胡雅杰 錢(qián)海軍 曹偉偉 邢志鵬 張洪程 戴其根 霍中洋 許軻 魏海燕 郭保衛(wèi)
(揚(yáng)州大學(xué) 農(nóng)業(yè)部長(zhǎng)江流域稻作技術(shù)創(chuàng)新中心/江蘇省作物遺傳生理國(guó)家重點(diǎn)實(shí)驗(yàn)室培育點(diǎn), 江蘇 揚(yáng)州 225009;*通訊聯(lián)系人, E-mail: hczhang@yzu.edu.cn)
?
機(jī)插方式和密度對(duì)不同穗型水稻品種產(chǎn)量及其構(gòu)成的影響
胡雅杰錢(qián)海軍曹偉偉邢志鵬張洪程*戴其根霍中洋許軻魏海燕郭保衛(wèi)
(揚(yáng)州大學(xué) 農(nóng)業(yè)部長(zhǎng)江流域稻作技術(shù)創(chuàng)新中心/江蘇省作物遺傳生理國(guó)家重點(diǎn)實(shí)驗(yàn)室培育點(diǎn), 江蘇 揚(yáng)州 225009;*通訊聯(lián)系人, E-mail: hczhang@yzu.edu.cn)
HU Yajie, QIAN Haijun, CAO Weiwei, et al. Effect of different mechanical transplantation methods and density on yield and its components of different panicle-typed rice. Chin J Rice Sci, 2016, 30(5): 493-506.
為探明不同機(jī)插方式下水稻適用穗型和適宜栽插規(guī)格,闡明不同機(jī)插方式下不同穗型水稻品種產(chǎn)量形成特征,選用大、中和小穗型各2個(gè)品種為試驗(yàn)材料,設(shè)置缽苗機(jī)插(行距33 cm)、行距30 cm毯苗機(jī)插和行距25 cm毯苗機(jī)插3種機(jī)插方式(記為A、B、C),研究機(jī)插方式和密度對(duì)不同穗型水稻品種產(chǎn)量及其形成和穗部性狀的影響。缽苗機(jī)插設(shè)置3種株距,分別為12 cm、14 cm和16 cm(記為1、2、3),2種行距毯苗機(jī)插設(shè)置5種株距,分別為10 cm、11.7 cm、13.3 cm、14.8 cm、16 cm(記為1、2、3、4、5)。研究結(jié)果表明:1)缽苗機(jī)插,隨著密度降低,大穗型品種產(chǎn)量呈先增后減,以A2最高;中、小穗型品種產(chǎn)量呈遞減趨勢(shì),以A1最高。毯苗機(jī)插,隨著密度降低,大穗型品種B方式產(chǎn)量呈先增后減,以B4最高,C方式呈遞增趨勢(shì),以C5最高;中穗型品種B和C方式產(chǎn)量均呈先增后減,分別以B3和C4最高;小穗型品種B方式產(chǎn)量呈遞減趨勢(shì),以B1最高,C方式呈先增后減,以C2最高。同一密度下,缽苗機(jī)插產(chǎn)量顯著高于毯苗機(jī)插,增產(chǎn)幅度表現(xiàn)為大穗型>中穗型>小穗型,2種行距毯苗機(jī)插差異不顯著。對(duì)2種行距毯苗機(jī)插而言,同一株距下,大穗型品種B方式產(chǎn)量高于C方式;中穗型品種株距為10 cm、11.7 cm、13.3 cm,B方式產(chǎn)量高,而株距為14.8 cm、16 cm,C方式產(chǎn)量高;小穗型品種除株距為10 cm外,C方式較B方式具有增產(chǎn)優(yōu)勢(shì)。2)隨著密度降低,不同機(jī)插方式下不同穗型品種單位面積穗數(shù)減少,每穗粒數(shù)增加,群體穎花量變化趨勢(shì)與產(chǎn)量一致,結(jié)實(shí)率和千粒重變化不一。同一密度下,不同機(jī)插方式間單位面積穗數(shù)相當(dāng),缽苗機(jī)插每穗粒數(shù)顯著高于毯苗機(jī)插,每穗粒數(shù)增幅表現(xiàn)為大穗型>中穗型>小穗型,結(jié)實(shí)率和千粒重差異不顯著。對(duì)2種行距毯苗機(jī)插而言,同一株距下,B方式單位面積穗數(shù)少于C方式,而每穗粒數(shù)則相反。3)隨著密度降低,不同機(jī)插方式下不同穗型品種穗長(zhǎng)、著粒密度、單穗質(zhì)量、一次枝梗數(shù)、一次枝梗粒數(shù)、二次枝梗數(shù)和二次枝梗粒數(shù)呈增加趨勢(shì),一、二次枝梗數(shù)比值和一、二次枝梗粒數(shù)比值呈減少趨勢(shì)。同一密度下,缽苗機(jī)插穗長(zhǎng)、著粒密度、單穗質(zhì)量、一次枝梗數(shù)、一次枝梗粒數(shù)、二次枝梗數(shù)和二次枝梗粒數(shù)高于毯苗機(jī)插。因此,缽苗機(jī)插應(yīng)用大穗型品種宜適當(dāng)降低密度,充分發(fā)揮大穗優(yōu)勢(shì),提高群體穎花量而高產(chǎn);中、小穗型品種宜采用高密度栽插,增加穗數(shù)以獲得高產(chǎn)。毯苗機(jī)插應(yīng)用大穗型品種宜采用行距30 cm,適當(dāng)增加株距,依靠擴(kuò)大穗型而高產(chǎn);中穗型品種宜采用行距30 cm,配置中等密度,協(xié)調(diào)穗粒結(jié)構(gòu)而提高群體穎花量;小穗型宜采用行距25 cm,適當(dāng)減少株距,通過(guò)顯著增加穗數(shù)以獲得高產(chǎn)。
缽苗機(jī)插; 毯苗機(jī)插; 株行距; 產(chǎn)量; 產(chǎn)量構(gòu)成; 穗部性狀
探索研究新型水稻機(jī)械化種植方式及其高產(chǎn)形成特征一直是生產(chǎn)上的研究熱點(diǎn)和重點(diǎn)[1-4]。目前,我國(guó)主體水稻機(jī)插方式是20世紀(jì)80年代引進(jìn)日本插秧機(jī)及其工廠化育秧技術(shù)并加以本土化而發(fā)展形成的盤(pán)育毯狀小苗機(jī)插(簡(jiǎn)稱(chēng)毯苗機(jī)插)。毯苗機(jī)插水稻憑借其高產(chǎn)高效和省工省力優(yōu)勢(shì),近三十多年推廣面積不斷擴(kuò)大,對(duì)保障我國(guó)糧食生產(chǎn)安全和提升水稻全程機(jī)械化水平發(fā)揮了重要作用[5-7]。當(dāng)前生產(chǎn)上應(yīng)用的毯苗機(jī)插水稻行距為30 cm,但江蘇、江西、湖南等省稻農(nóng)普遍反映機(jī)插行距偏大,穴數(shù)較少,基本苗偏少,導(dǎo)致有效穗數(shù)不足,限制機(jī)插稻產(chǎn)量潛力發(fā)揮[8-11]。而有研究認(rèn)為機(jī)插稻超高產(chǎn)應(yīng)適當(dāng)擴(kuò)大行株距,降低移栽密度,減少基本苗,增加田間通風(fēng)透光條件,提高水稻中后期群體質(zhì)量,主攻大穗[12-13]。國(guó)內(nèi)外學(xué)者就行株距或移栽密度對(duì)毯苗機(jī)插水稻產(chǎn)量的影響研究報(bào)道較多[14-21],李世峰等[17]和彭長(zhǎng)青等[18]認(rèn)為毯苗機(jī)插水稻移栽密度過(guò)小或過(guò)大均不利于高產(chǎn),小棵密植利于個(gè)體與群體生長(zhǎng)發(fā)育。盡管前人針對(duì)毯苗機(jī)插水稻不同移栽密度進(jìn)行了研究,但結(jié)果不盡一致。
同時(shí),毯苗機(jī)插還存在以下問(wèn)題:秧齡彈性小(秧齡15~20 d),茬口季節(jié)緊張,易造成超秧齡,且播種密度大、秧苗素質(zhì)不高,加之移栽植傷重,返青期長(zhǎng),生育期縮短,限制了水稻品種產(chǎn)量潛力,特別是雜交稻品種不適用毯苗機(jī)插[22-23]。因此,生產(chǎn)上亟待研發(fā)能夠克服毯苗機(jī)插不足的新型插秧機(jī)及配套高產(chǎn)栽培技術(shù),做到農(nóng)機(jī)農(nóng)藝有機(jī)融合,而缽苗機(jī)插水稻實(shí)現(xiàn)了缽育長(zhǎng)秧齡壯苗的機(jī)械化有序精確無(wú)植傷栽植,可能是我國(guó)多數(shù)稻區(qū)種植機(jī)械化的重要途徑。早在1998年,江蘇省農(nóng)機(jī)推廣站就引進(jìn)日本RX-6型水稻缽苗移栽機(jī)進(jìn)行了初步試驗(yàn),由于該機(jī)進(jìn)口價(jià)格昂貴,未能大面積推廣應(yīng)用[24]。之后,中國(guó)農(nóng)業(yè)大學(xué)、黑龍江八一農(nóng)墾大學(xué)和吉林省農(nóng)機(jī)推廣站等單位相繼開(kāi)展了水稻缽苗行栽機(jī)的研制及試驗(yàn)示范[25-26]。自2010年以來(lái),常州亞美柯機(jī)械裝備有限公司全套引進(jìn)并吸收改進(jìn)了日本水稻缽苗栽插機(jī)械及其配套裝備,揚(yáng)州大學(xué)聯(lián)合國(guó)內(nèi)多家單位開(kāi)展了水稻缽苗機(jī)插高產(chǎn)栽培試驗(yàn)示范研究,結(jié)果證明水稻缽苗機(jī)插較毯苗機(jī)插具有明顯的增產(chǎn)優(yōu)勢(shì)[27]。
然而,如何因種選用不同插秧機(jī)機(jī)型,如何因品種因機(jī)型配置適宜栽插規(guī)格,生產(chǎn)上還缺乏理論與技術(shù)的指導(dǎo)。因此,開(kāi)展不同機(jī)插方式和密度對(duì)不同穗型水稻品種產(chǎn)量及其形成的影響研究,闡明不同機(jī)插方式水稻產(chǎn)量及其形成特征,探明不同穗型品種配套機(jī)型和適宜栽插密度,以期為大面積機(jī)插水稻生產(chǎn)提供理論與技術(shù)支持。
1.1試驗(yàn)地點(diǎn)
試驗(yàn)于2013-2014年在揚(yáng)州大學(xué)農(nóng)學(xué)院校外試驗(yàn)基地江蘇省興化市釣魚(yú)鎮(zhèn)(33°05′N(xiāo),119°58′E)進(jìn)行。該區(qū)位于江蘇里下河腹部,屬北亞熱帶濕潤(rùn)氣候區(qū),年平均溫度15℃左右,年降水量1024.8 mm左右,全年日照時(shí)數(shù)2305.6 h左右,無(wú)霜期227 d左右。兩年水稻生長(zhǎng)季節(jié)溫度、降水量和日照等氣象資料見(jiàn)圖1。試驗(yàn)地前茬為小麥(產(chǎn)量約6.7 t/hm2),土壤類(lèi)型勤泥土,質(zhì)地黏性。2013年和2014年0-20 cm土層有機(jī)質(zhì)含量分別為24.8 g/kg和24.9 g/kg,全氮1.6 g/kg和1.6 g/kg,速效磷含量12.8 mg/kg和13.1 mg/kg,速效鉀含量141.5 mg/kg和136.8 mg/kg。
