摘要:【目的】研究不同氮化鐵復(fù)合材料Fe2N@C、Fe3N@C和Fe4N@C的微波吸收性能?!痉椒ā客ㄟ^(guò)水熱法合成金屬有機(jī)骨架材料(MOFs),經(jīng)過(guò)氮化處理得到Fe2N@C、Fe3N@C和Fe4N@C復(fù)合材料;采用X射線衍射(X-ray diffraction,XRD)、超高分辨掃描電子顯微鏡(scanning electron microscope,SEM)、高分辨透射電子顯微鏡(transmission electron microscope,TEM)、拉曼光譜(Raman spectra,Raman)和X射線光電子能譜(X-ray photoelectron spectroscopy,XPS)等技術(shù)表征、定性Fe2N@C、Fe3N@C和Fe4N@C的結(jié)構(gòu)、形貌以及成分變化,結(jié)合矢量網(wǎng)絡(luò)分析(vector network analyzer,VNA)和振動(dòng)樣品磁強(qiáng)計(jì)(vibrating sample magnetometer,VSM)定量分析Fe2N@C、Fe3N@C和Fe4N@C對(duì)微波的反射損耗能力以及磁性能。【結(jié)果】Fe2N@C和Fe4N@C因介電常數(shù)遠(yuǎn)大于磁導(dǎo)率,導(dǎo)致阻抗匹配失衡,而Fe3N@C介電常數(shù)和磁導(dǎo)率相近,存在較好的阻抗匹配,涂層厚度為2 mm的樣品,小于反射損耗為?10 dB的有效吸波寬帶達(dá)到的頻率為2.4 GHz,在頻率為9.1 GHz處最小的反射損耗為?14.1 dB?!窘Y(jié)論】3種氮化鐵的相結(jié)構(gòu)和碳層的缺陷程度不同,氮化鐵核與碳?xì)さ膶?dǎo)電性不同,會(huì)在界面間出現(xiàn)電荷聚集,引起界面極化,導(dǎo)致Fe2N@C和Fe4N@C的介電常數(shù)增大,使得Fe2N@C和Fe4N@C中的介電常數(shù)遠(yuǎn)大于磁導(dǎo)率,最終導(dǎo)致阻抗匹配失衡,具有較差的吸波性能。
關(guān)鍵詞:氮化鐵;復(fù)合材料;阻抗匹配;微波吸收
中圖分類號(hào):TM25;TB4文獻(xiàn)標(biāo)志碼:A
引用格式:
王文敬,董浩琪,盧潔,等.碳包裹氮化鐵復(fù)合材料的制備及微波吸收性能[J].中國(guó)粉體技術(shù),2024,30(3):39-50.
WANG W J,DONG H Q,LU J,et al.Preparation and microwave absorption properties of carbon-coated iron nitride composites[J].China Powder Science and Technology,2024,30(3):39?50.
隨著科技的發(fā)展,電磁波干擾越來(lái)越影響人們的生活,吸波材料的應(yīng)用和發(fā)展受到人們的廣泛關(guān)注。微波在接觸材料表面時(shí),有一部分微波發(fā)生反射,另一部分則進(jìn)入材料內(nèi)部,在材料內(nèi)部進(jìn)行衰減。吸波材料將能量轉(zhuǎn)化為熱能或其他能量進(jìn)行釋放,達(dá)到吸波的目的,而阻抗匹配的大小決定了材料對(duì)微波的吸收能力[1-2]。吸波材料應(yīng)用廣泛,在無(wú)線通信中,有利于減小信號(hào)反射和干擾,提高通信質(zhì)量;在軍事領(lǐng)域中,吸波材料可用于減弱雷達(dá)波的反射信號(hào),探測(cè)器將無(wú)法檢測(cè)到返回信號(hào),從而達(dá)到屏蔽、隱身的目的;在電磁屏蔽中,吸波材料可用于屏蔽電子設(shè)備和通信系統(tǒng),阻止低頻電磁波的穿透,從而減少電磁波的干擾;在靜電消散中,吸波材料可以減少靜電聚集和靜電放電對(duì)設(shè)備的干擾[3-6]。
