羅仁娜
【摘要】“幫助學(xué)生學(xué)會(huì)基本的數(shù)學(xué)思想方法”是新一輪數(shù)學(xué)課程改革所設(shè)定的一個(gè)基本目標(biāo)。以國(guó)際上的相關(guān)研究為背景,對(duì)小學(xué)數(shù)學(xué)教學(xué)中如何突出數(shù)學(xué)思維進(jìn)行具體分析表明,即使是十分初等的數(shù)學(xué)內(nèi)容也同樣體現(xiàn)了一些十分重要的數(shù)學(xué)思維形式及其特征性質(zhì)。
【關(guān)鍵詞】數(shù)學(xué)思維;小學(xué)數(shù)學(xué)教學(xué);強(qiáng)調(diào);完善
1數(shù)學(xué)化:數(shù)學(xué)思維的基本形式
眾所周知,強(qiáng)調(diào)與現(xiàn)實(shí)生活的聯(lián)系正是新一輪數(shù)學(xué)課程改革的一個(gè)重要特征?!皵?shù)學(xué)課程的內(nèi)容一定要充分考慮數(shù)學(xué)發(fā)展進(jìn)程中人類(lèi)的活動(dòng)軌跡,貼近學(xué)生熟悉的現(xiàn)實(shí)生活,不斷溝通生活中的數(shù)學(xué)與教科書(shū)上數(shù)學(xué)的聯(lián)系,使生活和數(shù)學(xué)融為一體?!本团Ω淖儌鹘y(tǒng)數(shù)學(xué)教育嚴(yán)重脫離實(shí)際的弊病而言,這一做法是完全正確的;但是,從更為深入的角度去分析,我們?cè)诖藙t又面臨著這樣一個(gè)問(wèn)題,即應(yīng)當(dāng)如何去處理“日常數(shù)學(xué)”與“學(xué)校數(shù)學(xué)”之間的關(guān)系。事實(shí)上,即使就最為初等的數(shù)學(xué)內(nèi)容而言,我們也可清楚地看到數(shù)學(xué)的抽象特點(diǎn),而這就已包括了由“日常數(shù)學(xué)”向“學(xué)校數(shù)學(xué)”的重要過(guò)渡。例如,就加減法運(yùn)算而言,由于其中涉及三個(gè)不同的量(兩個(gè)加數(shù)與它們的和,或被減數(shù)、減數(shù)與它們的差),因此,從純數(shù)學(xué)的角度去分析,我們完全可以提出這樣的問(wèn)題,即如何依據(jù)其中的任意兩個(gè)量去求取第三個(gè)量。例如,就“量的比較”而言,除去兩個(gè)已知數(shù)的直接比較以外,我們顯然也可提出:“兩個(gè)數(shù)的差是3,其中較小的數(shù)是4,問(wèn)另一個(gè)數(shù)是幾?”或者“兩個(gè)數(shù)的差是3,其中較大的數(shù)是4,問(wèn)另一個(gè)數(shù)是幾?”我們?cè)诖耸聦?shí)上已由“具有明顯現(xiàn)實(shí)意義的量化模式”過(guò)渡到了“可能的量化模式”。從理論的角度看,即應(yīng)當(dāng)如何去認(rèn)識(shí)所說(shuō)的純數(shù)學(xué)研究的意義。特別是,我們是否應(yīng)當(dāng)明確肯定由“日常數(shù)學(xué)”過(guò)渡到“學(xué)校數(shù)學(xué)”的必要性,或是應(yīng)當(dāng)唯一地堅(jiān)持立足于現(xiàn)實(shí)生活。
2凝聚:算術(shù)思維的基本形式
思維的分析相對(duì)于具體知識(shí)內(nèi)容的教學(xué)而言并非某種外加的成分,而是有著重要的指導(dǎo)意義。例如,加減法在最初都是作為一種過(guò)程得到引進(jìn)的,即代表了這樣的“輸入—輸出”過(guò)程:由兩個(gè)加數(shù)(被減數(shù)與減數(shù))我們就可求得相應(yīng)的和(差);然而,隨著學(xué)習(xí)的深入,這些運(yùn)算又逐漸獲得了新的意義:它們已不再僅僅被看成一個(gè)過(guò)程,而且也被認(rèn)為是一個(gè)特定的數(shù)學(xué)對(duì)象,我們可具體地去指明它們所具有的各種性質(zhì),如交換律、結(jié)合律等,從而,就其心理表征而言,就已經(jīng)歷了一個(gè)“凝聚”的過(guò)程,即由一個(gè)包含多個(gè)步驟的運(yùn)作過(guò)程凝聚成了單一的數(shù)學(xué)對(duì)象。