1.2供試材料
選取具有不同穗質(zhì)量的24個(gè)品種或組合進(jìn)行預(yù)備試驗(yàn),在統(tǒng)一高產(chǎn)栽培管理?xiàng)l件下,充分發(fā)揮其產(chǎn)量潛力,成熟期按平均單穗質(zhì)量進(jìn)行聚類(lèi)分析,即按歐氏距離長(zhǎng)短劃分為大穗型(平均單穗質(zhì)量≥5 g)、中穗型(3 g<平均單穗質(zhì)量<5 g)和小穗型(平均單穗質(zhì)量≤3 g) 3類(lèi)。每種穗型各選取2個(gè)最具代表性品種或組合進(jìn)行正式試驗(yàn),大穗型品種為甬優(yōu)2640和甬優(yōu)8號(hào),中穗型品種為武運(yùn)粳24號(hào)和寧粳3號(hào),小穗型品種為淮稻5號(hào)和淮稻10號(hào)。
1.3試驗(yàn)設(shè)計(jì)
采用裂區(qū)設(shè)計(jì),品種為主區(qū),機(jī)插方式為裂區(qū),密度處理為再裂區(qū),重復(fù)3次,共234個(gè)小區(qū),小區(qū)面積20 m2。試驗(yàn)設(shè)置水稻缽苗機(jī)插和水稻毯苗機(jī)插2種機(jī)插方式,毯苗機(jī)插又設(shè)置2種機(jī)插行距,分別為30 cm和25 cm。為便于比較研究,將缽苗機(jī)插、行距30 cm毯苗機(jī)插和行距25 cm毯苗機(jī)插分別記為A、B、C。同時(shí),根據(jù)不同插秧機(jī)機(jī)型設(shè)置株距,缽苗機(jī)插方式下設(shè)置3種株距,分別為12 cm、14 cm、16 cm,記為1、2、3;行距30 cm毯苗機(jī)插和行距25 cm毯苗機(jī)插,設(shè)置5種株距,分別為10.0 cm、11.7 cm、13.3 cm、14.8 cm、16.0 cm,記為1、2、3、4、5。為了便于數(shù)據(jù)分析,對(duì)機(jī)插方式和株距進(jìn)行組合編號(hào),具體見(jiàn)表1。
2013年和2014年,缽苗機(jī)插采用特制塑料缽體硬盤(pán)旱育秧,5月18日和5月20日播種,6月17日和6月19日機(jī)插,秧齡均為30 d;毯苗機(jī)插采用塑料軟盤(pán)旱育秧,5月30日和6月2日播種,6月17日和6月19日機(jī)插,秧齡均為18 d。根據(jù)錢(qián)銀飛等[21]和李剛?cè)A等[28]關(guān)于不同穗型水稻品種每穴適宜苗數(shù)的研究結(jié)果,確定大穗型品種每穴栽插2苗,中穗型品種每穴栽插3苗,小穗型品種每穴栽插4苗。
總施純氮300 kg/hm2,m基蘗肥∶m穗肥=6∶4,其中基肥和分蘗肥各占50%,穗肥分兩次等量施用;氮磷鉀配比為mN∶mP2O5∶mK2O=1∶0.4∶0.8,磷肥全作基肥一次施用,鉀肥分兩次施用,其中基肥和促花肥各占50%。機(jī)插時(shí)薄水移栽活棵,分蘗期穩(wěn)定的淺水層灌溉;在有效分蘗臨界葉齡的前一個(gè)葉齡(N-n-1),莖蘗數(shù)達(dá)到預(yù)期穗數(shù)的80%時(shí),開(kāi)始排水?dāng)R田;拔節(jié)至成熟期實(shí)行濕潤(rùn)灌溉,干干濕濕,直至收獲前5~7 d。病蟲(chóng)草害防治按當(dāng)?shù)卮竺娣e生產(chǎn)統(tǒng)一實(shí)施。
圖12013和2014年水稻生長(zhǎng)季節(jié)日照、平均溫度、降水量
Fig.1. Sunshine hours, mean temperature and precipitation during the growth season of rice in 2013 and 2014.
表1不同機(jī)插方式水稻基本苗構(gòu)成
Table 1. Basic seedlings of rice under various mechanical transplantion methods.
處理Treatment行株距Row-plantspacing/cm密度Density/(×104·hm-2)大穗型Largepanicle-typedvariety穴苗數(shù)Seedlingnumberperhill基本苗Basicseedlings/(×104·hm-2)中穗型Mediumpanicle-typedvariety穴苗數(shù)Seedlingnumberperhill基本苗Basicseedlings/(×104·hm-2)小穗型Smallpanicle-typedvariety穴苗數(shù)Seedlingnumberperhill基本苗Basicseedlings/(×104·hm-2)A133×1225.5251.0376.54102.0A233×1421.0242.0363.0484.0A333×1619.5239.0358.5478.0B130×1033.0266.0399.04132.0B230×11.728.5257.0385.54114.0B330×13.325.5251.0376.54102.0B430×14.822.5245.0367.5490.0B530×1621.0242.0363.0484.0C125×1040.5281.03121.54162.0C225×11.734.5269.03103.54138.0C325×13.330.0260.0390.04120.0C425×14.827.0254.0381.04108.0C525×1625.5251.0376.54102.0
1.4測(cè)定內(nèi)容與方法
1.4.1產(chǎn)量測(cè)定
成熟期采用五點(diǎn)法每小區(qū)普查50穴,計(jì)算有效穗數(shù),每小區(qū)按平均穗數(shù)取10穴測(cè)定每穗粒數(shù)和結(jié)實(shí)率;取1 000實(shí)粒種子(含水率14%)稱(chēng)重,重復(fù) 3次,求取千粒重;并實(shí)收核產(chǎn)。
1.4.2穗部性狀調(diào)查
每小區(qū)按平均穗數(shù)取10穴進(jìn)行考種,分穗長(zhǎng)、一次枝梗、二次枝梗等考查穗部性狀。著粒密度(粒/cm)=每穗粒數(shù)/穗長(zhǎng);一、二次枝梗數(shù)比值=一次枝梗數(shù)/二次枝梗數(shù);一、二次枝梗粒數(shù)比值= 一次枝梗粒數(shù)/二次枝梗粒數(shù)。
1.5數(shù)據(jù)處理
采用Microsoft Excel 2003進(jìn)行數(shù)據(jù)處理,運(yùn)用SPSS 16.0軟件進(jìn)行統(tǒng)計(jì)分析,用Origin 8.0作圖。由于兩年數(shù)據(jù)趨勢(shì)基本一致,除產(chǎn)量數(shù)據(jù)外,其他數(shù)據(jù)以2013年數(shù)據(jù)進(jìn)行分析。
2.1產(chǎn)量及其構(gòu)成
兩年不同穗型水稻品種產(chǎn)量的方差分析結(jié)果表明(表2),年度、品種、處理(機(jī)插方式和密度)間的互作達(dá)極顯著水平,且F值表現(xiàn)為處理>品種>年度?;プ餍?yīng)方面,年度與品種二因子間達(dá)顯著水平,品種與處理二因子間達(dá)極顯著水平,年度與處理二因子間和年度、品種、處理三因子間未達(dá)顯著。
2.1.1大穗型品種產(chǎn)量及其構(gòu)成
由表3可知,隨著密度降低,兩年兩大穗型品種A和B方式產(chǎn)量均呈先增后減,C方式產(chǎn)量呈遞增,最高產(chǎn)量分別為A2、B4、C5。2013年兩品種A2產(chǎn)量較B4、C5分別高10.41%和10.22%、17.69%和14.61%,B4產(chǎn)量較C5高6.60%和3.98%;2014年兩品種A2產(chǎn)量較B4、C5分別高8.06%和8.22%、15.12%和13.67%,B4產(chǎn)量較C5高6.53%和5.04%。同一密度下,兩年兩品種A1產(chǎn)量顯著高于B3、C5,2013年增產(chǎn)幅度分別為10.52%和9.28%、12.10%和9.74%,2014年增產(chǎn)幅度為9.97%和8.46%、10.47%和9.53%,而B(niǎo)3產(chǎn)量略高于C5,但差異不顯著。對(duì)2種行距毯苗機(jī)插而言,同一株距下,除2013年甬優(yōu)8號(hào)株距16 cm外,大穗型品種B方式產(chǎn)量均高于C方式,增產(chǎn)幅度0.10%~9.07%,平均增產(chǎn)4.30%。
表2產(chǎn)量在年度間、品種間、處理間的方差分析
Table 2. Analysis of variance (F-value) of yield among years, cultivars and treatments(n=468).
變異來(lái)源Source自由度df平方和Sumofsquares均方MeansquareF值Fvalue年度Year(Y)119.5819.5857.14**品種Cultivar(C)5260.2552.05159.01**處理Treatment(T)1269.115.76190.47**年度×品種Y×C51.640.3321.83*年度×處理Y×T120.360.032.02ns品種×處理C×T6058.920.9865.49**年度×品種×處理Y×C×T600.900.020.42ns
*,**分別表示在5%和1%水平上差異顯著,ns表示差異不顯著。下同。
*,**Significantly different at 0.05 and 0.01 probability levels, respectively. ns, No signifcant difference. The same as in tables below.