吸波材料性能評(píng)價(jià)主要通過(guò)矢量網(wǎng)絡(luò)分析儀測(cè)量材料的反射損耗[7]。目前,吸波材料主要存在2個(gè)問(wèn)題:1)涂層較厚,在涂層厚度為1.5 mm以下微波吸收效果很差;2)有效吸收帶寬窄,在頻率為8~18 GHz時(shí)微波能夠產(chǎn)生有效的吸收,但在頻率為2~8 GHz低頻下的微波吸收性能較差[8]。隨著雷達(dá)頻率的發(fā)展,研究低頻下的吸波材料對(duì)軍事領(lǐng)域具有至關(guān)重要的作用[9-10]。吸波材料能量衰減主要通過(guò)介電損耗和磁損耗2種機(jī)制。傳統(tǒng)的吸波材料比較單一,不能同時(shí)利用電損耗和磁損耗來(lái)降低微波干擾,因此新型的吸波材料需具有薄、輕、寬、強(qiáng)等特性。鐵基磁性材料因資源豐富、成本低、電磁性能優(yōu)異而被廣泛關(guān)注,但鐵基磁性材料穩(wěn)定性差、密度大缺點(diǎn)限制了其在微波吸收中的普遍應(yīng)用。氮化鐵作為一種磁性材料,因飽和磁化強(qiáng)度大、密度小、比表面積大、無(wú)污染等特點(diǎn),被應(yīng)用到各種高科技領(lǐng)域中,但介電損耗較差阻礙了它的廣泛應(yīng)用。碳材料作為傳統(tǒng)的介電損耗材料具有優(yōu)異的電導(dǎo)率,碳材料和氮化鐵進(jìn)行復(fù)合所形成的氮化鐵復(fù)合材料同時(shí)具有磁損耗和較強(qiáng)的介電損耗[11-13]。
近年來(lái),氮化鐵在微波吸收領(lǐng)域被廣泛研究,但仍存在低頻下微波吸收能力較弱、涂層較厚等缺點(diǎn)[14-17]。金屬有機(jī)骨架材料(MOFs)因具有較大的比表面積及多孔性、結(jié)構(gòu)可調(diào)等優(yōu)點(diǎn)引起研究者的興趣,獨(dú)特的三維結(jié)構(gòu)使得MOFs在煅燒過(guò)程中,氮原子可充分接觸金屬節(jié)點(diǎn)形成高度分散的納米氮化鐵,提高氮化鐵復(fù)合材料的微波吸收性能[18-19]。采用MOFs作為前驅(qū)體通過(guò)煅燒氮化生成具有核殼結(jié)構(gòu)的Fe2N@C、Fe3N@C和Fe4N@C復(fù)合材料,該吸波材料具有優(yōu)異的穩(wěn)定性,碳材料的加入改善了氮化鐵的介電損耗,碳材料和氮化鐵的復(fù)合使得吸波材料具有較高介電損耗和磁損耗,提高Fe2N@C、Fe3N@C和Fe4N@C復(fù)合材料的微波吸收性能[20]。
1實(shí)驗(yàn)
1.1試劑材料和儀器設(shè)備
試劑材料:九水合硝酸鐵、乙酸、尿素(均為分析純,國(guó)藥集團(tuán)化學(xué)試劑有限公司);N,N-二甲基甲酰胺(質(zhì)量分?jǐn)?shù)為99.5%)、對(duì)苯二甲酸(質(zhì)量分?jǐn)?shù)為98%)(上海麥克林生化科技有限公司)。
儀器設(shè)備:SmartLab型X-射線衍射儀(X-ray diffraction,XRD,日本株式會(huì)社理學(xué));Regulus 8230型超高分辨掃描電子顯微鏡(scanning electron microscope,SEM,日本日立公司);JEM-2100型高分辨透射電子顯微鏡(transmission electron microscope,TEM,日本電子公司);LabRAM HR800型光譜儀(Raman spectra,Raman,法國(guó)HORIBA Jobin Yvon公司);ESCALAB 250Xi型光電子能譜儀(X-ray photoelectron spectroscopy,XPS,美國(guó)熱電公司);8604型振動(dòng)樣品磁強(qiáng)計(jì)(vibrating sample magnetometer,VSM,美國(guó)Lake Shore公司);AV-3672B型矢量網(wǎng)絡(luò)分析儀(vector network analyzer,VNA,中國(guó)電子科技集團(tuán)公司)。