再如,有很多教師認(rèn)為,分?jǐn)?shù)應(yīng)當(dāng)定義為“兩個(gè)整數(shù)相除的值”而不是“兩個(gè)整數(shù)的比”,這事實(shí)上也可被看成包括了由過(guò)程向?qū)ο蟮霓D(zhuǎn)變,這就是說(shuō),就分?jǐn)?shù)的掌握而言我們不應(yīng)停留于整數(shù)的除法這樣一種運(yùn)算,而應(yīng)將其直接看成一種數(shù),我們可以此為對(duì)象去實(shí)施加減乘除等運(yùn)算。
3互補(bǔ)與整合:數(shù)學(xué)思維的一個(gè)重要特征
3.1 應(yīng)注意同一概念的不同解釋間的互補(bǔ)與整合
例如,在教學(xué)中人們往往唯一地強(qiáng)調(diào)應(yīng)從“部分與整體的關(guān)系”這一角度去理解有理數(shù),特別是,分?jǐn)?shù)常常被想象成“圓的一個(gè)部分”。然而,實(shí)踐表明,局限于這一心理圖像必然會(huì)造成一定的學(xué)習(xí)困難、甚至是嚴(yán)重的概念錯(cuò)誤。例如,如果局限于上述的解釋?zhuān)秃茈y對(duì)以下算法的合理性做出解釋?zhuān)?/p>
(5/7)÷(3/4)=(5/7)×(4/3)=…
3.2 應(yīng)注意不同表述形式之間的相互補(bǔ)充與相互作用
即突出強(qiáng)調(diào)學(xué)生的動(dòng)手實(shí)踐、主動(dòng)探索與合作交流:“有效的數(shù)學(xué)學(xué)習(xí)活動(dòng)不能單純地依賴(lài)模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式……教師應(yīng)激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),幫助他們?cè)谧灾魈剿骱秃献鹘涣鞯倪^(guò)程中真正理解和掌握基本的數(shù)學(xué)知識(shí)與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。”由于實(shí)踐活動(dòng)(包括感性經(jīng)驗(yàn))構(gòu)成了數(shù)學(xué)認(rèn)識(shí)活動(dòng)的重要基礎(chǔ),合作交流顯然應(yīng)被看成學(xué)習(xí)活動(dòng)社會(huì)性質(zhì)的直接體現(xiàn)和必然要求,因此,從這樣的角度去分析,上述的主張就是完全合理的;然而,需要強(qiáng)調(diào)的是,除去對(duì)于各種學(xué)習(xí)方式與表述形式的直接肯定以外,我們應(yīng)更加重視在不同學(xué)習(xí)方式或表述形式之間所存在的重要聯(lián)系與必要互補(bǔ)。
3.3 我們應(yīng)清楚地看到解題方法的多樣性及其互補(bǔ)關(guān)系
眾所周知,大力提倡解題策略的多樣化也是新一輪數(shù)學(xué)課程改革的一個(gè)重要特征:“由于學(xué)生生活背景和思考角度不同,所使用的方法必然是多樣的,教師應(yīng)當(dāng)尊重學(xué)生的想法,鼓勵(lì)學(xué)生獨(dú)立思考,提倡計(jì)算方法的多樣化。”我們不應(yīng)停留于對(duì)于不同方法在數(shù)量上的片面追求,而應(yīng)通過(guò)多種方法的比較幫助學(xué)生學(xué)會(huì)鑒別什么是較好的方法,包括如何依據(jù)不同的情況靈活地去應(yīng)用各種不同的方法。顯然,后者事實(shí)上也就從另一個(gè)角度更為清楚地表明了“互補(bǔ)與整合”確應(yīng)被看成數(shù)學(xué)思維的一個(gè)重要特點(diǎn)。