對(duì)群體穎花量分析可知,隨著密度降低,A和B方式群體穎花量呈先增后減,C方式呈遞增,兩品種群體穎花量最大值分別為A2、B4、C5,這與產(chǎn)量變化規(guī)律一致。再對(duì)產(chǎn)量構(gòu)成因素進(jìn)行分析,隨著密度降低,3種機(jī)插方式穗數(shù)均呈遞減趨勢(shì),每穗粒數(shù)呈遞增趨勢(shì),結(jié)實(shí)率和千粒重?zé)o明顯變化趨勢(shì)。相關(guān)分析和通徑分析表明(表4),大穗型品種產(chǎn)量與穗數(shù)呈極顯著負(fù)相關(guān),與每穗粒數(shù)和群體穎花量呈極顯著正相關(guān),且PX2-X3>PX1-X3。同一密度下,3種機(jī)插方式穗數(shù)、結(jié)實(shí)率和千粒重相當(dāng),而每穗粒數(shù)A1顯著高于B3和C5。就2種行距毯苗機(jī)插而言,同一株距下,B方式穗數(shù)低于C方式,而每穗粒數(shù)呈相反趨勢(shì),結(jié)實(shí)率和千粒重互有高低。就機(jī)插方式平均值而言,與B和C方式相比,A方式穗數(shù)分別低6.26%和13.16%,每穗粒數(shù)分別高18.22%和32.56%,群體穎花量分別高11.28%和15.37%;與C方式相比,B方式穗數(shù)低7.36%,每穗粒數(shù)高12.13%,群體穎花量高3.67%;而結(jié)實(shí)率和千粒重表現(xiàn)為A>B>C。
因此,缽苗機(jī)插采用大穗型品種較毯苗機(jī)插利于充分發(fā)揮大穗優(yōu)勢(shì)而高產(chǎn),而毯苗機(jī)插水稻宜采用行距30 cm機(jī)插,利于大穗型品種增產(chǎn)。
2.1.2中穗型品種產(chǎn)量及其構(gòu)成
由表5可知,隨著密度降低,兩年兩中穗型品種A方式產(chǎn)量呈遞減趨勢(shì),B和C方式產(chǎn)量均呈先增后減。兩年武運(yùn)粳24號(hào)和寧粳3號(hào)最高產(chǎn)量分別為A1、B3、C4,2013年A1較B3、C4分別高8.35%和6.97%、5.74%和5.01%,而B(niǎo)3較C4低2.45%和1.90%;2014年A1較B3、C4處理分別高7.42%和7.66%、5.75%和5.04%,B3較C4處理低1.55%和2.43%。同一密度下,兩年兩品種A1產(chǎn)量顯著高于B3、C5,2013年增產(chǎn)幅度為8.35%和6.97%、9.61%和7.83%;2014年增產(chǎn)幅度為7.42%和7.66%、8.83%和7.86%,而B(niǎo)3略高于C5。對(duì)2種行距毯苗機(jī)插而言,在株距為10 cm、11.7 cm、13.3 cm條件下,B方式產(chǎn)量高于C方式,增產(chǎn)幅度為2.48%~8.24%,而在株距為14.8 cm、16 cm條件下,B方式產(chǎn)量低于C方式,減產(chǎn)幅度為4.15%~6.63%。
對(duì)群體穎花量分析可知,隨著密度降低,A方式群體穎花量呈遞減趨勢(shì),B和C方式均呈先增后減趨勢(shì),兩品種群體穎花量最大值為A1、B3、C4,且A1顯著高于B3和C4,與產(chǎn)量變化規(guī)律一致。對(duì)產(chǎn)量構(gòu)成進(jìn)一步分析,隨著密度降低,3種機(jī)插方式穗數(shù)均呈遞減趨勢(shì),每穗粒數(shù)均呈遞增趨勢(shì),結(jié)實(shí)率和千粒重變化不一。相關(guān)分析和通徑分析結(jié)果表明(表4),中穗型品種產(chǎn)量與穗數(shù)呈顯著負(fù)相關(guān),與每穗粒數(shù)呈極顯著正相關(guān),且PX2-X3>PX1-X3。同一密度下,A1、B3和C5穗數(shù)、結(jié)實(shí)率、千粒重相當(dāng),A1每穗粒數(shù)顯著高于B3和C5。就2種行距毯苗機(jī)插而言,同一株距下,B方式穗數(shù)低于C方式,而每穗粒數(shù)呈相反趨勢(shì),結(jié)實(shí)率和千粒重互有高低。就平均值而言,與B和C方式相比,A方式穗數(shù)減少7.59%和14.21%,每穗粒數(shù)增加16.58%和26.22%,群體穎花量高8.22%和8.26%;與C方式相比,B方式穗數(shù)減少7.17%,每穗粒數(shù)增加8.27%,群體穎花量相當(dāng);結(jié)實(shí)率和千粒重表現(xiàn)為A>B>C。
因此,對(duì)中穗型品種而言,水稻缽苗機(jī)插較毯苗機(jī)插利于擴(kuò)大穗型而增產(chǎn),而行距30 cm與行距25 cm毯苗機(jī)插產(chǎn)量相當(dāng),但綜合考慮到行距30 cm毯苗機(jī)插利于提高結(jié)實(shí)率和千粒重,故中穗型品種宜采用行距30 cm機(jī)插。
2.1.3小穗型品種產(chǎn)量及其構(gòu)成
由表6可知,隨著密度降低,兩年兩小穗型品種A和B方式產(chǎn)量呈遞減,C方式呈先增后減趨勢(shì),兩年兩品種最高產(chǎn)量分別為A1、B1、C2,兩年A1、B1和C2產(chǎn)量相當(dāng)。同一密度下,兩年兩品種A1產(chǎn)量顯著高于B3、C5,2013年增產(chǎn)幅度為6.03%和5.47%、5.72%和5.03%,2014年增產(chǎn)幅度為5.49%和6.25%、8.58%和6.71%,而B(niǎo)3與C5產(chǎn)量相當(dāng),差異不顯著。對(duì)2種行距毯苗機(jī)插而言,除株距為10 cm外,行距25 cm毯苗機(jī)插水稻產(chǎn)量高于行距30 cm毯苗機(jī)插,增產(chǎn)幅度為2.11%~8.61%,主要是株距10 cm條件下,行距25 cm毯苗機(jī)插群體數(shù)量過(guò)大,后期發(fā)生倒伏,較行距30 cm毯苗機(jī)插減產(chǎn)8.37%~12.18%。
對(duì)群體穎花量分析可知,隨著密度降低,A和B方式均呈遞減趨勢(shì),C方式呈先增后減趨勢(shì),兩品種群體穎花量最大值分別為A1、B1、C2,與產(chǎn)量變化規(guī)律一致。再對(duì)產(chǎn)量構(gòu)成分析可知,隨著密度降低,3種機(jī)插方式穗數(shù)均呈遞減趨勢(shì),每穗粒數(shù)呈相反趨勢(shì),結(jié)實(shí)率和千粒重處理間相當(dāng),差異不顯著。相關(guān)分析和通徑分析表明(表4),小穗型品種產(chǎn)量與穗數(shù)呈正相關(guān),與每穗粒數(shù)呈負(fù)相關(guān),與群體穎花量呈極顯著正相關(guān),且PX2-X3>PX1-X3。同一密度下,A1、B3和C5穗數(shù)、結(jié)實(shí)率、千粒重相當(dāng),A1每穗粒數(shù)顯著高于B3和C5,而B(niǎo)3與C5每穗粒數(shù)相當(dāng)。就2種行距毯苗機(jī)插而言,同一株距下,B方式穗數(shù)低于C方式,而每穗粒數(shù)呈相反趨勢(shì),結(jié)實(shí)率和千粒重互有高低。就機(jī)插方式平均值而言,與B和C方式相比,A方式穗數(shù)減少9.54%和17.62%,每穗粒數(shù)增加9.95%和18.59%,群體穎花量減少0.21%和2.07%;與C方式相比,B方式穗數(shù)減少8.93%,每穗粒數(shù)增加7.86%,群體穎花量減少1.87%,結(jié)實(shí)率和千粒重表現(xiàn)為A>B>C。
表3機(jī)插方式和密度對(duì)大穗型品種水稻產(chǎn)量構(gòu)成的影響
Table 3. Yield and its components of large panicle-typed rice under different mechanically transplanted methods and densities.
品種與處理Cultivarandtreatment單位面積穗數(shù)Paniclenumber/(×104hm-2)每穗粒數(shù)Spikeletnumberperpanicle群體穎花量Totalspikeletnumber/(×104hm-2)結(jié)實(shí)率Seed-settingrate/%千粒重1000-grainweight/g理論產(chǎn)量Theoreticalyield/(t·hm-2)2013年實(shí)產(chǎn)Harvestedyieldin2013/(t·hm-2)2014年實(shí)產(chǎn)Harvestedyieldin2014/(t·hm-2)甬優(yōu)2640Yongyou2640A1236.91d242.89cd57541.86b92.77a25.23a13.47b13.10b12.35abA2222.60ef269.73b60040.62a92.39a25.08a13.91a13.75a12.87aA3210.50g282.55a59475.82ab91.89a24.80a13.55ab13.25ab12.29bB1254.10bc196.52hi49935.73fg91.06a24.75a11.25fg10.97ef10.35efB2246.30cd208.00fg51230.40e91.37a24.84a11.63ef11.27e10.42efB3239.40d221.40e53002.05cde91.19a25.14a12.15d11.85d11.23dB4228.75e239.36d54754.43c91.49a25.28a12.66c12.45c11.91cB5214.13f251.18c53784.31cd90.53a25.13a12.23cd11.93d11.30cdC1270.15a180.29i48704.19g89.02a24.75a10.73h10.60f10.00fC2262.68ab188.43i49496.42fg89.73a24.88a11.05gh10.82f10.25fC3250.22bc202.13gh50574.71ef90.01a24.98a11.37fg11.15ef10.62efC4243.30cd212.89ef51795.87e89.95a25.00a11.65ef11.45de10.92deC5237.50d220.90e52463.75cde90.93a24.93a11.89de11.68d11.18d甬優(yōu)8號(hào)Yongyou8A1263.10e198.55c52239.00b86.10a29.01a13.05b12.85b12.18abA2248.60f218.25b54257.50a86.19a29.05a13.59a13.42a12.64aA3225.94g232.31a52487.02b86.02a28.95a13.07b12.81b12.00bcB1293.70bc156.86gh46068.94ef84.99a28.30a11.08gh10.70fg10.12gB2279.20de168.60ef47073.12de85.62a28.45a11.47efg11.14ef10.46fgB3267.62e181.82d48658.67cd85.54a29.05a12.09cd11.76cd11.23deB4250.80f200.01c50162.51c85.39a28.97a12.41c12.18c11.68cdB5228.85g212.42b48611.02cd85.31a28.83a11.95cde11.60de11.16deC1310.06a144.83i44905.63f84.62a28.05a10.66h10.51g10.11gC2296.60b154.22h45742.47f84.78a28.08a10.89h10.68fg10.23fgC3283.70cd162.11fg45990.92ef84.92a29.04a11.34fg11.10ef10.61efC4278.70de171.10ef47685.57de84.85a28.83a11.66ef11.43de10.75efC5268.80e179.00de48115.20d85.38a28.93a11.89de11.71cd11.12de均值MeanA234.61240.7156006.9789.2327.0213.4413.2012.39B250.28203.6250328.1288.2526.8711.8911.5810.99C270.17181.5948547.4787.4226.7511.3111.1110.58
小寫(xiě)字母表示在同品種各處理間在0.05水平上差異顯著。采用PLSD顯著性測(cè)驗(yàn)。下同。
Values followed by different lowercase letters are significantly different at 0.05 level byPLSDsignificant test. The same as below.
