性.
試卷講評(píng)課的誤區(qū)分析
雖然教師都認(rèn)識(shí)到試卷講評(píng)課的重要性,但由于種種原因,尤其是為了所謂的趕教學(xué)進(jìn)度,都不經(jīng)意地走入了誤區(qū). 具體而言,有如下幾個(gè)誤區(qū):
1. 答案式的講評(píng)
有些教師認(rèn)為,既然試題已經(jīng)做過(guò)了,也已經(jīng)批閱了,教師沒(méi)有必要大費(fèi)周章去講評(píng),只要讓學(xué)生對(duì)照答案進(jìn)行訂正即可. 然事實(shí)并非如此,學(xué)生認(rèn)真訂正了嗎?還是照著答案“依瓢畫葫蘆”抄一遍?因此,教師千萬(wàn)別被這種“假象”蒙蔽了雙眼.
2. 一言堂式的講評(píng)
所謂一言堂式的講評(píng),就是教師一講到底,而忽略了學(xué)生的主體地位,這種灌輸式的講評(píng)模式,由于缺乏師生的互動(dòng),對(duì)于基礎(chǔ)欠佳的學(xué)生可能始終處于“云里霧里”的狀態(tài),而尖子生也無(wú)暇提出自己對(duì)解法的看法,所以教師千萬(wàn)不可因?yàn)椤胺饪凇倍髿⒘藢W(xué)生的靈性.
3. 就題論題式的講評(píng)
就題論題式的講評(píng),是數(shù)學(xué)試卷講評(píng)最為常見(jiàn)的一種模式,即考什么就講什么. 從表面上來(lái)看,一是節(jié)省了教師備課的時(shí)間,二是節(jié)省了課上講評(píng)的時(shí)間. 但這種試題講評(píng)模式因?yàn)椤皶r(shí)間”放棄了引導(dǎo)學(xué)生對(duì)試題的深入研究,其結(jié)果必然是學(xué)生的認(rèn)知依然在原地“盤旋”.
4. 缺乏提煉式的講評(píng)
所謂缺乏提煉式的講評(píng),就是把每一題都孤立起來(lái)進(jìn)行講評(píng),只講一道題的解法,而不是通過(guò)一道題評(píng)講去提煉一類問(wèn)題的解法,這種因“散打”而缺乏規(guī)律總結(jié)的講評(píng)模式,必然會(huì)導(dǎo)致學(xué)生“只見(jiàn)樹木不見(jiàn)森林”,以后遇到類似問(wèn)題依然不知所措.
試卷講評(píng)應(yīng)遵循的幾個(gè)原則
為了提高試卷講評(píng)課的實(shí)效性,筆者以為試卷講評(píng)課不能想怎么上就怎么上,應(yīng)該遵循以下幾個(gè)原則:
1. 目標(biāo)明確原則
試卷講評(píng)課,要有教學(xué)目標(biāo),教師要明確通過(guò)試題講評(píng)可以提高學(xué)生的哪些數(shù)學(xué)核心素養(yǎng). 比如,對(duì)于大多數(shù)學(xué)生計(jì)算失誤的題目,評(píng)講的目標(biāo)就是通過(guò)探索多種解法,以提高學(xué)生的數(shù)學(xué)運(yùn)算能力.
2. 重點(diǎn)突出原則
講解一道試題,不可能面面俱到,應(yīng)抓住試題中的主要矛盾進(jìn)行化解. 比如,對(duì)于函數(shù)與方程的問(wèn)題,教師應(yīng)把講評(píng)的重點(diǎn)放在如何將函數(shù)問(wèn)題轉(zhuǎn)化為方程問(wèn)題來(lái)處理,或如何把方程問(wèn)題轉(zhuǎn)化為函數(shù)問(wèn)題來(lái)解決,通過(guò)講評(píng)達(dá)到幫助學(xué)生溝通函數(shù)與方程之間的相互聯(lián)系的目的.
3. 針對(duì)性原則
試卷講評(píng)課,教師備課前要多問(wèn)幾個(gè)“為什么學(xué)生會(huì)在這道題上出錯(cuò)”,找出學(xué)生認(rèn)知上存在的問(wèn)題,以及在數(shù)學(xué)思想方法上存在的缺陷,通過(guò)透徹分析與解疑糾錯(cuò),以達(dá)到防止類似的錯(cuò)誤再次發(fā)生的目的.
4. 歸類分析原則
教師講評(píng)試卷時(shí),要打破原來(lái)的次序,應(yīng)依據(jù)考查的知識(shí)點(diǎn),或解題方法,或?qū)W生出現(xiàn)的答題錯(cuò)誤進(jìn)行歸類,這樣可以幫助學(xué)生厘清關(guān)系,形成知識(shí)網(wǎng)絡(luò).
5. 矯正補(bǔ)償原則
數(shù)學(xué)試題講評(píng)后,必須要有補(bǔ)償性練習(xí),也稱跟進(jìn)練習(xí),這種練習(xí)可以安排在課上當(dāng)堂完成,也可以作為課后作業(yè)完成,練習(xí)題最好以考試題的變式形式出現(xiàn),難度相當(dāng),這需要教師精心編制,切中學(xué)生的“命脈”.
當(dāng)然,以上幾個(gè)原則,并非孤立的,而是各有側(cè)重,緊密聯(lián)系、相互補(bǔ)充的.
提高試卷講評(píng)課有效性的策略
試卷講評(píng)課除要遵循以上提到的幾個(gè)原則外,還要遵循以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,只有這樣,才能提高講評(píng)課的有效性. 那么,從教師的角度來(lái)看,該采取哪些講評(píng)策略呢?筆者談幾點(diǎn)做法.
