朱桂英 柴家科
大面積深度燒傷以及慢性難愈性創(chuàng)面修復(fù)一直是臨床治療的難點。隨著干細(xì)胞研究的開展和深入,體內(nèi)外實驗證明位于皮下脂肪組織內(nèi)的脂肪干細(xì)胞[1](adipose-derived stem cells, ADSCs)可以有效促進(jìn)皮膚創(chuàng)面愈合。皮膚創(chuàng)面愈合[2]是一個復(fù)雜的多因素過程,涉及炎癥反應(yīng)、細(xì)胞增殖、細(xì)胞遷移、再上皮化、血管生成、細(xì)胞外基質(zhì)沉積以及重塑等多方面。在創(chuàng)傷條件下,傷口滲液和其中的炎性因子以及有絲分裂原等趨化因子促進(jìn)ADSCs增殖,向傷口遷移[3]。實驗證明,ADSCs在體、內(nèi)外均可以向皮膚表皮細(xì)胞、成纖維細(xì)胞和血管內(nèi)皮細(xì)胞等多種細(xì)胞分化,分泌多種生物活性分子限制炎癥和凋亡、促進(jìn)血管形成、促進(jìn)創(chuàng)周組織細(xì)胞,參與損傷修復(fù)等,最終實現(xiàn)促進(jìn)創(chuàng)面愈合的作用。
1脂肪干細(xì)胞的生物學(xué)特性以及低免疫原性
ADSCs是成體間充質(zhì)干細(xì)胞的一種,廣泛分布于不同物種,如人、鼠、豬、犬及兔等不同部位的脂肪組織中。其數(shù)量巨大,1g脂肪組織可以產(chǎn)生大約5×103脂肪干細(xì)胞,大約是1g骨髓中獲取干細(xì)胞數(shù)量的500倍;取材安全簡便,在局麻下即可獲取大量細(xì)胞,體外擴(kuò)增和自我更新能力很強;可以向多種細(xì)胞系分化:脂肪、骨、軟骨、骨骼肌、平滑肌、心肌、內(nèi)皮、肝細(xì)胞、造血細(xì)胞以及神經(jīng)元細(xì)胞[4-5],ADSCs是真正意義上的具有多向分化潛能的干細(xì)胞。ADSCs具有間充質(zhì)干細(xì)胞這一類細(xì)胞的特異性表面標(biāo)記[6], 表達(dá)大量的粘附分子:ADSCs持續(xù)性表達(dá)CD9、整合素β1(CD29)和α4 (CD49d)、細(xì)胞間粘附分子1 (ICAM-1,即CD54)、CD105、血管細(xì)胞粘附分子(VCAM,即CD106)和活化淋巴細(xì)胞粘附分子(ALCAM,即CD166),表達(dá)Ⅰ類組織相容性蛋白HLA-ABC。ADSCs不表達(dá)造血細(xì)胞表面標(biāo)志CD14、CD34或CD45,不表達(dá)Ⅱ類組織相容性抗原HLA-DR及內(nèi)皮細(xì)胞標(biāo)志CD31,不表達(dá)共刺激因子B7-1(CD80)、B7-2(CD86)和CD40。ADSCs表面標(biāo)記物會隨著培養(yǎng)時間的延長而有所改變。早期原代培養(yǎng)的ADSCs (也稱為stromal vascular fraction, SVF)中存在造血干細(xì)胞以及內(nèi)皮祖細(xì)胞的標(biāo)志分子, 如:CD11a、CD14、CD45、CD86、HLA-DR。自第2代以后,ADSCs均勻一致地表達(dá)間充質(zhì)干細(xì)胞特有標(biāo)記:CD13、CD29、CD44、CD73、CD90,這可能與原代培養(yǎng)的ADSCs含有多種細(xì)胞成分有關(guān)[7-8]。人ADSCs不表達(dá)MHC2 Ⅱ類分子和B7-1(CD80)、B7-2(CD86)和CD40等共刺激分子,這些分子是效應(yīng)性T細(xì)胞激活所必需的,共刺激分子的缺乏,使得T細(xì)胞活化的第二信號喪失,導(dǎo)致Th 細(xì)胞的無反應(yīng)性而促成免疫耐受,表現(xiàn)出低免疫原性。
2ADSCs向表皮細(xì)胞、成纖維細(xì)胞分化,促進(jìn)創(chuàng)面皮膚再上皮化