表4產(chǎn)量與其構(gòu)成因素間的相關(guān)系數(shù)及直接通徑系數(shù)(n=78)
Table 4. Correlation coefficient and path coefficient between yield and its components(n=78).
品種類(lèi)型與產(chǎn)量構(gòu)成因素Cultivartypeandfactor相關(guān)系數(shù)CorrelationcoefficientbetweenyieldcomponentsX2X3X4X5產(chǎn)量(Y)對(duì)Y效應(yīng)EffectforY(Pi-Y)對(duì)X3效應(yīng)EffectforX3(Pi-X3)大穗型Largepanicletype 單位面積穗數(shù)Paniclenumber(X1)-0.955**-0.847**-0.682**0.486*-0.686**0.768 每穗粒數(shù)Spikeletnumberperpanicle(X2)0.956**0.735**-0.519**0.792**1.690 群體穎花量Totalspikeletnumber(X3)0.755**-0.519**0.854**1.098 結(jié)實(shí)率Seed-settingrate(X4)-0.932**0.3270.180 千粒重1000-grainweight(X5)-0.0060.732中穗型Mediumpanicletype 單位面積穗數(shù)Paniclenumber(X1)-0.953**-0.572**-0.049-0.468*-0.540*1.897 每穗粒數(shù)Spikeletnumberperpanicle(X2)0.784**0.1290.552**0.743**2.591 群體穎花量Totalspikeletnumber(X3)0.3710.650**0.983**0.857 結(jié)實(shí)率Seed-settingrate(X4)0.433*0.442*0.054 千粒重1000-grainweight(X5)0.744**0.163小穗型Smallpanicletype 單位面積穗數(shù)Paniclenumber(X1)-0.975**0.633**-0.393*-0.446*0.3503.766 每穗粒數(shù)Spikeletnumberperpanicle(X2)-0.461*0.466*0.534**-0.1673.212 群體穎花量Totalspikeletnumber(X3)0.1280.1260.903**0.847 結(jié)實(shí)率Seed-settingrate(X4)0.715**0.480*0.188 千粒重1000-grainweight(X5)0.498**0.257
因此,對(duì)小穗型品種而言,水稻缽苗機(jī)插較毯苗機(jī)插增產(chǎn)潛力相對(duì)較小,采用行距25 cm毯苗機(jī)插,提高栽插密度,顯著增加穗數(shù),利于穩(wěn)產(chǎn)高產(chǎn)。
2.2穗部構(gòu)成特征
由表7、表8和表9可知,隨著密度降低,不同機(jī)插方式下3種穗型水稻品種穗長(zhǎng)、著粒密度、單穗質(zhì)量、一次枝梗數(shù)、一次枝梗粒數(shù)、二次枝梗數(shù)和二次枝梗粒數(shù)均呈增加趨勢(shì),一、二次枝梗數(shù)比值和一、二次枝梗粒數(shù)比值呈減少趨勢(shì),一次枝梗結(jié)實(shí)率和二次枝梗結(jié)實(shí)率無(wú)明顯趨勢(shì)。同一機(jī)插密度條件下,3種穗型水稻品種穗長(zhǎng)、著粒密度、單穗質(zhì)量、一次枝梗數(shù)、一次枝梗粒數(shù)、二次枝梗數(shù)和二次枝梗粒數(shù)表現(xiàn)為A1>B3、C5,一、二次枝梗數(shù)比值和一、二次枝梗粒數(shù)比值表現(xiàn)為A1 3.1不同機(jī)插方式和密度下水稻產(chǎn)量差異 關(guān)于缽苗機(jī)插與毯苗機(jī)插對(duì)比研究,邴延忠等[29]認(rèn)為,缽苗機(jī)插水稻比毯苗機(jī)插約增產(chǎn)5%。張洪程等[30]認(rèn)為缽苗機(jī)插水稻較毯苗機(jī)插增產(chǎn)6.0%~12.6%,產(chǎn)量形成的主要特征是“穗大粒多”。本研究結(jié)果表明,同一密度下,不同穗型水稻品種A1產(chǎn)量顯著高于B3和C5,B3與C5產(chǎn)量相當(dāng);與B3和C5相比,A1大穗型品種增產(chǎn)9.27%~10.55%和9.34%~12.16%,中穗型品種增產(chǎn)6.99%~8.35%和7.78%~9.63%,小穗型品種增產(chǎn)5.50%~5.99%和5.05%~5.77%。說(shuō)明缽苗機(jī)插水稻較毯苗機(jī)插具有明顯的增產(chǎn)優(yōu)勢(shì),且配套應(yīng)用大穗型品種增產(chǎn)潛力更大。 表5機(jī)插方式和密度對(duì)中穗型品種水稻產(chǎn)量及其構(gòu)成的影響 Table 5. Yield and its components of medium panicle-typed rice under different mechanically transplanted methods and densities. 品種與處理Cultivarandtreatment單位面積穗數(shù)Paniclenumber/(×104hm-2)每穗粒數(shù)Spikeletsperpanicle群體穎花量Totalspikelets/(×104hm-2)結(jié)實(shí)率Seedsettingrate/%千粒重1000-grainweight/g理論產(chǎn)量Theoreticalyield/(t·hm-2)2013年實(shí)產(chǎn)Harvestyieldof2013/(t·hm-2)2014年實(shí)產(chǎn)Harvestyieldof2014/(t·hm-2)武運(yùn)粳24號(hào)Wuyunjing24A1345.97f138.08bc47772.69a94.41a27.38a12.35a12.07a11.58aA2327.81g144.27ab47293.15a94.62a27.18a12.16a11.72ab11.01abA3297.87h150.40a44800.40b93.73a27.22a11.43b11.10bc10.41cB1384.06bc109.33g41990.56cd94.59a27.13a10.78de10.53de10.24cdB2369.33cd118.85ef43892.86bc94.31a27.25a11.28bc11.07bc10.59bcB3354.70def125.07d44362.33b94.80a27.28a11.47b11.14bc10.78bcB4329.25fg131.31c43234.64bc94.33a26.95a10.99cd10.80cd10.15cdB5307.35h137.00bc42106.95cd93.94a27.03a10.69de10.43de9.99dC1405.37a100.27h40647.53d94.28a26.95a10.33e10.20e9.72dC2389.88ab107.45g41894.38cd94.37a26.93a10.64de10.39de9.87dC3371.50cd115.83f43032.08bc94.14a27.04a10.96cd10.87cd10.51bcC4364.20de123.14de44848.63b94.25a27.25a11.52b11.42b10.95bC5350.15ef126.37d44247.29b94.36a27.15a11.34bc11.01bc10.64bc寧粳3號(hào)Ningjing3A1358.22de130.44bc46724.67a94.27a27.02a11.90a11.63a11.25aA2335.13f135.41ab45380.88ab95.04a26.95a11.62ab11.27ab10.74abA3316.31g138.25a43729.37bc94.15a26.86a11.06cd10.81cde10.18bcB1401.04bc100.14gh40160.15ef93.81a26.93a10.14g9.91fg9.34deB2389.50c108.39f42218.80cd95.03a27.18a10.90cdef10.65cde10.12bcB3364.56d118.40de43163.31bc94.67a27.17a11.10cd10.87cd10.45bcB4343.35ef122.06d41908.90cde94.47a27.09a10.72def10.54de10.00cB5330.18fg125.82cd41544.17def94.13a27.08a10.59ef10.34e9.85cdC1420.30a93.83i39438.15f93.39a26.48a9.75g9.48g9.00eC2408.75ab98.26h40163.78ef94.31a26.62a10.08g9.87fg9.35deC3395.50bc104.64fg41386.25def94.29a26.83a10.47fg10.28ef9.87cdC4383.10c115.47e44235.28b94.43a27.00a11.28bc11.08bc10.71abC5360.55de119.73de43169.85bc94.25a27.08a11.02cde10.79cde10.43bc均值MeanA330.22139.4745950.1994.3727.1011.7511.4310.86B357.44119.8442539.1194.4427.1210.8710.6310.15C384.93110.3042233.4894.3626.9610.7510.5410.11 關(guān)于缽苗機(jī)插水稻高產(chǎn)適宜栽插密度,朱聰聰?shù)萚31]就缽苗機(jī)插密度對(duì)不同類(lèi)型水稻品種產(chǎn)量的影響進(jìn)行研究,認(rèn)為缽苗機(jī)插常規(guī)粳稻品種產(chǎn)量以高密度最高,雜交秈稻和雜交粳稻以中密度產(chǎn)量最高。本研究也發(fā)現(xiàn)缽苗機(jī)插水稻高產(chǎn)適宜栽插密度因品種穗型差異而不同,隨著密度降低,大穗型品種產(chǎn)量先增后減,中、小穗型水稻品種產(chǎn)量呈遞減趨勢(shì)。說(shuō)明缽苗機(jī)插應(yīng)用大穗型品種宜中等密度栽插,而中、小穗型品種宜高密度栽插。由于缽苗機(jī)插水稻固定行距33 cm,最小株距為12 cm,對(duì)中、小穗型品種而言缽苗機(jī)插密度偏小。若能改進(jìn)機(jī)具,適當(dāng)縮小缽苗機(jī)插行距和株距,提高栽插密度,利于中、小穗型品種發(fā)揮產(chǎn)量潛力。而對(duì)于毯苗機(jī)插水稻栽插規(guī)格研究,葉厚專(zhuān)等[8]就南方雙季稻地區(qū)不同行距對(duì)機(jī)插稻產(chǎn)量的影響進(jìn)行研究,發(fā)現(xiàn)在相同株距條件下,行距23.3 cm和26.7 cm機(jī)插產(chǎn)量均高于行距30 cm機(jī)插,早稻產(chǎn)量分別高出2.32%~4.24%和4.34%~5.98%,晚稻產(chǎn)量分別高出達(dá)2.00%~3.19%和3.90%~4.25%。劉強(qiáng)等[15]研究淮北稻區(qū)不同行距機(jī)插秧對(duì)產(chǎn)量的影響,認(rèn)為中熟中粳水稻主要靠足穗來(lái)奪取高產(chǎn),而行距過(guò)大不利于協(xié)調(diào)穗粒結(jié)構(gòu)。 表6機(jī)插方式和密度對(duì)小穗型品種水稻產(chǎn)量及其構(gòu)成的影響 Table 6. Yield and its components of small panicle typed rice with different mechanically transplanted methods and densities. 品種與處理Cultivarandtreatment單位面積穗數(shù)Paniclenumber/(×104hm-2)每穗粒數(shù)Spikeletnumberperpanicle群體穎花量Totalspikeletnumber/(×104hm-2)結(jié)實(shí)率Seed-settingrate/%千粒重1000-grainweight/g理論產(chǎn)量Theoreticalyield/(t·hm-2)2013年實(shí)產(chǎn)Harvestyieldof2013/(t·hm-2)2014年實(shí)產(chǎn)Harvestyieldof2014/(t·hm-2)淮稻5號(hào)Huaidao5A1373.22e106.12b39605.58a96.14a27.27a10.38a10.08a10.00aA2335.10fg112.73a37776.94bc96.07a27.15a9.85bc9.61ab9.42bcA3317.31h114.79a36424.13cd96.01a27.13a9.49cd9.26cd9.05cB1419.55ab92.89de38972.97ab96.11a26.84a10.05ab9.80ab9.85abB2401.88cd95.93cd38553.21ab96.05a26.75a9.91ab9.63bc9.57abB3381.33e98.85c37692.86bc96.16a26.70a9.68bc9.51bc9.48bcB4345.30f105.63b36471.92cd96.09a26.75a9.37cd9.12d9.05cB5326.40gh109.17ab35632.00d96.01a27.00a9.24d8.91d8.48dC1451.40a83.42f37653.87bc93.90a26.20a9.26d8.98d8.65cdC2434.10a91.84e39867.08a95.98a26.80a10.25a10.06a10.05aC3410.70bc95.50de39221.85a95.97a26.75a10.07ab9.83ab9.68abC4392.10de96.69cd37911.17ab96.33a27.28a9.96ab9.70ab9.58abC5381.05e99.88c38060.42ab96.19a26.58a9.73bc9.53bc9.21bc淮稻10號(hào)Huaidao10A1360.69fg107.79b38877.23ab96.41a27.19a10.19a9.98a9.86aA2330.33h110.47ab36490.45c96.59a27.19a9.58cd9.31cd9.21bcA3312.90i115.18a36041.14c96.87a27.06a9.45de9.18de9.08cdB1417.75bc93.55f39078.61a96.00a26.95a10.11ab9.84ab9.78aB2392.75d98.15de38549.92ab96.57a26.98a10.04ab9.72ab9.65abB3375.78ef100.57d37793.21bc96.07a26.90a9.77cd9.46bcd9.28bcB4347.70g105.29bc36610.76c95.18a27.03a9.42de9.08de9.00cdB5331.01h111.17ab36797.56c95.07a26.23a9.17e8.85e8.78dC1447.98a81.55g36530.33c95.06a26.18a9.09e8.76e8.61dC2426.15b92.67f39489.90a96.06a26.93a10.21a10.09a9.92aC3404.50cd95.23ef38520.85ab95.79a26.88a9.92abc9.78ab9.68abC4389.55de97.93de38146.68abc95.91a26.98a9.87bc9.68bc9.52abC5368.70f102.81cd37906.97bc96.02a26.95a9.81bcd9.50bcd9.24bc均值MeanA338.26111.1837535.9196.3527.169.829.579.44B373.94101.1237615.3095.9326.819.689.399.29C410.6293.7538330.9195.7226.759.829.599.41 