1. 詳盡分析,把握試題
為了提高試卷講評(píng)課的有效性,教師事先要對(duì)試卷進(jìn)行詳盡的分析,分析試卷考查的知識(shí)點(diǎn),分析學(xué)生的得分點(diǎn)和易錯(cuò)點(diǎn),分析試題中的難點(diǎn)和考查的重點(diǎn),由此來(lái)確定講評(píng)時(shí)哪些題可以不講,哪些題只要略講,哪些題需要詳講,哪些題要加以拓展,從而使試卷講評(píng)具有針對(duì)性,做到有的放矢.
2. 集中火力,攻破“痛點(diǎn)”
所謂的“痛點(diǎn)”,就是指學(xué)生答卷上的易錯(cuò)點(diǎn),主要有以下兩類:
一是遺憾之錯(cuò):明明會(huì)做,卻審題疏忽,漏了條件,或忽視了隱含條件,或看錯(cuò)了數(shù)據(jù),或計(jì)算失誤,等等. 如在函數(shù)基本性質(zhì)應(yīng)用的單元測(cè)驗(yàn)中,出現(xiàn)了這樣一道易錯(cuò)試題:
試題1:已知奇函數(shù)f(x)是定義在(-3,3)上的減函數(shù),且滿足不等式f(x-3)+f(x2-3)<0,求x的取值范圍.
在學(xué)生解答中出現(xiàn)了如下錯(cuò)解:
因?yàn)閒(x)是奇函數(shù),所以f(x-3)< -f(x2-3)=f(3-x2),又f(x)在(-3,3)上是減函數(shù),所以x-3>3-x2,即x2+x-6>0,解得x>2或x<-3. 又f(x)是定義在(-3,3)上的函數(shù),所以2 二是似非之錯(cuò):理解不透徹,轉(zhuǎn)化不等價(jià),表達(dá)不嚴(yán)密,計(jì)算不準(zhǔn)確,結(jié)果沒(méi)交代,答題不規(guī)范,等等. 如在二次函數(shù)的單元測(cè)驗(yàn)中,出現(xiàn)了這樣一道易錯(cuò)試題: 試題2:已知函數(shù)f(x)=x2+ax+3-a,若x∈[-2,2]時(shí),f(x)≥0恒成立,求a的取值范圍. 在學(xué)生解答中出現(xiàn)了兩種錯(cuò)誤: 錯(cuò)解1:因?yàn)閒(x)≥0恒成立,所以Δ=a2-4(3-a)≤0恒成立,解得-6≤a≤2. 上述兩種錯(cuò)誤產(chǎn)生的原因是將原題意片面地理解為“當(dāng)x∈[-2,2]時(shí),ax2+bx+c≥0恒成立,則Δ≤0”. 這種不透徹的理解,直接導(dǎo)致轉(zhuǎn)化不等價(jià). 解決這些錯(cuò)誤,教師在試卷評(píng)講課上可以先出示錯(cuò)解,然后組織學(xué)生討論錯(cuò)誤產(chǎn)生的原因,通過(guò)生生互動(dòng)進(jìn)行“全員糾錯(cuò)”. 3. 以點(diǎn)帶面,歸類總結(jié) 一道試題往往側(cè)重考查一個(gè)或幾個(gè)知識(shí)點(diǎn),教師在試題評(píng)講時(shí)應(yīng)抓住這些知識(shí)點(diǎn)加以延伸或拓展,以點(diǎn)帶面,歸類總結(jié),跳出“就題論題”式的講評(píng)誤區(qū). ?搖本題主要考查的是橢圓定義的應(yīng)用,難度并不大. 教師講評(píng)的重點(diǎn)應(yīng)放在求軌跡方法的總結(jié)上. 借助本題總結(jié)求軌跡的五種基本方法——直接法、定義法、幾何法、相關(guān)點(diǎn)法(代入法)、交軌法,并配相關(guān)的題目加以說(shuō)明. 4. 一題多變,拓展思維 在試題講評(píng)中,若遇到有助于發(fā)展學(xué)生數(shù)學(xué)思維的重點(diǎn)試題,教師應(yīng)適當(dāng)加以變式,以此來(lái)點(diǎn)燃學(xué)生的思維,通過(guò)生生合作探究,達(dá)到“講一題,通一片”的教學(xué)效果. 本題考查的是平面向量數(shù)量積在三角形“四心”問(wèn)題中的應(yīng)用,教師講評(píng)本題后,可以給出下列變式題供學(xué)生“趁熱打鐵”: 由一個(gè)試題,引出一串“形似質(zhì)異”或“形異質(zhì)同”的變式題,既可以起到激活學(xué)生思維、打造活力課堂的作用,又可以讓學(xué)生拓展思路,站在更高的角度審視這類問(wèn)題,從而達(dá)到不斷提升數(shù)學(xué)能力與數(shù)學(xué)素養(yǎng)的目的. 5. 講后再練,亡羊補(bǔ)牢 當(dāng)試題講評(píng)完畢后,教師還要布置相關(guān)的練習(xí),讓學(xué)生當(dāng)堂完成,或課后完成,以此來(lái)檢驗(yàn)教師的講評(píng)效果和學(xué)生的掌握情況,讓學(xué)生盡量做到“事后一百分”,起到“亡羊補(bǔ)牢”的效果. 總之,試卷評(píng)講課應(yīng)圍繞“糾正、鞏固、提高”展開,課堂內(nèi)的講評(píng)方式可以是自評(píng)、互評(píng)、師評(píng)等. 唯之,才能真正發(fā)揮試卷講評(píng)課的效能. 作者簡(jiǎn)介:張俊?。?986—),本科學(xué)歷,一級(jí)教師,從事高中數(shù)學(xué)教學(xué)與研究工作.