脂肪干細(xì)胞具有定向分化為組織修復(fù)所需要的終末分化細(xì)胞的能力,為組織修復(fù)以及構(gòu)建組織工程皮膚提供充足的細(xì)胞來源。在體外將ADSCs定向誘導(dǎo)分化為表皮細(xì)胞的方法較多。雷永紅等[9]采用皮膚勻漿液處理ADSCs,單獨培養(yǎng)或與熱休克損傷的HEKa細(xì)胞共培養(yǎng),誘導(dǎo)rADSCs向表皮細(xì)胞定向分化表達(dá)CK10、CK14、CK19,其誘導(dǎo)分化效率高于單純使用表皮生長因子EGF。王先成等[10]利用EGF以及維甲酸等成分誘導(dǎo)ADSCs分化,10天后細(xì)胞出現(xiàn)鋪路石改變,細(xì)胞表達(dá)CK19。這與Brzoska等[11]的實驗相一致,ADSCs在全反式維甲酸誘導(dǎo)作用下向上皮細(xì)胞分化,表達(dá)上皮細(xì)胞早期的表面標(biāo)記-角蛋白CK18,不再表達(dá)波形蛋白(vimentin)等間充質(zhì)干細(xì)胞標(biāo)志。Ebrahimian [12]則是將ADSCs在角質(zhì)細(xì)胞條件培養(yǎng)基中培養(yǎng)3周,發(fā)現(xiàn)ADSCs向角質(zhì)形成細(xì)胞分化,表達(dá)K5和K14。
干細(xì)胞在局部微環(huán)境的影響下定向誘導(dǎo)分化為創(chuàng)傷部位的靶細(xì)胞,該現(xiàn)象稱為局部專一分化(site-specific differentiation)[13]。在體實驗[14-15]以真皮基質(zhì)或者蠶絲蛋白-殼聚糖支架(SFCS)作為載體,將GFP標(biāo)記人ADSCs與之形成的復(fù)合物移植到裸鼠背部,移植后2周發(fā)現(xiàn)GFP-ADSCs分化為成纖維細(xì)胞,表達(dá)熱休克蛋白HSP47;移植后4周GFP-ADSCs分化成表皮細(xì)胞,表達(dá)CK19。Nie等[16-18]利用脫細(xì)胞真皮支架作為載體或者采用創(chuàng)周皮內(nèi)注射的方式將ADSCs應(yīng)用于創(chuàng)面,發(fā)現(xiàn)ADSCs分化為表皮細(xì)胞,表達(dá)pan角蛋白、CK5和CK14。
3向血管內(nèi)皮細(xì)胞和平滑肌細(xì)胞分化,分泌促進(jìn)血管生成因子
Cao 等[18]利用體外實驗,將ADSCs在體外與VEGF共培養(yǎng)時可以表達(dá)血管內(nèi)皮細(xì)胞ECs標(biāo)志。雷永紅[19]應(yīng)用30%大鼠血管勻漿液誘導(dǎo)大鼠ADSCs 3天,細(xì)胞向血管內(nèi)皮細(xì)胞分化,表達(dá)CD34和血管性假血友病因子vWF。楊平等[20]應(yīng)用TGF-β1、PDGF-BB體外誘導(dǎo)ADSCs,細(xì)胞呈現(xiàn)明顯的血管平滑肌細(xì)胞VSMCs特性,表達(dá)血管平滑肌蛋白α-SMA、SM-MHC以及Calponin。體內(nèi)實驗將ADSCs直接或者以支架為載體應(yīng)用到皮膚創(chuàng)面后,發(fā)現(xiàn)GFP-ADSCs向血管內(nèi)皮細(xì)胞分化,表達(dá)SMA、vWF[14-15]或者CD31[16-17]。分泌血管原性生成因子如VEGF、HGF、FGF2、TGFβ3,促進(jìn)肉芽組織生長和新生血管形成,增加血管密度,增加隨意皮瓣的血流供應(yīng)[21],提高全厚皮膚移植的成活率[22],促進(jìn)生理性和病理性創(chuàng)面愈合。
4旁分泌作用,增強組織修復(fù)
