摘要目的:觀察川芎-赤芍藥對(duì)及其有效成分能否減緩細(xì)胞泡沫化,并探討其作用機(jī)制。方法:采用氧化型低密度脂蛋白(ox-LDL)誘導(dǎo)人單核細(xì)胞白血病(THP-1)細(xì)胞建立泡沫化模型,將川芎-赤芍藥對(duì)及其有效成分分別作用于ox-LDL誘導(dǎo)的THP-1細(xì)胞。采用油紅O染色分析細(xì)胞泡沫化程度,通過(guò)逆轉(zhuǎn)錄定量聚合酶鏈反應(yīng)(RT-qPCR)檢測(cè)鐵代謝相關(guān)鐵調(diào)素(Hep)、膜鐵轉(zhuǎn)運(yùn)蛋白(FPN)、鐵調(diào)素調(diào)節(jié)蛋白(HJV)、血色素沉著癥基因(HFE)、轉(zhuǎn)鐵蛋白受體2(TfR2)mRNA表達(dá)情況。結(jié)果:油紅O細(xì)胞染色后鏡下可見(jiàn),染色后的紅色脂滴因川芎-赤芍藥對(duì)及其有效成分干預(yù)而減少。與對(duì)照組比較,模型組Hep、FPN、HFE、TfR2 mRNA表達(dá)上升,HJV mRNA表達(dá)減少;與模型組比較,川芎-赤芍藥對(duì)及其有效成分干預(yù)組抑制作用明顯,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05或P<0.01)。結(jié)論:川芎-赤芍藥對(duì)及其有效成分可抑制ox-LDL誘導(dǎo)的THP-1源巨噬細(xì)胞泡沫化,作用機(jī)制與川芎-赤芍藥對(duì)及其有效成分調(diào)節(jié)鐵代謝相關(guān)基因表達(dá)有關(guān)。
關(guān)鍵詞川芎-赤芍藥對(duì);巨噬細(xì)胞泡沫化;鐵調(diào)素;川芎嗪;芍藥苷;實(shí)驗(yàn)研究
doi:10.12102/j.issn.1672-1349.2024.18.008
Mechanism of Chuanxiong-Chishao and its Effective Ingredients on ox-LDL-induced Macrophage Foaming and Hepcidin
XU Guipeng, WEI Fengni, CHEN Qiting, LIN Baohong, CHEN Lijie, ZHANG Miao
Shenzhen Second People′s Hospital, Shenzhen 518000, Guangdong, China
Corresponding AuthorZHANG Miao, E-mail: shuixi.an@163.com
AbstractObjective:To observe the effect of Chuanxiong-Chishao and its effective ingredients on cell foaming,and to explore its mechanism of action.Methods:The foaming model of THP-1 cells was established by oxidized low density lipoprotein(ox-LDL).The tohoku hospital pediatrics-1(THP-1) cells induced by ox-LDL were treated with Chuanxiong-Chishao and its effective ingredients respectively.The cell foam was analyzed by oil red O staining,and the mRNA expressions of hepcidin(Hep),ferroportin(FPN),ferrimodulin regulatory protein(HJV),hemochromatosis gene(HFE) and transferrin receptor 2(TfR2) were detected by reverse transcription quantitative polymerase chain reaction(RT-qPCR).Results:Oil red O staining showed that the number of red fat drops decreased with the intervention of Chuanxiong-Chishao and its effective ingredients.Compared with the control group,the mRNA expressions of Hep,F(xiàn)PN,HFE and TfR2 increased in the model group,while mRNA expression of HJV decreased.Compared with the model group,Chuanxiong-Chishao and its effective ingredients of the intervention group showed obvious inhibitory effect,and the differences were statistically significant(P<0.05 or P<0.01).Conclusion:Chuanxiong-Chishao and its effective ingredients could inhibit the ox-LDL-induced THP-1-derived macrophage foaming,and its mechanism of action was related to the regulation of iron metabolism related gene expression.