1.2氮化鐵復(fù)合吸波材料的制備
1.2.1前驅(qū)體的合成
稱取質(zhì)量為7.3 g的九水合硝酸鐵和質(zhì)量為2.0 g的對(duì)苯二甲酸分別溶于體積為232 mL的N,N-二甲基甲酰胺和體積為8 mL的乙酸溶液中,完全溶解后,置于熱力學(xué)溫度為423 K的烘箱中,保持24 h后,得到MOFs前驅(qū)體。
1.2.2氮化鐵復(fù)合材料的合成
Fe2N@C合成。將質(zhì)量為1 g的前驅(qū)體置于石英管中,在氨氣的氣氛下,以升溫速率為275 K/min加熱到熱力學(xué)溫度為823 K后,保持2 h,得到樣品Fe2N@C。
Fe3N@C合成。將質(zhì)量為0.2 g的前驅(qū)體和質(zhì)量為0.6 g的尿素置于管式爐中,在氮?dú)獾臍夥障乱陨郎厮俾蕿?77 K/min加熱到熱力學(xué)溫度為873 K后,保持90 min,得到樣品Fe3N@C。
Fe4N@C合成。將質(zhì)量為0.5 g的前驅(qū)體置于石英管中,在氨氣氣氛下以升溫速率為278 K/min加熱到熱力學(xué)溫度為843 K后,保持6.5 h,得到樣品Fe4N@C。
2結(jié)果與討論
2.1氮化鐵復(fù)合材料的相組成
利用XRD表征確定Fe2N@C、Fe3N@C和Fe4N@C復(fù)合材料的物相組成,XRD譜圖如圖1所示。由圖可知,F(xiàn)e2N@C的衍射峰所在衍射角為37.5°、40.9°、42.9°、56.7°、67.7°、75.9°,與標(biāo)準(zhǔn)卡片F(xiàn)e2N(JCPDS 72-2126)的(100)、(002)、(011)、(012)、(110)、(103)晶面對(duì)應(yīng);Fe3N@C的衍射峰峰值所在衍射角為37.8°、41.2°、43.3°、57.2°、76.8°,與標(biāo)準(zhǔn)卡片F(xiàn)e3N(JCPDS 01-1236)的(100)、(002)、(101)、(102)、(103)晶面對(duì)應(yīng);Fe4N@C的衍射峰值所在衍射角為41.2°、47.9°、70.1°,與標(biāo)準(zhǔn)卡片F(xiàn)e4N(JCPDS 83-0875)的(111)、(200)、(220)晶面對(duì)應(yīng),表明合成純相Fe2N@C、Fe3N@C和Fe4N@C。
2.2氮化鐵復(fù)合材料的形貌和微觀結(jié)構(gòu)表征
為了了解Fe2N@C、Fe3N@C和Fe4N@C的微觀形貌,采用SEM、TEM進(jìn)行表征,復(fù)合吸波材料微觀形貌如圖2中所示。由圖2(a)、(d)、(g)可知,F(xiàn)e2N@C、Fe3N@C和Fe4N@C顆粒堆積導(dǎo)致材料表面凹凸不平。由圖2(b)、(e)、(h)可知,F(xiàn)e2N@C、Fe3N@C和Fe4N@C中的Fe納米顆粒高度分散,被包裹在碳層中,說(shuō)明成功合成碳包裹的Fe2N、Fe3N和Fe4N。由圖2(c)可知,晶格間距0.23 nm歸屬于Fe2N(100)晶面。由圖2(f)可知,晶格間距0.20 nm歸屬于Fe3N(101)晶面。由圖2(i)可知,晶格間距0.27 nm歸屬于Fe4N(110)晶面。上述結(jié)果表明成功合成碳包裹的氮化鐵。
利用XPS和Raman測(cè)試進(jìn)一步研究Fe2N@C、Fe3N@C和Fe4N@C的結(jié)構(gòu),復(fù)合吸波材料C 1s的XPS譜圖如圖3所示。由圖3(a)可知,F(xiàn)e2N@C中結(jié)合能為284.70 eV的峰歸屬于C—C,結(jié)合能為285.37 eV的峰歸屬于C—N,結(jié)合能為288.46 eV的峰歸屬于C—O。由圖3(b)可知,F(xiàn)e3N@C中結(jié)合能為284.72 eV的峰歸屬于C—C,結(jié)合能為285.85 eV的峰歸屬于C—N,結(jié)合能為288.54 eV的峰歸屬于C—O。由圖3(c)可知,F(xiàn)e4N@C中結(jié)合能為284.72 eV的峰歸屬于C—C,結(jié)合能為285.39 eV的峰歸屬于C—N,結(jié)合能為288.39 eV的峰歸屬于C—O[15]。
