趙啟軍 劉燕青 張朝
【摘要】 脊髓損傷是常見的神經(jīng)系統(tǒng)創(chuàng)傷性疾病,是醫(yī)學(xué)界研究的熱點(diǎn)難題之一。隨著車禍、高空墜落等高能量損傷的日益增多,其發(fā)病率和致殘率呈逐年增高的趨勢(shì)。本文通過對(duì)嗅鞘細(xì)胞和脊髓損傷的基礎(chǔ)、臨床研究及相關(guān)文獻(xiàn)回顧,就嗅鞘細(xì)胞的特點(diǎn)、治療脊髓損傷的研究現(xiàn)狀和移植途徑作一綜述。
【關(guān)鍵詞】 嗅鞘細(xì)胞; 脊髓損傷; 移植途徑
脊髓損傷(spinal cord injury,SCI)是常見的神經(jīng)系統(tǒng)創(chuàng)傷性疾病,是醫(yī)學(xué)界研究的熱點(diǎn)難題之一。隨著近年來車禍、高空墜落等高能量損傷的日益增多,其發(fā)病率和致殘率呈逐年增高的趨勢(shì)。有統(tǒng)計(jì)顯示,美國每年新發(fā)病例不低于10 000例,這還不包括在院外死亡的病例(占總病例的16%~30%)[1-2]。目前臨床上尚缺乏行之有效的治療方法,細(xì)胞移植治療脊髓損傷近年來成為研究的熱點(diǎn)。而嗅鞘細(xì)胞這種特殊類型的膠質(zhì)細(xì)胞,因其獨(dú)特的生物學(xué)特性,對(duì)中樞神經(jīng)系統(tǒng)疾病具有較好的治療作用,值得深入研究?,F(xiàn)將近年來嗅鞘細(xì)胞治療SCI的進(jìn)展綜述如下。
1 嗅鞘細(xì)胞的生理特性
嗅鞘細(xì)胞(olfactory ensheathing cells,OECs)又稱嗅鞘膠質(zhì)細(xì)胞,是存在于嗅覺系統(tǒng)中具備終生再生分裂能力的非神經(jīng)元細(xì)胞,它既能在中樞系統(tǒng)中存活,又能促進(jìn)神經(jīng)元細(xì)胞軸突的生長,所以O(shè)ECs兼有星形膠質(zhì)細(xì)胞和雪旺細(xì)胞的特性[3-5]。Sasaki等[6]研究證實(shí)OECs能夠穿越脊髓損傷離斷部位(長達(dá)8 mm),使脫髓鞘的神經(jīng)元軸突恢復(fù)功能,并且自身保持再生分裂的能力。OECs促進(jìn)神經(jīng)元細(xì)胞軸突生長的作用是通過分泌多種神經(jīng)營養(yǎng)因子(NTFs)來實(shí)現(xiàn)的。它主要分泌神經(jīng)營養(yǎng)因子-3/4/5(neurotrophic-3/4/5,NT-3/4/5)、腦源性神經(jīng)營養(yǎng)因子(brain derived neurotrophic factor,BDNF)、神經(jīng)生長因子(never growth factor,NGF)等[7]。OECs同時(shí)還表達(dá)有S-100、Nexin、神經(jīng)膠質(zhì)源性連接蛋白、層粘連蛋白、纖維結(jié)合蛋白等,這些物質(zhì)可能對(duì)神經(jīng)元軸突的生長也起著不可忽視的重要作用[8-9]。最新研究發(fā)現(xiàn)OECs還有改善損傷區(qū)及附近部位微循環(huán),促進(jìn)血管生成的作用[9-10]。
2 嗅鞘細(xì)胞移植治療脊髓損傷的現(xiàn)狀
脊髓在受到壓迫、剪切、撕裂以及旋轉(zhuǎn)等高能量暴力時(shí),脊髓內(nèi)的神經(jīng)元、膠質(zhì)細(xì)胞等發(fā)生即時(shí)死亡,脊髓受損處傳導(dǎo)障礙或中斷,與此同時(shí)血-腦屏障等正常結(jié)構(gòu)被破壞,此為原發(fā)性脊髓損傷。之后數(shù)分鐘內(nèi),原發(fā)傷即可引起局部缺血、水腫、炎性反應(yīng)、脂質(zhì)過氧化、Ca2+超載、興奮性神經(jīng)遞質(zhì)聚集、反應(yīng)性膠質(zhì)細(xì)胞增生等一系列的繼發(fā)性損傷反應(yīng),此即為繼發(fā)性脊髓損傷[11]。繼發(fā)傷加重了原發(fā)傷,并使脊髓損傷的程度和范圍進(jìn)一步加大,受損神經(jīng)元自我凋亡,神經(jīng)纖維脫髓鞘變性[12]。原則上原發(fā)性損傷大多是不可逆的,但繼發(fā)性損傷則是可以通過及早、正確的醫(yī)療措施進(jìn)行干預(yù)、減輕和預(yù)防的。