3.4 應(yīng)注意形式和直覺(jué)之間所存在的重要的互補(bǔ)關(guān)系
由“日常數(shù)學(xué)”向“學(xué)校數(shù)學(xué)”的過(guò)渡而言,不應(yīng)被看成對(duì)于學(xué)生已發(fā)展起來(lái)的素樸直覺(jué)的徹底否定;在此所需要的就是如何通過(guò)學(xué)校的數(shù)學(xué)學(xué)習(xí)使之“精致化”,以及隨著認(rèn)識(shí)的深化不斷發(fā)展起新的數(shù)學(xué)直覺(jué)。在筆者看來(lái),我們應(yīng)當(dāng)從這樣的角度去理解《課程標(biāo)準(zhǔn)》中有關(guān)“數(shù)感”的論述,這就是,課程內(nèi)容的學(xué)習(xí)應(yīng)當(dāng)努力“發(fā)展學(xué)生的數(shù)感”,而后者又并非僅僅是指各種相關(guān)的能力,如計(jì)算能力等,還包含“直覺(jué)”的含義,即對(duì)于客觀(guān)事物和現(xiàn)象數(shù)量方面的某種敏感性,包括能對(duì)數(shù)的相對(duì)大小做出迅速、直接的判斷,以及能夠根據(jù)需要做出迅速的估算。當(dāng)然,作為問(wèn)題的另一方面,我們又應(yīng)明確地肯定幫助學(xué)生牢固地掌握相應(yīng)的數(shù)學(xué)基本知識(shí)與基本技能的重要性,特別是,在需要的時(shí)候能對(duì)客觀(guān)事物和現(xiàn)象的數(shù)量方面做出準(zhǔn)確的刻畫(huà)和計(jì)算,并能對(duì)運(yùn)算的合理性做出適當(dāng)?shù)恼f(shuō)明──顯然,后者事實(shí)上已超出了“直覺(jué)”的范圍,即主要代表了一種自覺(jué)的努力。
值得指出的是,除去“形式”和“直覺(jué)”以外,著名數(shù)學(xué)教育家費(fèi)施拜因曾突出地強(qiáng)調(diào)了“算法”的掌握對(duì)于數(shù)學(xué)的特殊重要性。事實(shí)上,即使就初等數(shù)學(xué)而言我們也可清楚地看出“算法化”的意義。這正如吳文俊先生所指出的:“四則難題制造了許許多多的奇招怪招。但是你跑不遠(yuǎn)、走不遠(yuǎn),更不能騰飛……可是你要引進(jìn)代數(shù)方法,這些東西就都變成了不必要的、平平淡淡的。你就可以做了,而且每個(gè)人都可以做,用不著天才人物想出許多招來(lái)才能做,而且他可以騰飛,非但可以跑得很遠(yuǎn)而且可以騰飛?!边@正是數(shù)學(xué)歷史發(fā)展的一個(gè)基本事實(shí),即一種重要算法的形成往往就標(biāo)志著數(shù)學(xué)的重要進(jìn)步。也正因?yàn)榇?,費(fèi)施拜因?qū)⑿问健⒅庇X(jué)與算法統(tǒng)稱(chēng)為“數(shù)學(xué)的三個(gè)基本成分”,并專(zhuān)門(mén)撰文對(duì)這三者之間的交互作用進(jìn)行了分析。顯然,就我們目前的論題而言,這也就更為清楚地表明了“互補(bǔ)與整合”確應(yīng)被看成數(shù)學(xué)思維的一個(gè)重要特點(diǎn)。
4結(jié)束語(yǔ)
總之,即使是小學(xué)數(shù)學(xué)的教學(xué)內(nèi)容也同樣體現(xiàn)了一些十分重要的數(shù)學(xué)思維形式及其特征性質(zhì),因此,在教學(xué)中我們應(yīng)做出切實(shí)的努力以很好地落實(shí)“幫助學(xué)生學(xué)會(huì)基本的數(shù)學(xué)思想方法”這一重要目標(biāo)。
參考文獻(xiàn):
[1]馬云鵬.小學(xué)數(shù)學(xué)教學(xué)論[M].北京:人民教育出版社.2003.
[2]中華人民共和國(guó)教育部.全日制義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)[S].北京:北京師范大學(xué)出版社,2001.