KeywordsChuanxiong-Chishao; macrophage foaming; ferroportin; ligustrazine; paeoniflorin; experimental study
活血化瘀中藥川芎-赤芍藥對(duì)防治動(dòng)脈粥樣硬化(atherosclerosis,AS)的臨床及動(dòng)物相關(guān)研究較多,抗AS療效已被證實(shí),但具體作用機(jī)制尚未明確[1-3]。相關(guān)研究顯示,鐵代謝及鐵調(diào)素(hepcidin,Hep)/膜鐵轉(zhuǎn)運(yùn)蛋白(ferroportin,F(xiàn)PN)信號(hào)通路異常是促進(jìn)AS的重要危險(xiǎn)因素,可能成為治療AS的新靶點(diǎn)[4-5]。鐵是機(jī)體必需的微量元素,Hep是富含半胱氨酸的具有負(fù)性鐵調(diào)節(jié)作用的在肝內(nèi)合成的抗菌多肽,可抑制單核巨噬細(xì)胞系統(tǒng)鐵的釋放及腸道鐵的吸收[6-7]。FPN是哺乳動(dòng)物膜鐵輸出的蛋白,受Hep調(diào)節(jié),當(dāng)Hep與其受體FPN結(jié)合,泛素化誘導(dǎo)降解了FPN,使鐵在細(xì)胞內(nèi)滯留,減少鐵的輸出。Hepcidin/Ferroportin軸可調(diào)節(jié)鐵平衡,在體內(nèi)受到精準(zhǔn)的調(diào)控,通過(guò)協(xié)調(diào)小腸上皮細(xì)胞調(diào)控鐵的吸收,協(xié)調(diào)肝臟細(xì)胞和脾臟巨噬細(xì)胞中儲(chǔ)存的鐵釋放,調(diào)控機(jī)體游離的鐵濃度,維持機(jī)體鐵穩(wěn)態(tài)[7]。Hep的分子調(diào)控機(jī)制復(fù)雜,主要是通過(guò)骨形態(tài)發(fā)生蛋白(BMP)信號(hào)途徑[8]。鐵調(diào)素調(diào)節(jié)蛋白(HJV)是血色素沉著癥基因(HFE)2的產(chǎn)物,其是BMPs的協(xié)同受體,通過(guò)BMP受體增強(qiáng)BMP通路信號(hào)傳導(dǎo)[9]。當(dāng)機(jī)體累積過(guò)量的鐵時(shí)可產(chǎn)生一種復(fù)合物,這種復(fù)合物是由細(xì)胞膜上的轉(zhuǎn)鐵蛋白受體(TfR)1或TfR2、HFE與飽和轉(zhuǎn)鐵蛋白結(jié)合形成,通過(guò)促進(jìn)BMP信號(hào)轉(zhuǎn)導(dǎo)調(diào)控Hep表達(dá)[10-11]。因此,在鐵調(diào)節(jié)中FPN、Hep、HFE、HJV、TfR2參與其中并發(fā)揮重要作用。
巨噬細(xì)胞泡沫化是公認(rèn)的體外AS細(xì)胞模型,為進(jìn)一步探討川芎-赤芍藥對(duì)及其有效成分對(duì)AS的影響及其機(jī)制,本研究采用人單核細(xì)胞白血?。═HP-1)細(xì)胞,通過(guò)丙二醇甲醚醋酸脂(PMA)及氧化型低密度脂蛋白(ox-LDL)誘導(dǎo)為泡沫細(xì)胞,構(gòu)建AS體外模型;建模成功后加入川芎-赤芍藥對(duì)及其有效成分進(jìn)行干預(yù),并設(shè)置空白對(duì)照組及陽(yáng)性藥物組,進(jìn)而觀察川芎-赤芍藥對(duì)及其有效成分對(duì)THP-1巨噬細(xì)胞源性泡沫細(xì)胞的影響及作用機(jī)制。
1材料與方法
1.1實(shí)驗(yàn)材料
人單核/巨噬細(xì)胞株THP-1購(gòu)自中科院上海生命科學(xué)研究院生化與細(xì)胞所。
1.2實(shí)驗(yàn)藥物