氮化鐵復(fù)合吸波材料Raman光譜如圖4所示。由圖可知,F(xiàn)e2N@C、Fe3N@C和Fe4N@C的Raman光譜中均存在2個(gè)明顯的特征峰,在波數(shù)為1 590 cm-1處的位置峰為G峰,歸屬于石墨結(jié)構(gòu)中sp2雜化的碳原子結(jié)構(gòu)。在波數(shù)為1 340 cm-1處的位置峰為D峰,說(shuō)明碳載體中存在sp3雜化的碳原子。其中D峰和G峰的強(qiáng)度的比值(ID/IG)越高說(shuō)明石墨化程度越低,F(xiàn)e2N@C、Fe3N@C和Fe4N@C的ID/IG分別為0.85、1.19和1.07。根據(jù)自由電子理論,石墨化程度越高越有利于電子轉(zhuǎn)移,有利于提高Fe2N@C、Fe3N@C和Fe4N@C的導(dǎo)電率和介電常數(shù)。從圖中可以看出,F(xiàn)e3N@C的石墨化程度最低,使得該樣品具有相對(duì)較小的介電常數(shù)[21]。
2.3氮化鐵復(fù)合材料的吸波性能
吸波性能主要是通過(guò)矢量網(wǎng)絡(luò)分析和振動(dòng)樣品磁強(qiáng)計(jì)檢測(cè)Fe2N@C、Fe3N@C和Fe4N@C的電磁損耗進(jìn)行表征分析。
2.3.1振動(dòng)樣品磁強(qiáng)計(jì)表征
振動(dòng)樣品磁強(qiáng)計(jì)是通過(guò)將復(fù)合吸波材料處于交變磁場(chǎng)中,吸波材料隨著交變磁場(chǎng)的變化產(chǎn)生飽和磁化強(qiáng)度Ms、剩余磁化強(qiáng)度Mr、矯頑力Hc。其中飽和磁化強(qiáng)度是指吸波材料在外加磁場(chǎng)下能達(dá)到的最大磁化強(qiáng)度;剩余磁化強(qiáng)度是指吸波材料在外加磁場(chǎng)歸零時(shí),材料內(nèi)部的磁化強(qiáng)度;矯頑力指吸波材料內(nèi)部的剩余磁化量為0時(shí),需要在吸波材料外部加的反磁場(chǎng)強(qiáng)度。氮化鐵復(fù)合吸波材料的磁滯回線圖如圖5所示。由圖5(a)可知,F(xiàn)e2N@C的Ms為14.47 emu/g,通過(guò)局部放大得到,Mr為1.17emu/g,Hc為0.261 kOe。由圖5(b)可知,F(xiàn)e3N@C的Ms為95.21 emu/g,通過(guò)局部放大得到,Mr為22.21 emu/g,Hc為0.374 kOe。由圖5(c)可知,F(xiàn)e4N@C的Ms為175.53 emu/g,通過(guò)局部放大得到,Mr為10.26 emu/g,Hc為0.069 kOe。從圖中可知,F(xiàn)e3N@C樣品的矯頑力最大,說(shuō)明材料被磁化后,想要恢復(fù)到初始狀態(tài)更加的困難,因而需要消耗更多的能量,即Fe3N@C樣品的磁損耗能力相對(duì)較強(qiáng),具有較好的磁損耗性能。
2.3.2矢量網(wǎng)絡(luò)分析表征
矢量網(wǎng)絡(luò)分析是間接分析材料的吸波性能,通過(guò)計(jì)算得到吸波材料的反射損耗以及吸波材料的磁導(dǎo)率和介電常數(shù)的虛實(shí)部,磁損耗正切值和介電損耗正切值計(jì)算公式[14]如下
式中:tanδμ和tanδε分別為復(fù)磁導(dǎo)率正切值和復(fù)介電常數(shù)正切值;μ'和μ''分別為復(fù)磁導(dǎo)率的實(shí)部和虛部;ε?和ε??分別為復(fù)介電常數(shù)的實(shí)部和虛部。
在理想情況下,吸波材料的表面反射系數(shù)Γ為0時(shí),電磁波將會(huì)完全被吸波材料吸收,此時(shí)反射系數(shù)Γ與阻抗存在如下關(guān)系[14]:
式中:Γ為表面反射系數(shù);Zr和Z0分別為吸波材料波阻抗和空氣自由空間波阻抗;μr和μ0分別為相對(duì)磁導(dǎo)率和真空中的磁導(dǎo)率;εr和ε0分別為相對(duì)介電常數(shù)和真空中的介電常數(shù)。
由式(3)、(4)可知,當(dāng)吸波材料的相對(duì)介電常數(shù)和相對(duì)磁導(dǎo)率相等時(shí)具有最佳的阻抗匹配特性,這時(shí)自由空間中電磁波將會(huì)最大程度地進(jìn)入吸波材料內(nèi)部,從而對(duì)電磁波產(chǎn)生優(yōu)異的吸收性能,利于吸波材料發(fā)揮自身的損耗能力。
氮化鐵復(fù)合吸波材料反射損耗如圖6所示。由圖可知,F(xiàn)e2N@C和Fe4N@C的反射損耗較小,表明Fe2N@C和Fe4N@C吸波性能較差。Fe3N@C的反射損耗峰值大部分集中在頻率為2~8 GHz低頻段,且隨著厚度的增加,最大反射損耗峰值逐漸向低頻移動(dòng),吸收峰值有所增加,涂層厚度為2 mm的樣品有效吸收帶頻寬達(dá)到頻率為2.4 GHz,在頻率為9.1 GHz處最小反射損耗為?14.1 dB,具有較好的吸波性能。
氮化鐵復(fù)合吸波材料介電常數(shù)虛實(shí)部、磁導(dǎo)率虛實(shí)部圖如圖7所示。由圖可知,F(xiàn)e2N@C和Fe4N@C存在較大的ε?和ε??,使得這2種Fe2N@C和Fe4N@C的介電損耗遠(yuǎn)大于磁損耗,進(jìn)而導(dǎo)致阻抗匹配失衡[22-23]。Fe3N@C存在較小的ε?和ε??,使得介電常數(shù)和磁導(dǎo)率相近,存在較好的阻抗匹配[24-25]。
Fe2N@C、Fe3N@C和Fe4N@C的tanδε和tanδμ,可以更加直觀地的看出材料對(duì)微波的電磁損耗能力,氮化鐵復(fù)合吸波材料的電損耗角、磁損耗角圖如圖8所示。由圖8(a)、(c)可知,F(xiàn)e2N@C和Fe4N@C的tanδε遠(yuǎn)大于tanδμ,阻抗匹配較差。由圖8(b)可知,F(xiàn)e3N@C的tanδε與tanδμ相近,存在較好的阻抗匹配,具有較好的微波吸收能力。由于3種氮化鐵的相結(jié)構(gòu)和碳層的缺陷程度不同,氮化鐵核與碳?xì)さ膶?dǎo)電性不同,會(huì)在界面間出現(xiàn)電荷聚集,引起界面極化,導(dǎo)致Fe2N@C和Fe4N@C的介電常數(shù)增加,使得Fe2N@C和Fe4N@C中的介電常數(shù)遠(yuǎn)大于磁導(dǎo)率,最終導(dǎo)致阻抗匹配失衡。
3結(jié)論
1)由MOFs作為前驅(qū)體進(jìn)行氮化成功制備Fe2N@C、Fe3N@C和Fe4N@C。
2)在Fe2N@C、Fe3N@C和Fe4N@C中,碳層的引入使得材料的介電常數(shù)增大,但過(guò)大的介電常數(shù)將會(huì)導(dǎo)致抗阻匹配失衡,使得電磁波吸收損耗能力較差。
3)Fe2N@C和Fe4N@C因介電常數(shù)遠(yuǎn)大于磁導(dǎo)率,導(dǎo)致阻抗匹配失衡,而Fe3N@C介電常數(shù)和磁導(dǎo)率相近,存在較好的阻抗匹配,涂層厚度為2 mm的樣品有效吸收帶寬達(dá)到頻率為2.4 GHz,在頻率為9.1 GHz處最小反射損耗為?14.1 dB,具有較好的吸波性能。
4)由于3種氮化鐵的相結(jié)構(gòu)和碳層的缺陷程度不同,氮化鐵核與碳?xì)さ膶?dǎo)電性不同,會(huì)在界面間出現(xiàn)電荷聚集,引起界面極化,導(dǎo)致Fe2N@C和Fe4N@C的介電常數(shù)增大,使得Fe2N@C和Fe4N@C中的介電常數(shù)遠(yuǎn)大于磁導(dǎo)率,最終導(dǎo)致阻抗匹配失衡,具有較差的吸波性能。
利益沖突聲明(Conflict of Interests)
所有作者聲明不存在利益沖突。
All authors disclose no relevant conflict of interests.