本研究結(jié)果表明,隨著密度降低,大穗型品種行距30 cm毯苗機(jī)插產(chǎn)量呈先增后減趨勢(shì),以B4產(chǎn)量最高,行距25 cm毯苗機(jī)插呈遞增趨勢(shì),以C5產(chǎn)量最高;中穗型品種行距30 cm和行距25 cm毯苗機(jī)插產(chǎn)量均呈先增后減趨勢(shì),分別以B3和C4產(chǎn)量最高;小穗型品種行距30 cm毯苗機(jī)插呈遞減趨勢(shì),以B1產(chǎn)量最高,行距25 cm毯苗機(jī)插呈先增后減趨勢(shì),以C2產(chǎn)量最高。說(shuō)明毯苗機(jī)插水稻對(duì)不同穗型品種配置適宜栽插密度不同,大穗型品種宜低密度,中穗型品種宜中等密度,小穗型品種宜高密度,利于提高毯苗機(jī)插水稻產(chǎn)量。本研究結(jié)果還表明,大穗型品種行距30 cm毯苗機(jī)插平均產(chǎn)量較行距25 cm毯苗機(jī)插增加4.23%,中穗型品種行距30 cm毯苗機(jī)插平均產(chǎn)量較行距25 cm毯苗機(jī)插增加1.04%,而小穗型品種行距30 cm毯苗機(jī)插平均產(chǎn)量較行距25 cm毯苗機(jī)插減少2.09%。說(shuō)明毯苗機(jī)插水稻配套大穗型品種宜采用行距30 cm機(jī)插,適當(dāng)降低密度而利于高產(chǎn);中穗型品種宜采用行距30cm機(jī)插,配置中等密度而獲得高產(chǎn);小穗型品種宜采用行距25 cm機(jī)插,適當(dāng)增加密度而利于增產(chǎn)。 表7不同機(jī)插方式和密度下大穗型水稻品種穗部性狀 Table 7. Panicle traits of large panicle-typed rice under different mechanically transplanted methods and densities. 品種與處理Cultivarandtreatment穗Panicle穗長(zhǎng)PL/cm著粒密度GD/(grain·cm-1)單穗質(zhì)量GWP/g一、二次枝梗數(shù)比值RNB一、二次枝梗粒數(shù)比值RNG一次枝梗Primaryrachisbranch枝梗數(shù)NB粒數(shù)NG結(jié)實(shí)率SR/%二次枝梗Secondaryrachisbranch枝梗數(shù)NB粒數(shù)NG結(jié)實(shí)率SR/%甬優(yōu)2640Yongyou2640 A122.84ab10.63bc5.53ab0.30cd0.57cd15.11b87.78bc94.81a51.11b155.11b89.34a A223.24a11.56ab5.79a0.28d0.49d15.45b87.91bc95.04a55.00ab180.82a88.81a A323.46a12.08a5.82a0.28d0.53d17.18a98.36a95.75a60.82a185.18a88.46a B121.02cd9.41cd4.81d0.37ab0.69ab14.03cd80.71cd95.22a37.57de117.14de88.05a B221.08cd9.92c4.88d0.36ab0.65ab14.18cd82.67c95.97a39.78de126.33cd86.63a B322.44b9.82c5.12bcd0.33bc0.64b14.60bc85.60bc95.33a44.40cd134.80c86.35a B422.86ab10.47bc5.36abc0.30cd0.58c14.45bc87.45bc95.26a48.18bc151.91b88.87a B523.07ab10.93ab5.57ab0.30cd0.57cd15.91ab91.27ab94.02a53.64ab160.91b85.88a C120.31d8.87d4.75d0.40a0.70a13.21d74.29d93.87a32.86e106.00e86.24a C221.03cd8.96d4.92d0.38ab0.69a13.53d76.71d93.01a35.43e111.71de86.57a C321.89bc9.23cd5.03cd0.36ab0.66ab13.86cd80.25cd93.69a38.00de121.88cd88.00a C421.90bc9.72cd5.17bcd0.34bc0.63b14.06cd82.00c93.93a41.67de130.89c87.88a C522.23b9.87c5.20bcd0.33bc0.64b14.67bc85.80bc92.97a44.32cd133.68c87.72a甬優(yōu)8號(hào)Yongyou8 A118.91c10.45abc5.10bc0.52d1.14cd17.45ab105.09bc90.45a33.55b92.45b81.12a A219.09c11.27a5.32ab0.49de1.08de17.92a112.00ab90.25a36.83ab103.25ab80.55a A321.64a10.83ab5.67a0.45e1.03e18.18a118.62a90.99a40.38a115.69a82.18a B117.07d9.19def4.77c0.64a1.28a15.00cd88.00ef90.25a23.29cd68.86de78.72a B217.85d9.45cde4.90bc0.61ab1.25ab15.20cd93.60de90.07a24.80cd75.00cd80.37a B318.15cd10.02bcd5.01bc0.55cd1.25ab16.73bc101.18c89.31a30.36bc80.64c80.61a B419.05c10.45abc5.30ab0.48e1.14cd17.16ab106.10bc90.30a35.60ab93.00b80.74a B520.37b10.43abc5.32ab0.45e1.14cd18.07a113.08ab89.70a40.17a99.33ab81.27a C117.01d8.52f4.72c0.64a1.29a14.56d81.00f88.89a22.68d63.00e78.87a C217.52d8.80ef4.78c0.63ab1.24ab15.33cd85.44ef88.16a24.33cd68.78de79.55a C318.11cd8.95ef4.89bc0.62ab1.22ab16.11bcd89.22ef88.66a26.11cd72.89cd79.97a C418.52c9.24def5.02bc0.59bc1.19bc16.45bc92.90de88.16a27.80cd78.20cd81.30a C518.48c9.69cde5.04bc0.54cd1.17bc16.50bc96.64cd88.73a30.36bc82.36c81.26a均值Mean A21.5311.145.540.390.8016.88101.6392.8846.28138.7585.08 B20.3010.015.100.440.9215.5392.9792.5437.78110.7983.75 C19.709.194.950.480.9414.8384.4391.0132.3696.9483.74 PL, Panicle length; GD, Grain density; GWP, Grain weight per panicle; RNB, Ratio of No. of primary rachis branch to No. of secondary rachis branch; RNG, Ratio of No. of grains on primary rachis branch to No. of grains on secondary rachis branch; NB, No. of rachis branches; NG, No. of grains; SR,Seed-setting rate. 3.2不同機(jī)插方式和密度下水稻產(chǎn)量構(gòu)成因素差異 水稻產(chǎn)量構(gòu)成因素包括單位面積穗數(shù)、每穗粒數(shù)、結(jié)實(shí)率和千粒重。水稻高產(chǎn)的獲得關(guān)鍵在于提高群體穎花量。前人研究認(rèn)為增加穗數(shù)或每穗粒數(shù)或兩者均可提高水稻群體穎花量[32-33],穗數(shù)與每穗粒數(shù)呈負(fù)相關(guān)[34-35]。黃大山等[14]認(rèn)為機(jī)插稻寧粳1號(hào)隨著移栽密度增加,穗數(shù)和群體穎花量大幅度增加,結(jié)實(shí)率和千粒重有所減少。本研究結(jié)果表明,隨著密度降低,不同機(jī)插方式下不同穗型品種穗數(shù)呈遞減趨勢(shì),每穗粒數(shù)呈遞增趨勢(shì),千粒重和結(jié)實(shí)率無(wú)明顯變化規(guī)律。就群體穎花量而言,缽苗機(jī)插方式,隨著密度降低,大穗型品種呈先增后減趨勢(shì),以A2最高;中、小穗型品種呈遞減趨勢(shì),以A1最高。行距30 cm毯苗機(jī)插,隨著密度降低,大、中穗型品種呈先增后減趨勢(shì),以B4和B3最高;小穗型品種呈遞減趨勢(shì),以B1最高。行距25 cm毯苗機(jī)插,隨著密度降低,大穗型品種呈遞增趨勢(shì),以C5最高;中、小穗型品種呈先增后減趨勢(shì),以C4和C2最高。說(shuō)明缽苗機(jī)插應(yīng)用大穗型品種,適當(dāng)降低密度,依靠增加每穗粒數(shù)而提高群體穎花量,中、小穗型品種以配置高密度,通過(guò)增加穗數(shù)而提高群體穎花量;毯苗機(jī)插應(yīng)用大穗型品種宜降低密度,通過(guò)擴(kuò)大穗型而增加群體穎花量,中穗型品種則配置中等密度,協(xié)調(diào)穗粒結(jié)構(gòu)而提高群體穎花量,小穗型品種則增加栽插密度,依靠顯著增加穗數(shù)而提高群體穎花量。本研究結(jié)果還表明,同一密度下,不同穗型品種穗數(shù)A1、B3和C5相當(dāng),每穗粒數(shù)A1顯著高于B3和C5,每穗粒數(shù)增幅表現(xiàn)為大穗型>中穗型>小穗型,但B3與C5每穗粒數(shù)相當(dāng)。說(shuō)明缽苗機(jī)插水稻較毯苗機(jī)插應(yīng)用大穗型品種更利于充分發(fā)揮大穗優(yōu)勢(shì),擴(kuò)大穗型。 表8不同機(jī)插方式和密度下中穗型水稻品種穗部性狀 Table 8. Panicle traits of medium panicle typed rice under different mechanically transplanted methods and densities. 品種與處理Cultivarandtreatment穗Panicle穗長(zhǎng)PL/cm著粒密度GD/(grain·cm-1)單穗質(zhì)量GWP/g一、二次枝梗數(shù)比值RNB一、二次枝梗粒數(shù)比值RNG一次枝梗Primaryrachisbranch枝梗數(shù)NB粒數(shù)NG結(jié)實(shí)率SR/%二次枝梗Secondaryrachisbranch枝梗數(shù)NB粒數(shù)NG結(jié)實(shí)率SR/%武運(yùn)粳24Wuyunjing24 A115.49ab8.91ab3.49ab0.57de1.15de13.25ab73.92ab97.29a23.42b64.17b89.09a A215.85ab9.17ab3.51a0.54de1.05e13.93ab74.40ab97.13a25.73ab70.87ab90.31a A316.16a9.37a3.53a0.49e1.04e14.07a77.33a97.41a28.80a74.07a89.20a B113.38c8.10bc2.74b0.71ab1.52b11.75c65.42bc94.62a16.50c42.92f92.82a B214.95b7.95bc3.00ab0.62cd1.26cd12.08c66.31bc96.06a19.38bc52.54de92.09a B315.13b8.20bc3.14ab0.62cd1.24cd12.71bc68.71b96.65a20.43b55.36de88.65a B415.59ab8.42ab3.22ab0.58d1.17de12.94b70.88ab97.57a22.19b60.44cd89.56a B515.85ab8.64ab3.37ab0.51b1.05e12.33bc70.14ab97.07a24.28ab66.86abc93.08a C113.29c7.54c2.54b0.79a1.73a11.36c63.55c95.42a14.36c36.73f89.11a C214.00bc7.60c2.77b0.77a1.61ab11.75c65.73bc95.34a15.28c40.73f89.88a C314.73b7.80c2.89ab0.69bc1.35c12.25bc65.92bc97.22a17.75c48.92ef90.53a C415.05b7.92bc3.08ab0.66bc1.34c12.50bc68.29b97.05a19.00bc50.86de89.47a C515.41ab8.18bc3.13ab0.58de1.28cd13.13ab70.73ab97.29a22.80b55.33de90.96a寧粳3號(hào)Ningjing3 