何付軍
【摘要】將小波變換方法引入到曲柄搖桿結(jié)構(gòu)搖桿角位移噪聲去處中。在小波變換后,噪聲與信號(hào)中的小波域中的高頻段對(duì)應(yīng),有效信號(hào)與低頻段對(duì)應(yīng)。對(duì)信號(hào)進(jìn)行3層分解,并將高頻部分置零以去除噪聲。處理結(jié)果顯示,該方法能有效祛除位移信號(hào)中的噪聲,有較好的工程應(yīng)用前景。
【關(guān)鍵詞】曲柄搖桿機(jī)構(gòu) 小波變換 角位移
【中圖分類號(hào)】TN911.4 【文獻(xiàn)標(biāo)識(shí)碼】A 【文章編號(hào)】2095-3089(2018)14-0266-01
引言
曲柄搖桿機(jī)構(gòu)是常用的機(jī)械結(jié)構(gòu),其角位移和角速度變化是機(jī)械裝置常用的狀態(tài)監(jiān)測(cè)和控制信號(hào)[1]-[2]。由于鉸鏈之間存在間隙、搖桿受力帶來的震動(dòng)帶來的,會(huì)給信號(hào)帶來噪聲。小波方法因?yàn)榭梢赃M(jìn)行多尺度分解,被廣泛應(yīng)用于信號(hào)噪聲祛除中[3]-[8]。為此將小波變換方法引入,進(jìn)行多尺度分解,分別進(jìn)行去噪。旨在能夠還原真實(shí)位移,提高良好的狀態(tài)監(jiān)測(cè)。
一、實(shí)驗(yàn)裝置及實(shí)驗(yàn)信號(hào)
設(shè)計(jì)曲柄搖桿裝置,進(jìn)行實(shí)驗(yàn),測(cè)量位移信號(hào)。圖1為構(gòu)件結(jié)構(gòu)示意圖,個(gè)構(gòu)件尺寸如圖1所示;圖2為測(cè)得的搖桿角位移時(shí)序圖。觀察圖2可知,角位移信號(hào)存在較強(qiáng)噪聲。對(duì)位移信號(hào)進(jìn)行一階微分,得到其速度時(shí)序圖,如圖3所示,可知速度信號(hào)噪聲更強(qiáng)。
二、角位移去噪處理
在實(shí)際應(yīng)用中可能要實(shí)時(shí)觀察搖桿的角位移變化,實(shí)現(xiàn)對(duì)系統(tǒng)運(yùn)行狀態(tài)的監(jiān)測(cè)或進(jìn)行實(shí)時(shí)控制。為實(shí)現(xiàn)更為準(zhǔn)確的監(jiān)測(cè),需要對(duì)實(shí)際角位移進(jìn)行去噪,基于小波變換對(duì)實(shí)際角位移進(jìn)行去噪。因?yàn)樵肼暦植几哳l段,所以將高頻小波系數(shù)進(jìn)行置零處理。圖4為3層小波系數(shù)置零處理后重構(gòu)信號(hào)與原實(shí)際角位移對(duì)比時(shí)序圖。觀察圖4可知,經(jīng)過4層小波去噪后,角位移信號(hào)已經(jīng)變得非常光滑。
三、總結(jié)
為祛除曲柄搖桿機(jī)構(gòu)的噪聲,將小波方法引入。先對(duì)信號(hào)噪聲進(jìn)行分析,指出噪聲主要集中在高頻段。通過多尺度分解,對(duì)信號(hào)中的小波系數(shù)置零,進(jìn)行噪聲祛除處理。最后通過實(shí)驗(yàn)驗(yàn)證了該方法的有效性。為一維噪聲的祛除找一種有效方法。
參考文獻(xiàn):
[1]Farge M.Wavelet transform and their application to turbulence[J].Annu.rev.fluidMech,1992,56(4):68-68.
[2]Daubechies I.The wavelet transform,time-frequency localization and signal analysis[J].Journal of Renewable & Sustainable Energy,2015,36(5):961-1005.
[3]Liu T,Zhang W,Yan S.A novel image enhancement algorithm based on stationary wavelet transform for infrared thermography to the de-bonding defect in solid rocket motors[J].Mechanical Systems and Signal Processing,2015,62:366-380.
[4]Chang T,Kuo C C J.Kuo,C.:Texture Analysis and Classification with Tree-Structured Wavelet Transform.IEEE Trans.Image Processing 2(4),429-441[J].IEEE Transactions on Image Processing,1993,2(4):429-441.
[5]Wang,Y.,Z.He and Y.Zi,Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform.Mechanical Systems and Signal Processing,2010.24(1):p.119-137.
[6]Pan Q,Zhang D,Dai G,et al.“Two Denoising Methods by Wavelet Transform,”[J].IEEE Transactions on Signal Processing,1999,47(12):3401-3406.
[7]Liu T,Yan S,Zhang W.Time–frequency analysis of nonstationary vibration signals for deployable structures by using the constant-Q nonstationarygabor transform[J].Mechanical Systems & Signal Processing,2016,75:228-244.
[8]Schukin,E.L.,R.U.Zamaraev and L.I.Schukin,The optimisation of wavelet transform for the impulse analysis in vibration signals.Mechanical systems and signal processing,2004.18(6):p.1315-1333.