作者貢獻(xiàn)(Author’s Contributions)
王文敬、魏宇學(xué)進(jìn)行方案設(shè)計(jì),王文敬、董浩琪和盧潔進(jìn)行樣品合成和表征,李偉、朱磊、張成華和郭立升指導(dǎo)并參與了論文寫(xiě)作。孫松和魏宇學(xué)進(jìn)行了審閱與修改。所有作者均閱讀并同意了最終稿件的提交。
The study was designed by WANG Wenjing,WEI Yuxue.Sample synthesis and characterization by WANG Wenjing,DONG Haoqi and LU Jie.LI Wei,ZHU Lei,ZHANG Chenghua and GUO Lisheng supervised and participated in the writing of the paper.SUN Song and WEI Yu xue reviewed and revised.All authors have read the last version of paper and consented for submission.
參考文獻(xiàn)(References)
[1]WANG B L,WU Q,F(xiàn)U Y G,et al.A review on carbon/magnetic metal composites for microwave absorption[J].Journal of Materials Scienceamp;Technology,2021,86:91-109.
[2]CHEN C,ZENG S F,HAN X C,et al.3D carbon network supported porous SiOC ceramics with enhanced microwave absor-ption properties[J].Journal of Materials Scienceamp;Technology,2020,54:223-229.
[3]QIN M,ZHANG L M,WU H J.Dielectric loss mechanism in electromagnetic wave absorbing materials[J].Advanced Science,2022,9(10):2105553.
[4]DING Z P,SU W,LUO Y L,et al.Metasurface inverse designed by deep learning for quasi-entire terahertz wave absorption[J].Nanoscale,2024,16(3):1384-1393.
[5]ZHENG S F,WANG Y Y,WANG X S,et al.Research progress on high-performance electromagnetic interference shield-ing materials with well-organized multilayered structures[J].Materials Today Physics,2024,40:101330.
[6]ZHONG S J,YU M J,LIANG X C,et al.Microwave absorption performance and multiple loss mechanisms of three-dimens-ional porous Fe4N@Fe3O4@Fe/carbon composite[J].Journal of Materials Science,2022,57(35):16649-16664.
[7]FANG Y,WANG W J,WANG S,et al.Construction of conductive network in carbon-nanotube-based nanocomposites for electromagnetic wave absorption via diameter and composition regulation[J].Journal of Physics:Conference Series,2023,2437(1):012053.
[8]李發(fā)展.納米Fe4N和碳基復(fù)合吸波材料的制備和電磁性能研究[D].濟(jì)南:山東大學(xué),2015.
LI F Z.Preparation and electromagnetic property of nano-Fe4N and carbon based composite absorbing material[D].Jinan:Shandong University,2015.
[9]王光華,董發(fā)勤,賀小春.納米吸波材料研究進(jìn)展[J].中國(guó)粉體技術(shù),2007,13(4):35-38.
WANG G H,DONG F Q,HE X C.Current advance and prospect of nano-sized absorbing materials[J].China Powder Science and Technology,2007,13(4):35-38.
[10]王一帆,朱琳,韓露,等.電磁吸波材料的研究現(xiàn)狀與發(fā)展趨勢(shì)[J].復(fù)合材料學(xué)報(bào),2023,40(1):1-12.