單獨使用ADSC分泌的細(xì)胞因子即條件培養(yǎng)液ADSC-CM有助于調(diào)節(jié)局部細(xì)胞對創(chuàng)傷的反應(yīng),促進(jìn)創(chuàng)面愈合。皮膚損傷波及到脂肪組織時,會釋放FGF-2,激活JNK通路,促進(jìn)ADSCs增殖和分泌,促進(jìn)血管形成以及促進(jìn)細(xì)胞分裂,促進(jìn)組織再生,減輕組織纖維化[23]。ADSCs[24-25]可以分泌大量促進(jìn)血管生成和抗凋亡的細(xì)胞因子: VEGF,粒系/巨噬細(xì)胞系集落刺激因子M-CSF,基質(zhì)來源因子SDF-1α,HGF,IGF-1,KGF以及FGF-2。ADSCs分泌產(chǎn)生KGF不受輻射的影響[12]。外源性的細(xì)胞因子對ADSCs的分泌功能具有一定的促進(jìn)作用。TNF-α促進(jìn)ADSCs分泌的IL-6和IL-8,在體內(nèi)皮膚傷口模型加速傷口愈合、血管形成、增殖、免疫細(xì)胞浸潤中起主要作用[26]。胰島素[27-28]后的ADSCs-CM含有更高水平的VEGF和HGF,有效促進(jìn)人血管內(nèi)皮細(xì)胞增殖、遷移并抑制其凋亡,有利于組織血管化。動物創(chuàng)傷模型顯示,ADSCs-CM中的TGF-β1[29]通過增加透明質(zhì)酸酶HAS-1以及HAS-2表達(dá),促進(jìn)透明質(zhì)酸合成;ADSCs-CM還可以上調(diào)細(xì)胞外基質(zhì)Ⅰ、Ⅲ型膠原、纖連蛋白的mRNA水平,下調(diào)MMP-9的mRNA水平,增強HDF分泌Ⅰ型膠原,刺激膠原合成和成纖維細(xì)胞遷移,在體內(nèi)促進(jìn)傷口愈合。局部注射ADSCs到糖尿病缺血模型創(chuàng)面[30],提高血漿和組織中VEGF的含量,明顯縮小創(chuàng)面面積,局部新生血管增加,加快愈合速度,改善創(chuàng)面愈合后質(zhì)量。Valerie等[31]利用ADSCs、自體角質(zhì)形成細(xì)胞以及自體成纖維細(xì)胞或者新生兒包皮成纖維細(xì)胞構(gòu)建組織工程皮膚,呈現(xiàn)表皮、真皮以及皮下組織三層結(jié)構(gòu),不需要任何合成的或者外源的支架材料,且這種三層結(jié)構(gòu)的皮膚替代物可以分泌TGF-β、VEGF、KGF和bFGF,具有創(chuàng)傷修復(fù)更強的潛力。
5促進(jìn)細(xì)胞增殖和遷移作用
ADSCs可以通過細(xì)胞接觸或者旁分泌作用促進(jìn)臨近組織細(xì)胞的增殖和遷移,有效提高創(chuàng)面的愈合速度。Kim等[32]發(fā)現(xiàn)ADSCs通過共培養(yǎng)、transwell培養(yǎng)方式均可以促進(jìn)人真皮成纖維細(xì)胞(HDF)增殖以及遷移;ADSCs經(jīng)TGF-β1 [33]處理后對皮膚成纖維細(xì)胞的遷移作用增強;胰島素[28]則具有促進(jìn)ADSCs對血管內(nèi)皮細(xì)胞的遷移作用,增加新生血管形成;鼠源ADSCs與細(xì)胞直接接觸共培養(yǎng)后促進(jìn)人表皮角質(zhì)細(xì)胞(HEKa)分裂增殖和遷移[34]。
6低氧增強ADSCs的創(chuàng)面修復(fù)作用
在影響ADSCs功能的眾多因素中,周圍環(huán)境中的氧氣濃度特別是低氧環(huán)境發(fā)揮了重要作用。缺氧[35]通過活化ADSCs細(xì)胞膜的受體酪氨酸激酶,接著磷酸化細(xì)胞外信號調(diào)節(jié)激酶(ERK)以及Akt信號通路成員,缺氧誘導(dǎo)因子1a(HIF-1a)明顯增加, ADSCs分泌更多抗凋亡和促進(jìn)血管生成的生物活性物質(zhì):胰島素樣生長因子結(jié)合蛋白(IGFBP-1)、IGFBP-2、M-CSF、M-CSFR、血小板來源生長因子PDGFR-beta、VEGF、 bFGF、HGF、IGF、瘦素leptin、血管生成素-2、Bcl2、BclxL,促進(jìn)細(xì)胞生長,減少細(xì)胞凋亡。其中VEGF的轉(zhuǎn)錄是誘發(fā)血管生成級聯(lián)反應(yīng)的關(guān)鍵步驟。