川芎嗪、芍藥苷標(biāo)準(zhǔn)品購(gòu)自北京索萊寶科技有限公司;川芎-赤芍藥對(duì)及單體凍干粉購(gòu)自華潤(rùn)三九藥業(yè);辛伐他汀(杭州默沙東制藥有限公司生產(chǎn),批號(hào):M023632,規(guī)格:每片20 mg)。
1.3實(shí)驗(yàn)試劑
RPMI-1640培養(yǎng)液,胎牛血清(Hyclone);PMA(大連唯諾商貿(mào)有限公司);Trizol(Takara);油紅O染料(Sigma);逆轉(zhuǎn)錄及SYBR Green PCR 試劑盒(ABI)。
1.4細(xì)胞培養(yǎng)及模型制備
THP-1細(xì)胞培養(yǎng)于RPMI-1640培養(yǎng)基(含10%標(biāo)準(zhǔn)胎牛血清、100 U/mL鏈霉素及100 U/mL青霉素)中。培養(yǎng)條件:37 ℃恒溫培養(yǎng)箱,5%的CO2,細(xì)胞密度為2×106個(gè)細(xì)胞數(shù),間隔2~4 d進(jìn)行傳代。
巨噬細(xì)胞泡沫化模型的建立:取對(duì)數(shù)生長(zhǎng)期細(xì)胞計(jì)數(shù)后的THP-1細(xì)胞轉(zhuǎn)移至離心管中,以1 000 r/min離心3 min后,棄上清,加入PMA(160 nmol/L)的細(xì)胞培養(yǎng)基,48 h后觀察細(xì)胞狀態(tài)。THP-1單核細(xì)胞分化,表現(xiàn)為細(xì)胞體積增大,由懸浮變成貼壁,偽足由圓形變成不規(guī)則形狀,表明已分化成THP-1細(xì)胞源性的巨噬細(xì)胞。
分化誘導(dǎo)成功后,加入含ox-LDL(100 mg/L)、10%胎牛血清的細(xì)胞培養(yǎng)基,培養(yǎng)24 h后觀察到細(xì)胞體積繼續(xù)增大,脂質(zhì)變多,有透亮脂滴形成;使用油紅O對(duì)細(xì)胞進(jìn)行染色,細(xì)胞質(zhì)中可見(jiàn)較多圓形、亮紅色及典型戒環(huán)樣的脂滴,表明THP-1細(xì)胞巨噬源性泡沫細(xì)胞模型構(gòu)建成功。
1.5油紅O染色
取狀態(tài)較好的對(duì)數(shù)生長(zhǎng)期THP-1細(xì)胞接種于6孔板中,PMA處理48 h,使其分化為巨噬細(xì)胞,再給予ox-LDL誘導(dǎo)24 h后油紅O染色,蘇木素復(fù)染,顯微鏡下觀察并照相。
1.6實(shí)驗(yàn)分組
將PMA誘導(dǎo)后的THP-1源性巨噬細(xì)胞混勻后分為9組,每組4孔,分別為對(duì)照組(正常巨噬細(xì)胞)、模型組(ox-LDL 100 mg/L)、陽(yáng)性藥物組(ox-LDL 100 mg/L+辛伐他汀 1 μmol/L)、川芎嗪組(ox-LDL 100 mg/L+川芎嗪 500 μmol/L)、芍藥苷組(ox-LDL 100 mg/L+芍藥苷 500 μmol/L)、川芎組(ox-LDL 100 mg/L+川芎20 g/L)、赤芍組(ox-LDL 100 mg/L+赤芍20 g/L)、川芎嗪+芍藥苷組(ox-LDL 100 mg/L+川芎嗪 500 μmol/L+芍藥苷500 μmol/L)、芎芍藥對(duì)組(ox-LDL 100 mg/L+川芎-赤芍藥對(duì)20 g/L)。
1.7逆轉(zhuǎn)錄定量聚合酶鏈反應(yīng)(RT-qPCR)測(cè)定目的基因