WANG Y F,ZHU L,HAN L,et al.Research status and development trend of electromagnetic absorbing materials[J].Acta Materiae Compositae Sinica,2023,40(1):1-12.
[11]TANG H Z,JI J,HAN D,et al.Complex electromagnetic parameters and microwave absorption properties of iron nano?chain/carbon nanotube composite materials[J].Journal of Superconductivity and Novel Magnetism,2022,35(2):507-514.
[12]QIU F,WANG Z Y,LIU M,et al.Synthesis,characterization and microwave absorption of MXene/NiFe2O4 composites[J].Ceramics International,2021,47(17):24713-24720.
[13]REN M M,LI F X,WANG B H,et al.Preparation and electromagnetic wave absorption properties of carbon nanotubesloaded Fe3O4 composites[J].Journal of Magnetism and Magnetic Materials,2020,513:167259.
[14]李詩(shī)琪.基于γ-Fe2O3制備Fe4N及其復(fù)合材料吸波性能研究[D].南昌:南昌航空大學(xué),2021.
LI S Q.Microwave absorbing properties of Fe4N prepared byγ-Fe2O3 and its composites[D].Nanchang:Nanchang Hang kong University,2021.
[15]CUI X Q,LIANG X H,LIU W,et al.Stable microwave absorber derived from 1D customized heterogeneous structures of Fe3N@C[J].Chemical Engineering Journal,2020,381:122589.
[16]HU Y,JIANG R J,ZHANG J B,et al.Synthesis and properties of magnetic multi-walled carbon nanotubes loaded with Fe4N nanoparticles[J].Journal of Materials Scienceamp;Technology,2018,34(5):886-890.
[17]ZHOU X F,WANG B B,JIA Z R,et al.Dielectric behavior of Fe3N@C composites with green synthesis and their remark?able electromagnetic wave absorption performance[J].Journal of Colloid and Interface Science,2021,582:515-525.
[18]XIA T L,LIN Y C,LI W Z,et al.Photocatalytic degradation of organic pollutants by MOFs based materials:a review[J].Chinese Chemical Letters,2021,32(10):2975-2984.
[19]YAN J,LIU T,LIU X D,et al.Metal-organic framework-based materials for flexible supercapacitor application[J].Coordination Chemistry Reviews,2022,452:214300.
[20]劉唯,馬振葉.復(fù)合吸波材料的研究進(jìn)展[J].南京師大學(xué)報(bào)(自然科學(xué)版),2023,46(2):15-24.
LIU W,MA Z Y.Research progress of composite absorbing materials[J].Journal of Nanjing Normal University(Natural Science Edition),2023,46(2):15-24.
[21]CHEN C,HU Q L,XUE H Y,et al.Rational construction of 3D porous Fe3N@C frameworks for high-performance sodium-ion half/full batteries[J].Journal of Alloys and Compounds,2023,934:167934.
[22]SU L,MA J X,ZHANG F Z,et al.Achieving effective broadband microwave absorption with Fe3O4@C supraparticles[J].Journal of Materiomics,2021,7(1):80-88.
[23]WANG Y,DU Y C,QIANG R,et al.Interfacially engineered sandwich-likerGO/carbon microspheres/rGO composite as an efficient and durable microwave absorber[J].Advanced Materials Interfaces,2016,3(7):1500684.
[24]LIU J L,ZHANG L M,WU H J.Electromagnetic wave-absorbing performance of carbons,carbides,oxides,ferrites and sulfides:review and perspective[J].Journal of Physics D:Applied Physics,2021,54(20):203001.
[25]HAN M K,YIN X W,LI X L,et al.Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes[J].ACS Applied Materialsamp;Interfaces,2017,9(23):20038-20045.