A115.38a8.48ab3.25a0.57c1.22e13.06ab71.56ab97.99a22.81a58.88ab90.13a A214.81ab9.08a3.29a0.56c1.19e13.18ab73.06a97.67a23.41a61.35ab91.85a A315.15a9.17a3.31a0.52c1.11e13.15ab73.05a97.91a25.42a65.89a90.89a B113.59b7.39cd2.51b0.87a1.81ab12.08b64.67c96.13a13.95b35.75d88.81a B213.96ab7.73bc2.73ab0.85ab1.64bc12.15b67.00bc97.70a14.31b40.92cd89.98a B314.79ab8.00bc2.98ab0.79b1.49d13.12ab70.87ab96.71a16.53b47.53c90.04a B413.68ab9.07a3.05ab0.77b1.47d13.12ab73.76a98.33a17.06b50.29bc90.06a B514.86ab8.53ab3.09ab0.78b1.40d13.52a73.94a98.01a17.35b52.88bc90.55a C113.43b6.91d2.42b0.89a2.04a11.53b62.33c95.19a13.00b30.50d89.84a C213.75ab7.25cd2.47b0.85ab1.88ab11.77b65.15c97.28a13.77b34.62d90.76a C314.21ab7.29cd2.56ab0.83ab1.79b11.95b66.50bc96.73a14.37b37.14d91.92a C413.74ab8.11abc2.91ab0.78b1.60c12.11b68.67bc97.09a15.60b42.80cd91.12a C514.49ab8.23ab3.00ab0.80b1.54c12.63ab72.40ab97.97a15.73b46.93c91.29a均值Mean A15.479.033.390.541.1313.4473.8997.5724.9365.8790.25 B14.588.202.980.711.4112.5869.1796.8818.2050.5590.56 C14.217.682.780.761.6212.1066.9396.6616.1742.4690.49 3.3不同機(jī)插方式和密度下水稻穗部構(gòu)成特征 穗部性狀與水稻高產(chǎn)形成關(guān)系較為密切。曾勇軍等認(rèn)為雙季稻地區(qū)早稻高產(chǎn)群體穗型特征為穗長(zhǎng)較長(zhǎng),一、二次枝梗數(shù)多,每穗粒數(shù)100~130粒,單穗質(zhì)量2.5 g以上;晚稻表現(xiàn)為穗長(zhǎng)較長(zhǎng),二次枝梗數(shù)多,著粒密度大,每穗粒數(shù)120~150粒,單穗質(zhì)量3.0 g 左右。馬均等研究認(rèn)為重穗型品種理想穗部性狀為單穗重4.8 g以上,每穗粒數(shù)180~240粒。本研究結(jié)果表明,隨著密度降低,3種機(jī)插方式不同穗型水稻品種穗長(zhǎng)、著粒密度、單穗質(zhì)量、一次枝梗數(shù)、一次枝梗粒數(shù)、二次枝梗數(shù)和二次枝梗粒數(shù)呈增加趨勢(shì),一、二次枝梗數(shù)比值和一、二次枝梗粒數(shù)比值呈降低趨勢(shì)。說(shuō)明不同機(jī)插方式下水稻降低密度均利于擴(kuò)大穗型,增加二次枝梗數(shù)和二次枝梗粒數(shù),改善穗部性狀。本研究結(jié)果還表明,同一機(jī)插密度下,缽苗機(jī)插水稻穗長(zhǎng)、著粒密度、單穗質(zhì)量、一次枝梗數(shù)、一次枝梗粒數(shù)、二次枝梗數(shù)和二次枝梗粒數(shù)高于毯苗機(jī)插,不同穗型品種間表現(xiàn)為大穗型>中穗型>小穗型。可見(jiàn),缽苗機(jī)插水稻較毯苗機(jī)插利于增加穗重和優(yōu)化穗部結(jié)構(gòu)。 缽苗機(jī)插配套大穗型品種適當(dāng)降低密度,充分發(fā)揮大穗優(yōu)勢(shì),增加每穗粒數(shù),提高群體穎花量而高產(chǎn);中、小穗型品種則應(yīng)高密度栽插,增加穗數(shù)而高產(chǎn)。毯苗機(jī)插應(yīng)用大穗型品種宜采用行距30 cm,適當(dāng)增加株距,依靠擴(kuò)大穗型而高產(chǎn);中穗型品種宜采用行距30 cm,配置中等密度,協(xié)調(diào)穗粒結(jié)構(gòu)而高產(chǎn);小穗型品種則采用行距25 cm,適當(dāng)減少株距,增加栽插密度,顯著增加穗數(shù)而增產(chǎn)。同一密度下,缽苗機(jī)插產(chǎn)量顯著高于毯苗機(jī)插,增產(chǎn)幅度以大穗型品種最大,中穗型品種次之,小穗型品種最小。不同機(jī)插方式大水稻降低栽插密度,利于優(yōu)化不同穗型品種穗部性狀;同一密度下,缽苗機(jī)插穗部性狀優(yōu)于毯苗機(jī)插。 表9不同機(jī)插方式和密度下小穗型水稻品種穗部性狀 Table 9. Panicle traits of small panicle-typed rice under different mechanically transplanted methods and densities. 品種與處理Cultivarandtreatment穗Panicle穗長(zhǎng)PL/cm著粒密度GD/(grain·cm-1)單穗質(zhì)量GWP/g一、二次枝梗數(shù)比值RNB一、二次枝梗粒數(shù)比值RNG一次枝梗Primaryrachisbranch枝梗數(shù)NB粒數(shù)NG結(jié)實(shí)率SR/%二次枝梗Secondaryrachisbranch枝梗數(shù)NB粒數(shù)NG結(jié)實(shí)率SR/%淮稻5號(hào)Huaidao5 A115.08bc7.03ab2.75ab0.66c1.42bc11.15a62.15a98.39a16.85abc43.85ab92.92a A215.49ab7.28a2.87a0.65c1.26cd11.13a62.87a98.09a17.07ab49.87a92.81a A316.03a7.29a2.92a0.59c1.22d11.95a64.26a98.28a20.11a52.53a93.02a B113.77de6.59bc2.33b0.82a1.36bc10.05b52.31b98.32a12.31c38.38bc91.82a B214.15cd6.78bc2.40ab0.76ab1.35bc10.47ab54.60b98.41a13.80bc40.33bc92.39a B314.58bc6.78bc2.49ab0.73b1.31cd10.85ab56.00ab98.21a14.77bc42.85bc92.65a B414.78bc7.15ab2.65ab0.67c1.31cd11.15a59.88ab97.91a16.56abc45.75ab92.56a B515.18ab7.19ab2.77ab0.69bc1.27cd11.50a61.11a98.33a16.78abc48.06ab93.08a C113.11e6.36c2.28b0.81a1.57a9.71b50.33b96.21a12.05c32.08c90.11a C213.91de6.58bc2.30b0.83a1.58a10.31ab56.00ab97.29a12.46c35.54c90.96a C313.92de6.79bc2.38ab0.72bc1.50ab10.43ab56.64ab97.98a14.43bc37.86c91.53a C414.21cd6.80bc2.45ab0.72bc1.50ab10.44ab58.00ab98.49a14.53bc38.69bc91.47a C514.32cd6.98ab2.50ab0.71bc1.41b10.35ab58.35ab97.88a14.65bc41.53bc91.96a淮稻10號(hào)Huaidao10 A115.28ab7.05ab2.77ab0.60c1.19d10.93ab58.64ab97.56a18.36ab49.14ab93.58a A215.31ab7.21ab2.79ab0.60c1.19d11.08ab60.13a97.67a18.33ab50.33ab92.90a A316.14a7.29ab2.96a0.52c1.13d11.47a62.37a98.14a22.21a55.32a93.19a B114.01c6.61c2.28b0.74b1.44bc10.31bc54.55ab97.67a14.00bc38.00cd91.81a B214.11c6.96bc2.48ab0.72b1.43bc10.58b57.69ab97.60a14.69bc40.46c91.98a B314.68bc6.92bc2.52ab0.68bc1.30cd10.50b57.43ab98.88a15.33bc44.14bc92.42a B414.65bc7.25ab2.61ab0.69bc1.29cd11.08ab59.94a96.81a15.94bc46.35bc92.58a B514.96bc7.50a2.68ab0.67bc1.26cd11.65a62.06a98.18a17.39ab49.11ab92.55a C113.54c6.02d2.31b0.86a1.66a9.43c50.91b97.68a11.01c30.64d90.24a C214.08c6.54cd2.35b0.87a1.55ab10.38bc56.08ab97.70a11.92c36.08cd90.96a C313.93c6.76bc2.35b0.87a1.54ab10.42b57.08ab97.57a11.92c37.15cd91.42a C414.59bc6.68c2.43ab0.75b1.45bc10.75ab58.18ab97.83a14.38bc40.25c91.51a C515.01abc6.85bc2.60ab0.73b1.42bc11.09ab60.31a97.11a15.15bc42.50bc92.14a均值Mean A15.567.192.840.601.2411.2961.7498.0218.8250.1793.07 B14.496.962.520.721.3310.8157.5698.0315.1643.3492.38 C14.066.632.390.791.5210.3356.1997.5713.2537.2391.23 [1]張洪程, 龔金龍. 中國(guó)水稻種植機(jī)械化高產(chǎn)農(nóng)藝研究現(xiàn)狀及發(fā)展探討. 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(7): 1273-1289. Zhang H C, Gong J L. Research status and development discussion on high-yielding agronomy of mechanized planting rice in China.SciAgricSin, 2014, 47(7): 1273-1289. (in Chinese with English abstract) [2]朱德峰, 陳惠哲, 徐一成. 我國(guó)水稻種植機(jī)械化的發(fā)展前景與對(duì)策. 北方水稻, 2007(5): 13-18. Zhu D F, Chen H Z, Xu Y C. Countermeasure and perspective of mechanization of rice planting in China.NorthRice, 2007(5): 13-18. (in Chinese with English abstract) [3]陸為農(nóng). 水稻生產(chǎn)機(jī)械化發(fā)展現(xiàn)狀及展望. 農(nóng)機(jī)科技推廣, 2006(2): 13-16. Lu W N. Progress and development of mechanical rice production.AgricMachTechnolExt, 2006(2): 13-16. (in Chinese with English abstract) [4]宋建農(nóng), 莊乃生, 王立臣, 等. 21世紀(jì)我國(guó)水稻種植機(jī)械化發(fā)展方向. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào), 2000, 5(2): 30-33. Song J N, Zhuang N S, Wang L C, et al.The development tendency of Chinese rice planting mechanization in the 21st century.JChinaAgricUniv, 2000, 5(2): 30-33. [5]朱德峰, 陳惠哲. 水稻機(jī)插秧發(fā)展與糧食安全. 中國(guó)稻米, 2009(6): 4-7. Zhu D F, Chen H Z. The development of machine transplanted rice and food security.ChinaRice, 2009(6): 4-7. (in Chinese) [6]高連興, 趙秀榮. 機(jī)械化移栽方式對(duì)水稻產(chǎn)量及主要性狀的影響. 農(nóng)業(yè)工程學(xué)報(bào), 2002, 18(5): 45-48. Gao L X, Zhao X R. Effect of mechanized transplanting methods on rice yield and rice population growth trends.TransCSAE, 2002 18(5): 45-48. (in Chinese with English abstract) [7]李杰, 楊洪建, 鄧建平, 等. 對(duì)加快推進(jìn)江蘇省水稻機(jī)插秧發(fā)展的思考. 中國(guó)稻米, 2014, 20(1): 32-35. Li J, Yang H J, Deng J P, et al.Thinking of accelerating development of machine-transplanted rice in Jiangsu Province.ChinaRice, 2014, 20(1): 32-35. [8]葉厚專(zhuān), 李艷大, 沈顯華, 等. 不同機(jī)插行距對(duì)水稻產(chǎn)量的影響. 