收集細(xì)胞,使用Trizol將細(xì)胞充分裂解,進(jìn)行RNA提??;按說(shuō)明書(shū)將RNA逆轉(zhuǎn)錄為cDNA;再經(jīng)過(guò)預(yù)變性、擴(kuò)增等PCR反應(yīng)計(jì)算目的基因相對(duì)表達(dá)量。Hep正向引物5′-CCTGACCAGTGGCTCTGTTT-3′,反向引物5′-CACATCCCACACTTTGATCG-3′;FPN正向引物5′-ACCTCGCTGGTGGTACAGAATGTT-3′,反向引物5′-AGCAGGAAGTGAGAACCCATCCAT-3′;HFE正向引物5′-GGATCTTGGAGCAAACCTCA-3′,反向引物5′-GACACCACTCCCAACTTCGT-3′;HJV正向引物5′-TTCCAATCCTGCGTCTTTGAT-3′,反向引物5′- GGAAAAGGTGCAAGTTCTCCAA-3′;TfR2正向引物5′-CCATCAGTGCTGACATTGCT-3′,反向引物5′- TGGGGGTAGAGACTCTGTGG-3′。以GAPDH為內(nèi)參,對(duì)照組及模型組作為對(duì)照,各藥物干預(yù)組目的基因的mRNA相對(duì)含量用2-△△Ct計(jì)算。
1.8統(tǒng)計(jì)學(xué)處理
使用GraphPad Prism 9.4統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)分析。符合正態(tài)分布的定量資料以均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,多組間比較采用單因素方差分析,兩組間比較采用LSD檢驗(yàn)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1川芎-赤芍藥對(duì)及其有效成分對(duì)巨噬細(xì)胞泡沫化的影響
紅O染色后顯微鏡下可見(jiàn):對(duì)照組細(xì)胞質(zhì)內(nèi)有少量的紅色微粒;模型組經(jīng)ox-LDL誘導(dǎo)后,細(xì)胞質(zhì)內(nèi)有大量亮紅色的脂滴,細(xì)胞體積變大,并出現(xiàn)了戒環(huán)樣的典型泡沫細(xì)胞形態(tài);與模型組比較,川芎嗪組、芍藥苷組、川芎組、赤芍組細(xì)胞質(zhì)內(nèi)的紅色脂滴均顯著減少、變小,川芎嗪+芍藥苷組及芎芍藥對(duì)組紅色脂滴減少更顯著。詳見(jiàn)圖1。
2.2川芎-赤芍藥對(duì)及其有效成分對(duì)泡沫細(xì)胞Hep mRNA表達(dá)的影響
與對(duì)照組比較,模型組Hep mRNA表達(dá)升高(P<0.01);與模型組比較,陽(yáng)性藥物組、川芎嗪組、芍藥苷組、川芎組、赤芍組、川芎嗪+芍藥苷組、芎芍藥對(duì)組Hep mRNA表達(dá)均減少,且川芎嗪+芍藥苷組降低最顯著,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05或P<0.01)。詳見(jiàn)圖2。
2.3川芎-赤芍藥對(duì)及其有效成分對(duì)泡沫細(xì)胞FPN mRNA表達(dá)的影響
與對(duì)照組比較,模型組FPN mRNA表達(dá)升高(P<0.01);與模型組比較,陽(yáng)性藥物組、赤芍組、川芎嗪+芍藥苷組、芎芍藥對(duì)組FPN mRNA表達(dá)均降低,且陽(yáng)性藥物組降低最顯著,差異均有統(tǒng)計(jì)學(xué)意義(P<0.01)。詳見(jiàn)圖3。
2.4川芎-赤芍藥對(duì)及其有效成分對(duì)泡沫細(xì)胞HFE mRNA表達(dá)的影響
與對(duì)照組比較,模型組HFE mRNA表達(dá)升高(P<0.01);與模型組比較,陽(yáng)性藥物組、川芎嗪組、芍藥苷組、川芎組、赤芍組、川芎嗪+芍藥苷組、芎芍藥對(duì)組HFE mRNA表達(dá)均降低,差異均有統(tǒng)計(jì)學(xué)意義(P<0.01)。詳見(jiàn)圖4。
2.5川芎-赤芍藥對(duì)及其有效成分對(duì)泡沫細(xì)胞HJV mRNA表達(dá)的影響