正是基于對(duì)脊髓損傷的這一認(rèn)識(shí),目前基礎(chǔ)研究及臨床治療的重點(diǎn)就是要努力恢復(fù)脊髓受損部位的微環(huán)境[13]。包括使用大劑量糖皮質(zhì)激素沖擊、手術(shù)減壓、高壓氧等措施來抑制受損脊髓局部缺血、水腫、電解質(zhì)紊亂等引起的繼發(fā)性損傷;采用細(xì)胞移植、神經(jīng)營養(yǎng)因子等方法來修復(fù)受損的髓鞘,并促進(jìn)神經(jīng)元及軸突的再生;最后通過長期的康復(fù)訓(xùn)練,盡可能恢復(fù)脊髓的功能[14-15]。
細(xì)胞移植治療脊髓損傷近年來成為研究的熱點(diǎn),并取得了豐碩的成果。目前,用于移植治療的細(xì)胞主要有神經(jīng)干細(xì)胞(NSCs)、雪旺細(xì)胞、骨髓間充質(zhì)干細(xì)胞、胚胎干細(xì)胞、星形膠質(zhì)細(xì)胞、嗅鞘細(xì)胞等[16]。其中OECs因容易獲得、可自體移植、體外培養(yǎng)可塑性強(qiáng)等優(yōu)點(diǎn)而受到許多學(xué)者的青睞[17]。在早期單一OECs移植治療SCI的研究中,Takeoka等[18]利用電生理學(xué)技術(shù),證明OECs能促進(jìn)神經(jīng)元軸突的再生并穿越了損傷斷面;Radtke等[19]研究顯示OECs促進(jìn)髓鞘的再生;Pastrana等[20]、Botero等[21]證實(shí)OECs能分泌多種神經(jīng)營養(yǎng)因子,改善受損脊髓局部微環(huán)境,使脫髓鞘的神經(jīng)元軸突再髓鞘化,并刺激神經(jīng)元的再生。國內(nèi)學(xué)者黃紅云、陳琳等[22-24]人經(jīng)過多年臨床試驗(yàn),應(yīng)用OECs移植治療晚期SCI患者數(shù)百例,結(jié)果證實(shí)可以改善患者神經(jīng)功能及預(yù)后。隨著細(xì)胞移植技術(shù)的日臻完善和基因技術(shù)的異軍突起,現(xiàn)在學(xué)者們多不滿足于單一OECs細(xì)胞移植治療SCI的效果,多將OECs與其他細(xì)胞聯(lián)合移植,或?qū)ECs經(jīng)過基因修飾后再移植,從而彌補(bǔ)了不足,獲得了更好的治療效果[25-28]。曾瑜等[29]將OECs和NSCs聯(lián)合移植,其治療效果都較兩者單一細(xì)胞移植好。Wang等[30]認(rèn)為,首先兩者在促進(jìn)神經(jīng)元分化及橋接、誘導(dǎo)軸突再生等方面具有協(xié)同作用,再次NSCs可以彌補(bǔ)OECs不能替換損傷和/或死亡的神經(jīng)元及與再生軸突形成突觸的缺點(diǎn)。Ma等[27]和鐘環(huán)等[28]用NTFs基因修飾OECs后移植治療大鼠SCI,提高了受損脊髓局部NTFs的濃度,均促進(jìn)了神經(jīng)元和軸突的再生及功能恢復(fù)。盡管大量的臨床試驗(yàn)研究證實(shí)OECs移植治療SCI取得了較好的療效,但是仍有人對(duì)此持有懷疑態(tài)度。Dobkin等[31]對(duì)OECs移植治療SCI患者的術(shù)前、術(shù)后情況進(jìn)行對(duì)比,認(rèn)為患者術(shù)后功能恢復(fù)不明顯,該手術(shù)安全性差,術(shù)后并發(fā)癥多,故暫時(shí)不主張對(duì)SCI患者進(jìn)行此類手術(shù)。
基于上述基礎(chǔ)及臨床實(shí)踐,如何將細(xì)胞移植到脊髓損傷部位并保證細(xì)胞存活發(fā)揮其應(yīng)有的作用成為治療關(guān)鍵。因此,OECs的移植途徑也成為了學(xué)者們探討的熱點(diǎn)問題。
3 嗅鞘細(xì)胞移植治療脊髓損傷的移植途徑
目前,嗅鞘細(xì)胞治療脊髓損傷的移植途徑主要有:開放手術(shù)局部注射法、經(jīng)蛛網(wǎng)膜下腔法、動(dòng)靜脈注射法等。開放手術(shù)局部注射法是指通過手術(shù)暴露受損的脊髓節(jié)段,然后將OECs懸液注射于受損脊髓的上下兩端[32-33]。該方法雖然可使局部OECs高密度存在,利于神經(jīng)細(xì)胞軸突的生長及神經(jīng)營養(yǎng)因子的產(chǎn)生,但終因手術(shù)操作復(fù)雜、易造成二次損傷、可重復(fù)性差等因素,限制了該技術(shù)的廣泛應(yīng)用。經(jīng)蛛網(wǎng)膜下腔法是指通過腰椎穿刺將OECs注射進(jìn)蛛網(wǎng)膜下腔內(nèi),OECs隨著腦脊液循環(huán)流經(jīng)受損脊髓處[34]。動(dòng)靜脈注射法是指將OECs直接注入血液內(nèi),隨血液循環(huán)到達(dá)受損脊髓處。與局部注射法相比,后兩種方法具有可重復(fù)性好、損傷小、操作簡便易推廣等優(yōu)勢(shì),但耗時(shí)長、起效慢、損耗大是其巨大缺陷,需加大OECs的注射量或重復(fù)多次注射??梢奜ECs移植治療SCI的最佳移植途徑尚待進(jìn)一步研究探討。endprint