中國(guó)農(nóng)機(jī)化, 2012(4): 59-62. Ye H Z, Li Y D, Shen X H, et al.Effects of different machine-transplanted row spacing on rice yield.ChinAgricMech, 2012(4): 59-62. (in Chinese with English abstract) [9]馬振國(guó), 潘九明. 水稻插秧機(jī)行距問(wèn)題探索. 江蘇農(nóng)機(jī)化, 2012(3): 49. Ma Z G, Pan J M. Explore on problem of row spacing of mechanical rice.JiangsuAgricMech, 2012(3): 49. (in Chinese with English abstract) [10]沈才標(biāo), 王駕清, 孫祖高, 等. 水稻窄行插秧機(jī)的引進(jìn)示范. 上海農(nóng)業(yè)科技, 2012(2): 51-52. Shen C B, Wang J Q, Sun Z G, et al.Demonstration of narrow spacing of mechanical rice.ShanghaiAgricSciTechnol, 2012(2): 51-52. (in Chinese with English abstract) [11]陳立才, 葉厚專(zhuān), 舒時(shí)富. 8寸行距插秧機(jī)的研制與應(yīng)用. 2012年中國(guó)作物學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集. 2012: 28. Chen L C, Ye H Z, Shu S F. Research and application of mechanical transplanted rice of eight cun row spacing. Abstract of Crop Academic Conference in 2012. 2012: 28. (in Chinese) [12]陳俊義, 楊東平, 吳國(guó)良, 等. 雜粳“常優(yōu)1號(hào)”機(jī)插超高產(chǎn)栽培技術(shù). 上海農(nóng)業(yè)科技, 2007(3): 30-31. Chen J Y, Yang D P, Wu G L, et al. Technology of super-high-yielding of mechanical transplanted hybrid japonica rice of changyou 1.ShanghaiAgricSciTechnol, 2007(3): 30-31. (in Chinese with English abstract) [13]張洪程, 趙品恒, 孫英菊, 等. 機(jī)插雜交粳稻超高產(chǎn)形成群體特征. 農(nóng)業(yè)工程學(xué)報(bào), 2012, 28(2): 39-44. Zhang H C, Zhao P H, Sun Y J, et al. Population characteristics of super high yield formation of mechanical transplanted japonica hybrid rice.TransCSAE, 2012, 28(2): 39-44. (in Chinese with English abstract) [14]黃大山. 播期、播量和移栽密度對(duì)寧粳1號(hào)機(jī)插稻產(chǎn)量形成及氮素吸收利用的影響. 揚(yáng)州大學(xué), 2008. Huang D S. Effects of Sowing Date, sowing rate and transplanting density on the yield formation and nitrogen absorption of mechanical transplanting rice Nanjing 1. Yangzhou: Yangzhou University, 2008. (in Chinese with English abstract) [15]劉強(qiáng), 楊波, 段瑞華, 等. 淮北稻區(qū)不同行距機(jī)插秧對(duì)產(chǎn)量影響的研究. 現(xiàn)代農(nóng)業(yè)科技, 2010(4): 83-84. Liu Q, Yang B, Duan R H, et al. Study on effect of yield of different row spacing mechanical rice in Huaibei region.ModAgricSciTechnol, 2010(4): 83-84. (in Chinese with English abstract) [16]邢春秋, 付有權(quán), 閆彬. 淺談水稻八行與六行插秧機(jī)應(yīng)用效果. 墾殖與稻作, 2006(5): 74-75. Xing C Q, Fu Y Q, Yan B. Effect on eight and six row spacing of mechanical transplanting rice.ReclRiceCult, 2006(5): 74-75. (in Chinese with English abstract) [17]李世峰, 劉蓉蓉, 吳九林. 不同播量與移栽密度對(duì)機(jī)插水稻產(chǎn)量形成的影響. 作物雜志, 2008(1):71-73. Li S F, Liu R R, Wu J L. Effects of different sowing rates and transplanting densities on yield formation of machine-transplanted rice.Crops, 2008(1): 71-73. (in Chinese with English abstract) [18]彭長(zhǎng)青, 李世峰, 卞新民, 等. 機(jī)插水稻精確定量栽培調(diào)控技術(shù)研究. 上海農(nóng)業(yè)學(xué)報(bào), 2006, 22(1): 20-24. Peng C Q, Li S F, Bian X M, et al. Study on quantitative planting practice of machine-transplanted rice.ActaAgricShanghai, 2006, 22(1): 20-24. (in Chinese with English abstract) [19]吳雪源, 王依明. 不同機(jī)插密度對(duì)水稻產(chǎn)量的影響試驗(yàn)簡(jiǎn)報(bào). 上海農(nóng)業(yè)科技, 2012(3): 47-50. Wu X Y, Wang Y M. Bulletin effect on yield of different density of mechanical rice.ShanghaiAgricSciTechnol, 2012(3): 47-50. (in Chinese with English abstract) [20]Akita K, Tanaka N. Effects of planting density and planting patterns of young seedlings transplanting on the growth and yield of rice plants.JpnJCropSci, 1992, 61: 80-86. [21]錢(qián)銀飛, 張洪程, 吳文革, 等. 機(jī)插穴苗數(shù)對(duì)不同穗型粳稻品種產(chǎn)量及品質(zhì)的影響. 作物學(xué)報(bào), 2009, 35(9): 1689-1707. Qian Y F, Zhang H C, Wu W G, et al. Effects of seedlings number per hill on grain yieId and quality in different panicle types of mechanical transplanted japonica rice.ActaAgronSin, 2009, 35(9): 1689-1707. (in Chinese with English abstract) [22]李宗春, 王恒雨, 許成軍, 等. 淮北地區(qū)機(jī)插稻存在問(wèn)題及栽培對(duì)策. 北方水稻, 2008(4): 54-55. Li Z C, Wang H Y, Xu C J, et al.The problem and cultivation countermeasure of mechanical transplanting rice in Huaibei region.NorthRice, 2008, (4): 54-55 (in Chinese) [23]張洪程, 李杰, 戴其根, 等. 機(jī)插稻“標(biāo)秧、精插、穩(wěn)發(fā)、早擱、優(yōu)中、強(qiáng)后”高產(chǎn)栽培精確定量關(guān)鍵技術(shù). 中國(guó)稻米, 2010, 16(5): 1-6. Zhang H C, Li J, Dai Q G, et al.The key techniques of "standardizing seedlings, precise transplanting, steady growing, earlier drainage, optimizing middle-stage, strengthening later-stage" model for precise quantitative high-yielding cultivation of mechanical transplanting rice.ChinaRice, 2010, 16(5): 1-6. (in Chinese) [24]成永芳. 日本RX-6型水稻缽苗移栽機(jī)引進(jìn)試驗(yàn)簡(jiǎn)報(bào). 農(nóng)機(jī)與食品機(jī)械, 1999(3): 27-31. Cheng Y F. Bulletin trial of pot seedling of mechanical transplanted rice (RX-6) of Japan.AgricMachFoodMach, 1999, 3: 27-31. (in Chinese) [25]王立臣, 王蘋(píng), 李益民, 等. 2ZPY-H530型水稻缽苗行栽機(jī)試驗(yàn)研究. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào), 2002, 7(4): 21-24. Wang L C, Wang P, Li Y M, Song J N. Research on trial of pot seedling of mechanical transplanted rice (2ZPY-H530).JChinaAgricUniv, 2002, 7(4): 21-24. (in Chinese) [26]陳恒高, 張義峰, 董曉威. 新型水稻栽植機(jī)的研究. 黑龍江八一農(nóng)墾大學(xué)學(xué)報(bào), 2005, 17(4): 39-41. Chen H G, Zhang Y F, Dong X W. Study on a new type rice transplanting machine.JHeilongjiangAugustFirstLandReclUniv, 2005, 17(4): 39-41. (in Chinese) [27]張洪程. 缽苗機(jī)插水稻生產(chǎn)特點(diǎn)及其利用的核心技術(shù). 農(nóng)機(jī)市場(chǎng), 2012(8): 19-21. Zhang H C. Characteristic of production of pot seedling of mechanical transplanted rice and its using key technology.AgricMachMark, 2012, 8: 19-21. (in Chinese) [28]李剛?cè)A, 于林惠, 侯朋福, 等. 機(jī)插水稻適宜基本苗定量參數(shù)的獲取與驗(yàn)證. 農(nóng)業(yè)工程學(xué)報(bào), 2012, 28(8): 98-104. Li G H, Yu L H, Hou P F, et al.Calculation and verification of quantitative parameters of optimal planting density of machine-transplant rice.TransCSAE, 2012, 28(8): 98-104. (in Chinese) [29]邴延忠, 陳宗凱. 水稻缽苗移栽機(jī)械化技術(shù)研發(fā)與應(yīng)用. 農(nóng)機(jī)科技推廣, 2011(4): 52. Bing Y Z, Chen Z K. Research and application on the technology of pot seedling of mechanical transplanted rice.AgricMachTechnolExt, 2011(4): 52. (in Chinese) [30]張洪程, 朱聰聰, 霍中洋, 等. 缽苗機(jī)插水稻產(chǎn)量形成優(yōu)勢(shì)及主要生理生態(tài)特點(diǎn). 農(nóng)業(yè)工程學(xué)報(bào), 2013, 29(21): 50-59. Zhang H C, Zhu C C, Huo Z Y, et al. Advantages of yield formation and main characteristics of physiological and ecological in rice with nutrition bowl mechanical transplanting.TransCSAE, 2013, 29(21): 50-59. (in Chinese with English abstract) [31]朱聰聰, 張洪程, 郭保衛(wèi), 等. 缽苗機(jī)插密度對(duì)不同類(lèi)型水稻產(chǎn)量及光合物質(zhì)生產(chǎn)特性的影響. 