在20%、5%、1%氧濃度下,ADSCs分泌的VEGF的表達(dá)進(jìn)行性增高。ADSCs具有向SDF-1遷移的能力,低氧可以上調(diào)ADSCs表面的SDF-1受體趨化因子受體CXCR4的表達(dá),促進(jìn)ADSCs的遷移;低氧還促進(jìn)ADSCs的增殖,發(fā)揮再生潛力[36]。在低氧環(huán)境下培養(yǎng)的ADSC條件培養(yǎng)液hypoCM與正常氧濃度下的norCM相比較,VEGF和bFGF的mRNA和蛋白表達(dá)增加,促進(jìn)膠原合成和真皮成纖維細(xì)胞遷移,加速創(chuàng)面愈合[37-38]。低氧環(huán)境下的ADSC-CM促進(jìn)毛囊毛乳頭細(xì)胞以及表皮角質(zhì)形成細(xì)胞增殖,誘導(dǎo)毛發(fā)進(jìn)入生長期,促進(jìn)毛發(fā)再生[39]。
7安全、無致瘤性
ADSCs[40-41]在實驗室中經(jīng)過長期傳代或凍存仍然保持干細(xì)胞特征,增殖分化能力無改變,仍可以保留其免疫原性,無明顯的免疫學(xué)特性改變和分化傾向。陳光平等[42]研究證實ADSCs在體外進(jìn)行增殖分化過程中,其端粒酶活性以及染色體核型未發(fā)生異常變化。ADSCs應(yīng)用于皮膚傷口,局限于損傷局部,沒有向全身擴(kuò)散,不會影響機體遠(yuǎn)位腫瘤的擴(kuò)大和惡化[43]。向免疫缺陷小鼠靜脈內(nèi)注射2.5×108細(xì)胞/kg體重,小鼠存活且無副作用。向Balb/c-nu裸鼠靜脈內(nèi)注射2.0×108細(xì)胞/kg體重,觀察26周無腫瘤發(fā)生。在人體臨床試驗,向8名脊髓損傷超過12個月的男性患者單次注射4.0×108細(xì)胞,隨訪3個月無嚴(yán)重副作用發(fā)生。全身應(yīng)用ADSCs顯然是安全的,不會誘導(dǎo)腫瘤發(fā)生[44]。
綜上所述,ADSCs具有多向分化潛能,促進(jìn)新生血管形成,加速創(chuàng)面愈合。相對于骨髓干細(xì)胞,ADSCs來源于低氧環(huán)境,有助于耐受細(xì)胞移植后短暫的營養(yǎng)匱乏期[45]。治療所用的ADSCs來自患者自身的脂肪,因此,有望在不引起任何免疫排斥的情況下修復(fù)受損組織。ADSCs來源充足,易于分離,安全無致瘤性,是用于自體干細(xì)胞移植治療的最佳細(xì)胞來源。
8問題與展望
既往ADSCs促進(jìn)皮膚創(chuàng)面愈合的相關(guān)實驗研究均采用的是同種異體或者異種ADSCs經(jīng)過體外誘導(dǎo)或者純化后,直接應(yīng)用或者以各種支架為載體移植到創(chuàng)面,來觀察ADSCs的治療作用;創(chuàng)面模型均采用的是皮膚切除模型。目前,尚無將ADSCs應(yīng)用到燒傷創(chuàng)面的相關(guān)實驗報道,但是燒傷創(chuàng)面有別于皮膚切除,有著其獨特的病理過程,燒傷創(chuàng)面的微環(huán)境與ADSCs的相互影響規(guī)律是什么?干細(xì)胞用于燒傷創(chuàng)面治療的時機?轉(zhuǎn)歸如何?燒傷后,位于燒傷創(chuàng)面基底的脂肪組織中的大量的ADSCs,是否被啟動參與到燒傷創(chuàng)面的修復(fù)中?相信隨著ADSCs的基礎(chǔ)和臨床應(yīng)用研究的不斷深入,ADSCs必將成為皮膚創(chuàng)傷特別是燒傷創(chuàng)面修復(fù)的最佳細(xì)胞來源。
[參考文獻(xiàn)]
[1]Zuk PA,Zhu M,Ashjian P,et al.Human adipose tissue is a source of multipotent stem cells [J].Mol Biol Cell,2002,13(12):4279-4295.
[2]Gurtner GC,Werner S,Barrandon Y,et al.Wound repair and regeneration [J].Nature,2008,453:314-21.
