林穎亨
摘 要:審題是解題的首要步驟,同時也是確定解題方法的重要依據(jù)。筆者在本文主要從“以審題步驟為前提,培養(yǎng)學(xué)生審題意識”、“以概念教學(xué)為途徑,培養(yǎng)學(xué)生審題思維”以及“以變式訓(xùn)練為依靠,培養(yǎng)學(xué)生審題能力”這三個方面,闡述了高中數(shù)學(xué)教師如何幫助學(xué)生形成更加良好的數(shù)學(xué)審題習慣,逐步培養(yǎng)和提高學(xué)生的審題能力。
關(guān)鍵詞:高中數(shù)學(xué);審題意識;審題思維;審題能力
在我國目前的高中數(shù)學(xué)課堂上,部分教師形成一種教學(xué)誤區(qū):他們認為數(shù)學(xué)教師應(yīng)該以傳授數(shù)學(xué)知識為主,只有當復(fù)習或者鞏固某些數(shù)學(xué)知識的時候,才需要解題。因此,作為一名高中數(shù)學(xué)教師,必須給予解題教學(xué)足夠的重視,而解題教學(xué)的第一步就是要從審題能力的培養(yǎng)開始。
一、以審題步驟為前提,培養(yǎng)學(xué)生審題意識
高中數(shù)學(xué)教師要想對學(xué)生進行有效的數(shù)學(xué)審題教學(xué),首先就是要讓學(xué)生明確審題的基本步驟,之后他們才能按部就班的得出習題的大概意思。因此,教師要對學(xué)生認真講解審題步驟,重點培養(yǎng)學(xué)生的數(shù)學(xué)審題意識,使學(xué)生可以精確地分析和理解題意,從而得出最終的正確答案。
比如,以“等差數(shù)列的性質(zhì)”的教學(xué)為例。首先,教師可以精選一道等差數(shù)列習題:假設(shè)等差數(shù)列{an}的前n項和為Sn,已知a3=12,S12>0,S13<0,求①公差d的取值范圍;②S1,S2,…,S12中的哪一個值最大,說明理由。其次,教師可以讓學(xué)生通過閱讀整個題目,讓他們盡可能多搜集一些對自己有用的已知條件。然后,教師可以再讓學(xué)生細讀一遍題目,使學(xué)生可以做到無遺漏,并且將已知條件和題目要求這兩者放在一起進行對比,以此幫助學(xué)生找到其中的因果關(guān)系。而學(xué)生通過這個步驟也就可以根據(jù)題目中所給出的S12>0和S13<0這兩個條件列出有關(guān)于a1和d的不等式組,以此求出公差d的取值范圍。最后,教師就可以讓學(xué)生按照相同的步驟閱讀第二小問,以此促進他們得出該小問的正確答案。
二、以概念教學(xué)為途徑,培養(yǎng)學(xué)生審題思維
對于學(xué)生數(shù)學(xué)審題能力的培養(yǎng),并不只是局限于解題的教學(xué),教師同樣也可以將其滲透在平常的教學(xué)中,以此來達到最佳教學(xué)效果。其中,概念教學(xué)對學(xué)生數(shù)學(xué)閱讀能力和審題思維的提升有著很好的積極作用。
比如,依舊以“等差數(shù)列”為例。首先教師可以留出短暫的課堂時間供給學(xué)生閱讀和消化等差數(shù)列的定義,并且讓學(xué)生尋找其中的關(guān)鍵字和詞。其次教師就可以令學(xué)生舉手分享自己所找到的關(guān)鍵字或者關(guān)鍵詞。這時候,有的學(xué)生可能就會舉手回答:“我找到的是從第2項起?!庇械膶W(xué)生可能就會說:“后一項與前一項的差必須等于一個常數(shù)?!弊詈蠼處熅涂梢越又鴮W(xué)生的回答做出總結(jié),使學(xué)生可以明白該定義中每一個關(guān)鍵字、關(guān)鍵詞所代表的意義。而當學(xué)生學(xué)會了尋找該定義中的關(guān)鍵字、關(guān)鍵詞之后,他們也就可以學(xué)會如何在題目中尋找關(guān)鍵字、關(guān)鍵詞。
三、以變式訓(xùn)練為依靠,培養(yǎng)學(xué)生審題能力
培養(yǎng)學(xué)生數(shù)學(xué)審題能力并不是可以快速完成的,是需要學(xué)生在解決了較多類型的數(shù)學(xué)習題之后,自主得出相應(yīng)的審題方法以及審題規(guī)律。因此,高中數(shù)學(xué)教師在實際的教學(xué)過程中可以為學(xué)生設(shè)計一些數(shù)學(xué)變式訓(xùn)練,使學(xué)生可以見識到不同類型的數(shù)學(xué)習題,以此培養(yǎng)學(xué)生的數(shù)學(xué)審題能力。
比如,依舊以“等差數(shù)列”為例。首先,教師可以選擇一道二級等差數(shù)列的習題:數(shù)列32,27,23,20,18的下一項是什么?以此來讓學(xué)生進行積極地思考。其次,教師就可以引入二級等差數(shù)列的定義,讓學(xué)生正確認識二級等差數(shù)列。等學(xué)生對二級等差數(shù)列有了一定的理解之后,教師就可以讓學(xué)生根據(jù)所學(xué)到的定義來解決這道習題,使他們可以得到最終的正確答案就是17。最后,教師還可以再選擇幾道與二級等差數(shù)列相關(guān)的習題,以此來幫助學(xué)生鞏固所學(xué)到的數(shù)學(xué)知識。
綜上所述,高中數(shù)學(xué)教師在實際的教學(xué)過程中要想培養(yǎng)學(xué)生的數(shù)學(xué)審題能力,首先就需要講解審題步驟,使學(xué)生可以形成流暢的審題思路,并且在數(shù)學(xué)概念的教學(xué)中滲透審題思想,提升學(xué)生的數(shù)學(xué)閱讀能力,同時也要對學(xué)生開展更加豐富的數(shù)學(xué)變式訓(xùn)練,使學(xué)生可以形成更加靈活的數(shù)學(xué)審題思維。
參考文獻:
[1]儲吉育.高中數(shù)學(xué)教學(xué)中學(xué)生解題能力的培養(yǎng)[J].數(shù)學(xué)大世界(下旬),2017(12):43.
[2]何偉富.提升學(xué)生解題能力的有效途徑[J].語數(shù)外學(xué)習(高中版下旬),2017(09):50.