作物學(xué)報(bào), 2014, 40(1): 122-133. Zhu C C, Zhang H C, Guo B W, et al.Effect of planting density on yield and photosynthate production characteristics in different types of rice with bowl mechanical-transplanting method.ActaAgronSin, 2014, 40: 122-133 (in Chinese with English abstract) [32]Zhang H, Chen T T, Liu Li J, et al. Performance in grain yield and physiological traits of rice in the Yangtze River Basin of China during the last 60 yr.JIntegAgric, 2013, 12(1): 57-66. [33]Huang M, Zou Y B, Jiang P, et al. Relationship between grain yield and yield components in super hybrid rice.AgricSciChina, 2011, 10(10): 1537-1544. [34]Mohapatra P K, Sahu S K. Heterogeneity of primary branch development and spikelet survival in rice in relation to assimilates of primary branches.JExpBot, 1991, 42: 871-879. [35]高良艷, 周鴻飛. 水稻產(chǎn)量構(gòu)成因素與產(chǎn)量的分析. 遼寧農(nóng)業(yè)科學(xué), 2007(1): 26-28. Gao L Y, Zhou H F. Relationship between yield component factors and yield in rice.LiaoningAgricSci, 2007(1): 26-28. [36]曾勇軍, 石慶華, 潘曉華, 等. 長(zhǎng)江中下游雙季稻高產(chǎn)株型特征初步研究. 作物學(xué)報(bào), 2009, 35: 546-551. Zeng Y J, Shi Q H, Pan X H,et al. Preliminary study on the plant type characteristics of double cropping rice in middle and lower reaches of Changjiang River.ActaAgronSin, 2009, 35: 546-551. (in Chinese with English abstract) [37]馬均, 馬文波, 明東風(fēng), 等. 重穗型水稻株型特征研究. 中國(guó)農(nóng)業(yè)科學(xué), 2006, 39: 679-685. Ma J, Ma W B, Ming D F,et al.Studies on the characteristics of rice plant with heavy panicle.SciAgricSin, 2006, 39: 679-685 (in Chinese with English abstract) Effect of Different Mechanical Transplantation Methods and Density on Yield and Its Components of Different Panicle-typed Rice HU Ya-jie, QIAN Hai-jun, CAO Wei-wei, XING Zhi-peng, ZHANG Hong-cheng*, DAI Qi-gen, HUO Zhong-yang, XU Ke, WEI Hai-yan, GUO Bao-wei (Innovation Center of Rice Cultivation Technology in the Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China;*Corresponding author, E-mail: hczhang@yzu.edu.cn) In order to apply suitable panicle-typed cultivar and plant density under different mechanical transplantation methods, and clarify high-yield formation characteristics of different panicle-typed rice, an experiment was conducted in Xinghua test point of Yangzhou University during 2013 and 2014. Three panicle-typed rice including large panicle type (LPT, Yongyou 2640 and Yongyou 8), medium panicle type (MPT, Wuyunjing 24 and Ningjing 3) and small panicle type (SPT, Huaidao 5 and Huaidao 10) were field-grown. We compared three mechanically transplanted methods including mechanically transplanted pot seedling (A), mechanically transplanted carpeted seedling in row spacing of 30 cm (B), mechanically transplanted carpeted seedling in row spacing of 25 cm (C) at different plant densities, namely plant spacing of 12 cm, 14 cm and 16 cm (marked as 1, 2, 3) in A and plant spacing of 10 cm, 11.7 cm, 13.3 cm, 14.8 cm, 16 cm (marked as 1, 2, 3, 4, 5) in B and C. Yield and its formation, panicle traits were investigated. The main results were as follows: 1) for mechanically transplanted pot seedling, with declining plant density, yield of LPT increased and then reduced, peaking in A2 treatment; yield of MPT and SPT reduced, peaking in A1 treatment. For mechanically transplanted carpet seedling, with reducing plant density, yield of LPT increased and then reduced in B, peaking in B4 treatment, yield of LPT increased in C, peaking in C5 treatment; yield of MPT increased and then reduced in B and C, peaking in B3 and C4 treatment, respectively; yield of SPT reduced in B, peaking in B1 treatment, yield of SPT increased and then reduced, peaking in C2 treatment. In the same plant density, yield of mechanically transplanted pot seedling was significantly higher than mechanically transplanted carpet seedling, the range of increased yield followed a tendency of LPT>MPT>SPT, with no significant difference in B and C. For B and C, in the same plant spacing, yield of LPT was higher in B than C; yield of MPT was higher in B than C in plant spacing of 10 cm, 11.7 cm, 13.3 cm, but it was opposite at plant spacing of 14.8 cm, 16 cm; yield of SPT was higher in C than B in plant spacing of 11.7 cm, 13.3 cm, 14.8 cm, 16 cm. 2) With plant density reduced, panicle number reduced and spikelet number per panicle increased in different panicle-typed rice under different mechanically transplanted methods. At the same plant density, there was no significant difference in panicle, grain filled percentage and 1000-grain weight in different mechanically transplanted methods, but spikelet number per panicle was significantly higher in A than B or C, following a trend of LPT>MPT>SPT. For B and C, number of panicle was lower in B than in C, but it was opposite in spikelet number per panicle. 3) Panicle length, grain density, grain weight per panicle, number of primary and secondary rachis branches, number of grains of primary and secondary rachis branches were increased with plant density reduced, it was opposite in the ratio of No. of primary rachis branch to No. of secondary rachis branch and ratio of No. of grains of primary rachis branch to No. of grains of secondary rachis branch. In the same plant density, panicle length, grain density, grain weight per panicle, number of primary and secondary rachis branches, number of grains of primary and secondary rachis branches in A than in B or C. Therefore, mechanically transplanted pot seedling of LPT could reduce plant density, it was beneficial to enlarge panicle type and increase total spikelet number and yield; for MPT and SPT, higher density should be adopted to increase panicle and spikelet number per panicle for high yield. For mechanically transplanted carpet seedling of LPT, B method and wider plant spacing should be applied to expand panicle type and acquire higher yield; for MPT, B method and medium density should be applied to coordinate panicle and spikelet number per panicle to increase total spikelet number; for SPT, C method and narrow plant spacing should be applied to increase number of panicle to achieve high yield. mechanically transplanted pot seedling; mechanically transplanted carpet seedling; plant-row spacing; yield; yield components; panicle trait 2016-01-28; 修改稿收到日期: 2016-03-16。 國(guó)家科技支撐計(jì)劃重大項(xiàng)目(2011BAD16B03);江蘇省農(nóng)業(yè)科技自主創(chuàng)新基金資助項(xiàng)目(CX[2]1003.9);江蘇省科技支撐計(jì)劃資助項(xiàng)目(BE2012301);江蘇省高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助項(xiàng)目;江蘇省研究生科研創(chuàng)新計(jì)劃(KYLX_1353)資助項(xiàng)目。 S511.045; S511.048 A 1001-7216(2016)05-0493-14 胡雅杰, 錢(qián)海軍, 曹偉偉,等. 機(jī)插方式和密度對(duì)不同穗型水稻品種產(chǎn)量及其構(gòu)成的影響. 中國(guó)水稻科學(xué), 2016, 30(5): 493-506.3 討論
4 結(jié)論