[3]Scherzed A,Hackenberg S,Froelich K,et al.The effect of wound fluid on adipose-derived stem cells in vitro:a study in human cell materials [J].Tissue Eng Part C Methods,2011,17(8):809-817.
[4]Gimble JM,Katz AJ,Bunnel BA.Adipose-derived stem cells for regenerative medicine [J].Circ Res,2007,100(9):1249-1260.
[5]Fraser JK,Wulur I,Alfonso Z,et al.Fat tissue: an underappreciated source of stem cells for biotechnology [J].Trends Biotechnol,2006,24:150-154.
[6]Gronthos S,Franklin DM,Leddy HA,et al.Surface protein characterization of human adipose tissue-derived stromal cells[J].J Cell Physiol,2001,189(1):54-63.
[7]McIntosh K,Zvonic S,Garrett S,et al.The Immunogenicity of Human Adipose Derived Cells: Temporal Changes In Vitro [J].Stem Cells,2006,24:1246-1253.
[8]Mitchell JB,Mcintosh K,Zvonic S,et al.Immunogenicity of Human Adipose-Derived Cells: Temporal Changes In Stromal-Associated and Stem Cell-Associated Markers [J].Stem Cells,2006,24:376-385.
[9]雷永紅,付小兵, 盛志勇,等.誘導(dǎo)脂肪干細(xì)胞向表皮細(xì)胞表型的轉(zhuǎn)分化研究[J].中華整形外科雜志,2007,3(23): 151-153.
[10]王先成,喬 群,管利東,等.人脂肪間充質(zhì)干細(xì)胞生物學(xué)特征及向體外類角質(zhì)細(xì)胞的分化[J].中國組織工程研究與臨床康復(fù),2007,11(37):7333-7336.
[11]Brzoska M,Geiger H,Gauer S,et al.Epithelial differentiation of human adipose tissue-derived adult stem cells [J].Biochem Biophys Res Commun,2005,330:142-150.
[12]Ebrahimian TG,Pouzoulet F,Squiban C,et al.Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing [J]. Arterioscler Thromb Vasc Biol,2009,29(4):503-510.
[13]Liechty KW,Mackenzie TC,Shaaban AF,et al.Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep [J].Nat Med,2000,6:1282-1286.
[14]Altman AM,Matthias N,Yan Y,et al.Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells [J].Biomaterials,2008,29(10):1431-1442.
[15]Altman AM,Yan Y,Matthias N,et al.IFATS collection: Human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model [J].Stem Cells,2009,27(1):250-258.
[16]Nie C,Yang D,Morris SF.Local delivery of adipose-derived stem cells via acellular dermal matrix as a scaffold: a new promising strategy to accelerate wound healing [J].Med Hypotheses,2009,72(6):679-682.
[17]Nie C,Yang D,Xu J,et al.Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis [J].Cell Transplant,2011,20(2):205-216.
[18]Cao Y,Sun Z,Liao LM,et al.Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo [J].Biochem Biophys Res Commun,2005,332:370-379.
[19]雷永紅,付小兵, 盛志勇,等. 誘導(dǎo)脂肪干細(xì)胞向血管內(nèi)皮細(xì)胞分化的實驗研究[J].中華外科雜志,2010,48(14): 1106-1110.
[20]楊 平,尹 爍,崔 磊,等.脂肪干細(xì)胞向血管平滑肌細(xì)胞誘導(dǎo)的實驗研究[J].中國修復(fù)重建外科雜志,2008,22(4):481-486.
[21]Lu F,Mizuno H,Uysal CA,et al.Improved viability of random pattern skin flaps through the use of adipose-derived stem cells [J].Plast Reconstr Surg,2008,121(1): 50-58.
[22]Zoqrafou A,Tsiqris C,Papadopoulos O,et al.Improvement of skin-graft survival after autologous transplantation of adipose-derived stem cells in rats [J].J Plast Reconstr Aesthet Surg,2011,64(12): 1647-1656.
[23]Saqa H,Eto H,Shiqeura T,et al.IFATS Collection: Fibroblast growth factor-2-induced hepatocyte growth factor secretion by adipose-derived stromal cells inhibits postinjury fibrogenesis through a c-Jun N-terminal kinase-dependent mechanism [J].Stem Cells,2009,27(1):238-249.
[24]Rehman J,Traktuev D,Li J,et al.Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells [J].Circulation,2004,109:1292-1298.
[25]Meliga E,Strem BM,Duckers HJ,et al.Adipose-derived cells [J]. Cell Transplant,2007,16(9): 963-970.