與對(duì)照組比較,模型組HJV mRNA表達(dá)降低(P<0.01);與模型組比較,陽(yáng)性藥物組、川芎嗪組、芍藥苷組、川芎組、赤芍組、川芎嗪+芍藥苷組、芎芍藥對(duì)組HJV mRNA表達(dá)均升高,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05或P<0.01)。詳見(jiàn)圖5。
2.6川芎-赤芍藥對(duì)及其有效成分對(duì)泡沫細(xì)胞TfR2 mRNA表達(dá)的影響
與對(duì)照組比較,模型組TfR2 mRNA表達(dá)升高(P<0.01);與模型組比較,陽(yáng)性藥物組、川芎嗪組、芍藥苷組、川芎組、赤芍組、川芎嗪+芍藥苷組、芎芍藥對(duì)組TfR2 mRNA表達(dá)均降低,差異均有統(tǒng)計(jì)學(xué)意義(P<0.01)。詳見(jiàn)圖6。
3討論
AS是引起心腦血管疾病的重要病理因素之一,嚴(yán)重威脅人類(lèi)的健康及生命,但具體機(jī)制尚未明確。有研究證實(shí),鐵代謝紊亂與AS關(guān)系密切,可促進(jìn)脂質(zhì)過(guò)氧化、炎癥等病理過(guò)程,AS斑塊不穩(wěn)定、斑塊內(nèi)出血、鐵沉積及脂質(zhì)過(guò)氧化是晚期AS斑塊的重要特征[12]。相關(guān)研究顯示,在AS的發(fā)展過(guò)程中,鐵代謝相關(guān)信號(hào)通路有重要的關(guān)聯(lián)作用,Hepcidin/Ferroportin信號(hào)通路是鐵代謝主要的信號(hào)通路,該通路異常是AS的重要危險(xiǎn)因素,可能成為治療AS的新靶點(diǎn)。研究表明,Hep和FPN比例在AS的發(fā)病中發(fā)揮著重要的作用[13-14]。一項(xiàng)流行病學(xué)調(diào)查顯示,絕經(jīng)后的女性Hep水平與AS的發(fā)生關(guān)系密切,Hep和FPN比例與AS的發(fā)病密切相關(guān)[15]。體內(nèi)研究發(fā)現(xiàn),AS斑塊中的Hep水平升高,可促進(jìn)AS斑塊內(nèi)鐵沉積、炎癥反應(yīng)及脂質(zhì)在巨噬細(xì)胞聚積[16-17]。體外研究發(fā)現(xiàn),ox-LDL通過(guò)刺激誘導(dǎo)巨噬細(xì)胞Hep表達(dá),內(nèi)化降解巨噬細(xì)胞膜的FPN,引起細(xì)胞內(nèi)鐵沉積,上調(diào)噬紅巨噬細(xì)胞內(nèi)聚積脂質(zhì),從而誘發(fā)炎癥、氧化應(yīng)激及細(xì)胞凋亡[18]。Wunderer等[12]研究指出,BMP-Hep-FPN軸可能作為預(yù)防和治療心血管疾病的新靶標(biāo)。
中醫(yī)藥在抗氧化、抗炎、調(diào)節(jié)脂質(zhì)代謝等方面的多靶點(diǎn)作用使其在預(yù)防及抗AS方面有獨(dú)到的優(yōu)勢(shì)。瘀血阻滯是AS主要的病因病機(jī),活血化瘀是目前防治該病的有效策略?;钛鏊帉?duì)(川芎-赤芍)是從經(jīng)典方血府逐瘀湯中精制簡(jiǎn)化得來(lái)[19]。川芎溫通辛散,是血中之氣藥,既化瘀活血又行血中氣滯;赤芍寒苦,散瘀止痛、涼血清熱;二藥配伍,增加活血化瘀功效同時(shí)借氣而行血,使破滯行血效力增倍。陳可冀院士治療冠心病經(jīng)皮冠狀動(dòng)脈介入(PCI)術(shù)后血瘀證常用川芎-赤芍藥對(duì),該藥對(duì)為治療該病的專(zhuān)方專(zhuān)藥[20]。川芎嗪為川芎發(fā)揮效用的主要成分,具有抗炎、減輕氧化應(yīng)激、抗血栓等作用[21]。芍藥苷為赤芍發(fā)揮效用的主要組分,可保護(hù)心臟、神經(jīng),具有抗炎、抗凝、抗氧化等[22]。川芎-赤芍藥對(duì)及其效用組分相須互補(bǔ),協(xié)同改善心腦血管疾病如AS等的病理變化[23]。多項(xiàng)研究顯示,活血化瘀中藥單體川芎嗪能有效改善AS小鼠鐵過(guò)載,降低血脂并抑制斑塊形成,具有調(diào)節(jié)機(jī)體鐵穩(wěn)態(tài)及抗氧化損傷的作用[18-19,24]。