目前,OECs的研究仍存在以下問題:OECs移植治療SCI的主要作用機(jī)制;OECs移植的數(shù)量;OECs移植的最佳時(shí)機(jī);OECs的最優(yōu)來源及提純;臨床遠(yuǎn)期治療效果及評(píng)價(jià)方法等。這些都有待于進(jìn)一步地深入研究解決。
參考文獻(xiàn)
[1] Marshall L F. Epidemiology and cost of central nervous system injury [J].Clin Neurosurg, 2000, 46(18): 105-112.
[2] Stevens R D, Bhardwaj A, Kirsch J R, et al. Critical care and perioperative management in traumatic spinal cord injury[J]. Neurosurg Anesthesiol, 2003, 15(52): 215-229.
[3] Li Y,Bao J,Khatibi N H,et al. Olfactory ensheathing cell transplantation into spinal cord prolongs the survival of mutant SOD1(G93A)ALS rats through neuroprotection and remyelination[J].Anat Rec (Hoboken), 2011, 294(5): 847-857.
[4] Pellitteri R,Spatuzza M,Russo A,et al.Olfactory ensheathing cells represent an optimal substrate for hippocampal neurons: an in vitro study[J].In Dev Neurosci, 2009, 27(5): 453-458.
[5] Radtke C, Wewetzer K. Translating basic research into clinical practice or what else do we have to learn about olfactory ensheathing cell?[J].Neurosci Lett, 2009, 456(3): 133-136.
[6] Sasaki M, Black J A, Lankford K L, et al. Molecular reconstruction of nodes of Ranvier after remyelination by transplanted olfactory ensheathing cells in the demyelinated spinal cord [J]. Neurosci, 2006, 26(6):1803-1812.
[7] Ekberg J A, Amaya D, Mackay-Sim A, et al. The migration of olfactory ensheathing cells during development and regeneration [J]. Neurosignals, 2012, 20(3):147-158.
[8] Kalincik T, Choi E A, Feron F, et al. Olfactory ensheathing cells reduce duration of autonomic dysreflexia in rats with high spinal cord injury[J]. Auton Neurosci, 2010, 154(1):20-29.