[26]Heo SC,Jeon ES,Lee IH,et al.Tumor necrosis factor-a-activated human adipose tissue-derived mesenchymal stem cells accelerate cutaneous wound healing through paracrine mechanisms [J].J Invest Dermatol,2011,131(7):1559-1567.
[27]折 濤, 胡大海, 張彥剛, 等. 胰島素干預(yù)后脂肪干細(xì)胞旁分泌對人血管內(nèi)皮細(xì)胞的作用[J]. 中華燒傷雜志,2011,27(1):32-36.
[28]折 濤,胡大海,張 軍,等. 胰島素對脂肪干細(xì)胞旁分泌功能的影響[J].中華燒傷雜志,2009,25(4): 268-271.
[29]Jung H,Kim HH,Lee DH,et al.Transforming growth factor-beta 1 in adipose derived stem cells conditioned medium is a dominant paracrine mediator determines hyaluronic acid and collagen expression profile [J].Cytotechnology,2011,63(1): 57-66.
[30]Kim EK,Li G,Lee TJ,et al.The effect of human adipose-derived stem cells on healing of ischemic wounds in a diabetic nude mouse model [J].Plast Reconstr Surg,2011,128(2): 387-394.
[31]Trottier V,Marceau-Fortier G,Germain L,et al.IFATS Collection: Using Human Adipose-Drived Stem/Stromal Cells for the Production of New Skin Substitutes [J].Stem Cells,2008,26(10):2713-2723.
[32]Kim WS,Park BS,Sung JH,et al.Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts [J].J Dermatol Sci,2007,48(1):15-24.
[33]Cho JW,Kang MC,Lee KS. TGF-β1-treated ADSCs-CM promotes expression of type 1 collagen and MMP-1, migration of human skin fibroblasts, and wound healing in vitro and in vivo [J].Int J Mol Med,2010,26(6): 901-906.
[34]袁 方,雷永紅,付小兵,等.脂肪干細(xì)胞促進(jìn)人表皮角質(zhì)形成細(xì)胞創(chuàng)面模型愈合的研究[J].中華外科雜志,2008,10(46):1575-1579.
[35]Zachar V,Duroux M,Emmersen J,et al.Hypoxia and adipose-derived stem cell-based tissue regeneration and engineering [J].Expert Opin Biol Ther,2011,11(6):775-786.
[36]Thangarajah H,Vial IN,Chang E,et al.IFATS collection: adipose stromal cells adopt a proangiogenic phenotype under the influence of hypoxia [J].Stem Cells,2009,27(1):266-274.
[37]Lee EY,Xia Y,Kim WS,et al.Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF [J]. Wound Repair Regen,2009,17(4): 540-547.
[38]Chung HM,Won CH,Sung JH.Responses of adipose-derived stem cells during hypoxia: enhanced skin-regenerative potential [J].Expert Opin Biol Ther,2009,9(12):1499-1508.
[39]Park BS,Kim WS,Choi JS,et al.Hair growth stimulated by conditioned medium of adipose-derived stem cells is enhanced by hypoxia: evidence of increased growth factor secretion [J].Biomed Res,2010,31(10): 27-34.
[40]Rodriquez AM,Elabd C,Amri EZ,et al.The human adipose tissue is a source of multipotent stem cells [J]. Bilchimie,2005,87(1):125-128.
[41]Liu G,Zhou H,Li Y,et al.Evaluation of the viability and osteogenic differentiation of cryopreserved human adipose-derived stem cells [J].Cryobiology,2008,57(1):18-24.
[42]陳光平,羅盛康,徐 翔,等.人脂肪干細(xì)胞體外增殖的安全性評價[J].廣東醫(yī)學(xué)院學(xué)報,2009,27(2):126-129.
[43]Altman AM,Prantl L,Muehlberg FL,et al. Wound microenvironment sequesters adipose-derived stem cells in a murine model of reconstructive surgery in the setting of concurrent distant m alignancy [J].Plast Reconstr Surg,2011,127(4):1467-1477.
[44]Ra JC,Shin IS,Kim SH,et al.Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans[J].Stem Cells Dev,2011,20(8):1297-1308.
[45]Follmar KE,Decroos FC,Prichard HL,et al.Effects of glutamine, glucose, and oxygen concentration on the metabolism and proliferation of rabbit adipose-derived stem cells [J].Tissue Eng,2006,12(12): 3525-3533.
[收稿日期]2011-12-10 [修回日期]2012-02-06
編輯/李陽利