本研究選用活血化瘀中藥藥對(duì)川芎-赤芍,構(gòu)建ox-LDL刺激誘導(dǎo)的THP-1巨噬細(xì)胞源性泡沫細(xì)胞即AS體外模型,結(jié)果顯示,與對(duì)照組比較,模型組Hep、FPN、HFE、TfR2 mRNA表達(dá)均增多,HJV mRNA降低(P<0.05);與模型組比較,陽(yáng)性藥物組、川芎嗪組、芍藥苷組、川芎組、赤芍組、川芎嗪+芍藥苷組、芎芍藥對(duì)組FPN、Hep、HFE、TfR2 mRNA表達(dá)均降低,HJV mRNA升高(P<0.05);油紅O結(jié)果提示巨噬細(xì)胞泡沫化模型造模成功,PCR結(jié)果證明模型組Hepcidin、FPN、HFE、TfR2表達(dá)增高、HJV降低,川芎-赤芍藥對(duì)及其有效成分可抑制其異常表達(dá)。提示中藥川芎-赤芍藥對(duì)及其有效成分通過(guò)降低Hepcidin、FPN、HFE、TfR2,升高HJV,調(diào)節(jié)Hepcidin/Ferroportin信號(hào)通路,從而發(fā)揮改善AS的作用。
綜上所述,鐵代謝及Hepcidin/Ferroportin軸為靶點(diǎn)的AS研究處于起步階段,活血化瘀藥對(duì)在AS過(guò)程中鐵代謝及Hepcidin/Ferroportin通路調(diào)節(jié)作用的研究較少,亟待開(kāi)發(fā)。本研究為川芎-赤芍藥對(duì)的臨床應(yīng)用提供了實(shí)驗(yàn)證據(jù),并為活血化瘀新藥中成藥的研發(fā)及機(jī)制研究提供Hepcidin相關(guān)的新靶點(diǎn)和新思路,為中醫(yī)藥的現(xiàn)代化發(fā)展提供了科學(xué)的實(shí)驗(yàn)證據(jù),對(duì)闡明AS病變加重、發(fā)現(xiàn)新的治療靶點(diǎn)及有效的治療藥物具有重要的臨床意義。
參考文獻(xiàn):
[1]袁蓉,王燕,叢偉紅,等.芎芍膠囊治療心血管病研究進(jìn)展[J].中國(guó)中藥雜志,2017,42(4):640-643.
[2]佘一鳴,胡永慧,張莉野,等.中藥調(diào)血脂的研究進(jìn)展[J].中草藥,2017,48(17):3636-3644.
[3]胡楠,張威,于睿,等.中藥復(fù)方治療頸動(dòng)脈粥樣硬化斑塊臨床療效Meta分析[J].中華中醫(yī)藥學(xué)刊,2018,36(9):2089-2093.
[4]CORNELISSEN A,GUO L,SAKAMOTO A,et al.New insights into the role of iron in inflammation and atherosclerosis[J].E Bio Medicine,2019,47:598-606.
[5]GALESLOOT T E,HOLEWIJN S,KIEMENEY L A,et al.Serum hepcidin is associated with presence of plaque in postmenopausal women of a general population[J].Arteriosclerosis,Thrombosis,and Vascular Biology,2014,34(2):446-456.