Preparation and microwave absorption properties ofcarbon-coated iron nitride composites
WANG Wenjing1a,DONG Haoqi1b,LU Jie1a,LI Wei2,ZHU Lei2,GUO Lisheng1a,ZHANG Chenhua1a,WEI Yuxue1a,SUN Song1a
1a.School of Chemistry and Chemical Engineering,1b.School of Materials Science and Engineering,Anhui University,Hefei 230601,China;
2.Anhui Tanxin Technology Co.,Ltd.,Huaibei 235141,China
Abstract
Objective The energy attenuation of wave-absorbing materials primarily occurs through two mechanisms:dielectric loss and magnetic loss.Conventional wave-absorbing materials are less effective because they cannot simultaneously use both electrical and magnetic losses to attenuate microwave interference.Iron nitride,characterized by magnetic properties,such as highsatura?tion magnetization,low density,large surface area,and environmental friendliness,has applications in various high-tech fields.However,its widespread use is limited due to its poor dielectric loss characteristics.Carbon materials,known for their exceptional conductivity and dielectric loss properties,can be combined with iron nitride to form composite materials that exhibit both magnetic and high dielectric losses.To achieve this,metal-organic frameworks(MOFs)are used as precursors for the syn?thesis of Fe2N@C,F(xiàn)e3N@C and Fe4N@C through a process involving calcination and nitriding.These core-shell wave-absorbing materials exhibit excellent stability.The incorporation of carbon increases the dielectric loss of iron nitride,generating compos?ites that exhibit high dielectric and magnetic losses,thereby improving the microwave absorption of Fe2N@C,F(xiàn)e3N@C,and Fe4N@C.Further investigations will explore the microwave absorption variations between different compositions of Fe2N@C,F(xiàn)e3N@C,and Fe4N@C.
Methods The physical composition of Fe2N@C,F(xiàn)e3N@C,and Fe4N@C was analyzed using X-Ray diffraction(XRD).Their micro-morphology was analyzed using ultra-high-resolution scanning electron microscopy(SEM)and high-resolution transmis?sion electron microscopy(TEM).The micro-morphology of Fe2N@C,F(xiàn)e3N@C,and Fe4N@C was determined through the suc?cessful synthesis of carbon-encapsulated iron nitride.Raman spectroscopy and X-ray photoelectron spectroscopy(XPS)were also employed for this purpose.XPS techniques were used to characterize and investigate their conformational relationships.Microwave absorption properties,as well as the imaginary parts of the complex dielectric constant and complex permeability,were analyzed using a vector network analyzer(VNA).Their magnetic loss properties were quantified using a Vibrating Sample Magnetometer(VSM).
Results and Discussion As shown in Fig.1,F(xiàn)e2N,F(xiàn)e3N,and Fe4N were synthesized using MOFs as precursors.Additionally,F(xiàn)ig.2 showed that highly dispersed Fe nanoparticles were successfully encapsulated in the carbon layer,confirming the synthe?sis of Fe2N@C,F(xiàn)e3N@C,and Fe4N@C.Fig.4 showed that Fe3N@C had a relatively low degree of graphitization,resulting in a low permittivity.In contrast,F(xiàn)ig.6 demonstrated that Fe2N@C and Fe4N@C exhibited poor wave absorption properties,while Fe3N@C displayed good microwave absorption.Therefore,it could be concluded that Fe3N@C was a better candidate for micro?wave absorption compared to Fe2N@C and Fe4N@C.Fig.7 showed that Fe2N@C and Fe4N@C had significantly greater dielectric loss than magnetic loss due to their high imaginary dielectric constant,resulting in an imbalancd impedance matching.On the other hand,F(xiàn)e3N@C had a lower imaginary dielectric constant,providing a better impedance matching due to its balanced dielectric constant and magnetic permeability.
Conclusion Fe2N@C,F(xiàn)e3N@C,and Fe4N@C were successfully prepared by nitriding MOFs as precursors.Fe2N@C and Fe4N@C exhibited an imbalanced impedance matching due to their dielectric constants being much higher than their magnetic permeability.In contrast,F(xiàn)e3N@C had balanced values for both parameters,resulting in better impedance matching.Samples with a coating thickness of 2 mm had an effective absorbing bandwidth of less than-10 dB,with a reflection loss of-10 dB up to2.4 GHz.The minimum reflection loss of-14.1 dB at 9.1 GHz indicated better absorbing performance.The differing electrical conductivity of the iron nitride cores and the carbon shells resulted from to the varying phase structures of the three iron nitrides and the degree of defects in the carbon layers.This difference led to charge aggregation between interfaces,causing interfacial polarization.As a result,the dielectric constants of Fe2N@C and Fe4N@C increased,exceeding their magnetic permeability and leading to an imbalanced impedance matching.
Keywords:iron nitride;composite materials;impedance matching;microwave-absorption property
(責(zé)任編輯:武秀娟)