[9] Kocsis J D, Lankford K L, Sasaki M, et al. Unique in vivo properties of olfactory ensheathing cells that may contribute to neural repair and protection following spinal cord injury [J]. Neurosci Lett, 2009, 456(3):137-142.
[10] Takeoka A, Kubasak M D, Zhong H, et al. Serotonergic innervation of the caudal spinal stump in rats after complete spinal transaction: effect of olfactory ensheathing glia[J]. J Comp Neurol, 2009, 515(6):664-676.
[11] Diaz R A, Alcaraz Z M, Maldonado V, et al. Differential time-course of the increase of antioxidant thiol-defenses in the acute phase after spinal cord injury in tats[J]. Neurosci Lett, 2009, 452(1):56-59.
[12] Olby N. The pathogenesis and treatment of acute spinal cord injuries in dogs[J]. Vet Clin N Am-Small, 2010, 40(5): 791-807.
[13]趙強(qiáng),金華,李艷華.神經(jīng)干細(xì)胞治療脊髓損傷的現(xiàn)狀及移植途徑[J].生命科學(xué),2013,25(3):320-323.endprint
[14] Kwon B K,Tetzlaff W. Spinal cord regeneration from gene to transplants[J].Spine, 2001, 26(24):S13-S22.
[15] Romero M I, Lin L, Lush M E, et al. Deletion of Nf1 in neurons induces increased axon collateral branching after dorsal root injury [J].Neurosci, 2007, 27(8):2124-2134.
[16] Akimasa Y, Osahiko T, Shinsuke S, et al. Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord[J].Stem Cellls, 2011, 29(12):1983-1994.
[17]胡志俊,馬迎輝,周重建.酶消化法體外分離培養(yǎng)的大鼠嗅鞘細(xì)胞形態(tài)及表型特征[J].中國組織工程研究與臨床康復(fù), 2007, 11(20):3892-3895.
[18] Takeoka A, Jindrich D L, Munoz-Quiles C, et al. Axon regeneration can facilitate or suppress hindlimb function after olfactory ensheathing glia transplantation[J]. Neurosci, 2011, 31(11):4298-4310.
[19] Radtke C, Lankford K L, Wewetzer K, et al. Impaired spinal cord remyelination by long -term cultured adult porcine olfactory ensheathing cells correlates with altered in vitro phenotypic properties[J]. Xeno transplantation, 2010, 17(1): 71-80.
[20] Pastrana E, Moreno-Flores M T, Avila J, et al. BDNF production by olfactory ensheathing cells contributes to axonal regeneration of cultured adult CNS neurons[J]. Neurochem, 2007, 50(3):491-498.
[21] Botero L, Gomez R M, Chaparro O. Pathogenesis of spinal cord injuries and mechanisms of repair induced by olfactory ensheathing cells[J].Rev Neurol, 2013, 56(10):521-531.
[22] Huang H Y, Chen L, Wang H M, et al. Influence of patients'age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury[J]. Chin Med J(Engl), 2003, 116(10):1488-1491.
[23]黃紅云,陳琳,王洪美,等.嗅鞘細(xì)胞移植治療晚期脊髓損傷安全性評(píng)價(jià)38個(gè)月磁共振隨訪結(jié)果[J].中國修復(fù)重建外科雜志, 2006, 20(4):439-443.
[24]陳琳,黃紅云,王援朝,等.晚期脊髓損傷患者胚胎嗅鞘細(xì)胞移植后的電生理評(píng)價(jià)[J].中國組織工程研究與臨床康復(fù),2007,11(20):4738-4741.
[25] Xia L, Wan H, Hao S Y, et al. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord[J].Chin Med J, 2013, 126(5):909-917.
[26] Pourheydar B, Joghataei M T, Bakhtiari M, et al. Co- transplantation of bone marrow stromal cells with schwann cells evokes mechanical allodynia in the contusion model of spinal cord injury in rats[J].Cell J, 2012, 13(4):213-222.
[27] Ma Y H, Zhang Y, Cao L, et al. Effect of neurotrophin-3 genetically modified olfactory ensheathing cells transplantation on spinal cord injury[J].Cell Transplant, 2010, 19(2):167-177.endprint