[6]CAMASCHELLA C,NAI A,SILVESTRI L.Iron metabolism and iron disorders revisited in the hepcidin era[J].Haematologica,2020,105(2):260-272.
[7]RISHI G,SUBRAMANIAM V N.The relationship between systemic iron homeostasis and erythropoiesis[J].Bioscience Reports,2017,37(6):BSR20170195.
[8]LI Y K,HUANG X L,WANG J J,et al.Regulation of iron homeostasis and related diseases[J].Mediators of Inflammation,2020,2020:6062094.
[9]SILVESTRI L,NAI A,DULJA A,et al.Hepcidin and the BMP-SMAD pathway:an unexpected liaison[J].Vitamins and Hormones,2019,110:71-99.
[10]XIAO X,ALFARO-MAGALLANES V M,BABITT J L.Bone morphogenic proteins in iron homeostasis[J].Bone,2020,138:115495.
[11]LI B C,GONG J,SHENG S Q,et al.Increased hepcidin in hemorrhagic plaques correlates with iron-stimulated IL-6/STAT3 pathway activation in macrophages[J].Biochemical and Biophysical Research Communications,2019,515(2):394-400.
[12]WUNDERER F,TRAEGER L,SIGURSLID H H,et al.The role of hepcidin and iron homeostasis in atherosclerosis[J].Pharmacological Research,2020,153:104664.
[13]XIAO L,LUO G,GUO X P,et al.Macrophage iron retention aggravates atherosclerosis:evidence for the role of autocrine formation of hepcidin in plaque macrophages[J].Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids,2020,1865(2):158531.
[14]GALARIS D,BARBOUTI A,PANTOPOULOS K.Iron homeostasis and oxidative stress:an intimate relationship[J].Biochimica et Biophysica Acta Molecular Cell Research,2019,1866(12):118535.
[15]FANG X X,WANG H,HAN D,et al.Ferroptosis as a target for protection against cardiomyopathy[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(7):2672-2680.
[16]NEGRE-SALVAYRE A,GUERBY P,GAYRAL S,et al.Role of reactive oxygen species in atherosclerosis:lessons from murine genetic models[J].Free Radical Biology amp; Medicine,2020,149:8-22.
[17]ZHANG M,SUN M Y,GUO C Y,et al.Effect of tetramethylpyrazine and hyperlipidemia on hepcidin homeostasis in mice[J].International Journal of Molecular Medicine,2019,43(1):501-506.
[18]ZHANG M,LIU J,GUO W L,et al.Icariin regulates systemic iron metabolism by increasing hepatic hepcidin expression through Stat3 and Smad1/5/8 signaling[J].International Journal of Molecular Medicine,2016,37(5):1379-1388.
[19]袁蓉,施偉麗,信琪琪,等.川芎-赤芍藥對(duì)研究進(jìn)展[J].環(huán)球中醫(yī)藥,2019,12(5):808-811.
[20]蔣躍絨,謝元華,張京春,等.陳可冀治療心血管疾病血瘀證用藥規(guī)律數(shù)據(jù)挖掘[J].中醫(yī)雜志,2015,56(5):376-380.
[21]HU Z G,SU H Z,ZENG Y L,et al.Tetramethylpyrazine ameliorates hepatic fibrosis through autophagy-mediated inflammation[J].Biochimie et Biologie Cellulaire,2020,98(3):327-337.
[22]ZHANG L L,WEI W.Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony[J].Pharmacology amp; Therapeutics,2020,207:107452.
[23]YUAN R,SHI W L,XIN Q Q,et al.Tetramethylpyrazine and paeoniflorin inhibit oxidized LDL-induced angiogenesis in human umbilical vein endothelial cells via VEGF and Notch pathways[J].Evidence-Based Complementary and Alternative Medicine,2018,2018:3082507.
[24]SUN M Y,ZHANG M,CHEN S L,et al.The influence of hyperlipidemia on endothelial function of FPN1 Tek-cre mice and the intervention effect of tetramethylpyrazine[J].Cellular Physiology and Biochemistry,2018,47(1):119-128.
(收稿日期:2023-03-31)
(本文編輯薛妮)