亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        氣流粉碎干燥對(duì)碳納米管水分含量的影響

        2024-09-29 00:00:00顏翠平李楊李世龍嚴(yán)紹張明星李紅
        中國粉體技術(shù) 2024年3期
        關(guān)鍵詞:碳納米管

        摘要:【目的】制備鋰離子電池正極導(dǎo)電漿料中水分含量(質(zhì)量分?jǐn)?shù),下同)極低(lt;10-3)的碳納米管,研究對(duì)碳納米管物料水分含量的影響因素?!痉椒ā坷肔NJ-12A型氣流磨對(duì)碳納米管濕物料進(jìn)行超細(xì)粉碎干燥;通過改變氣流磨的分級(jí)機(jī)轉(zhuǎn)速、引風(fēng)機(jī)轉(zhuǎn)速、噴嘴喉部直徑、粉碎腔體積,分析不同參數(shù)對(duì)碳納米管物料水分含量的影響?!窘Y(jié)果】在綜合考慮能耗和實(shí)際工況下,當(dāng)單因素變量為分級(jí)機(jī)轉(zhuǎn)速4 800 r/min、引風(fēng)機(jī)轉(zhuǎn)速2 400 r/min、直噴嘴喉部直徑4.5 mm、粉碎腔體積從1.14×10-2 m3增加至23.56×10-2 m3時(shí),碳納米管干燥后的水分含量分別為8.45×10-4、6.68×10-4、6.88×10-4、5.89×10-4?!窘Y(jié)論】適當(dāng)增大分級(jí)機(jī)轉(zhuǎn)速,減小引風(fēng)機(jī)轉(zhuǎn)速,使用直徑合適的直噴嘴,增大氣流磨粉碎腔體積,對(duì)碳納米管的水分干燥效果會(huì)產(chǎn)生有益影響,相同干燥次數(shù)下碳納米管物料水分含量更低,且達(dá)到水分要求時(shí)的干燥次數(shù)更少。

        關(guān)鍵詞:碳納米管;超細(xì)粉碎;氣流粉碎

        中圖分類號(hào):TQ127.11;TB383.1;TB44文獻(xiàn)標(biāo)志碼:A

        引用格式:

        顏翠平,李楊,李世龍,等.氣流粉碎干燥對(duì)碳納米管水分含量的影響[J].中國粉體技術(shù),2024,30(3):150-157.

        YAN C P,LI Y,LI S L,etal.Effect of airflow crushing and drying on moisture content of carbon nanotubes[J].China Powder Science and Technology,2024,30(3):150-157.

        作為新能源汽車動(dòng)力儲(chǔ)能系統(tǒng)的關(guān)鍵部件,鋰電池在國家戰(zhàn)略發(fā)展中將扮演越來越重要的角色。導(dǎo)電劑作為鋰電池的關(guān)鍵輔助添加材料,能夠有效改善鋰電池的循環(huán)性能、容量發(fā)揮、倍率性能等[1-3]。在我國,目前應(yīng)用較多的碳黑導(dǎo)電劑包括導(dǎo)電炭黑(如Super-P,SP)、導(dǎo)電石墨(如KS系列、SFG系列)、碳納米管(carbon nanotubes,CNTs)等[4-5]。與導(dǎo)電劑炭黑、導(dǎo)電石墨相比,碳納米管只需很少的添加量便足以在電極內(nèi)組建高效的三維高導(dǎo)電網(wǎng)絡(luò)并達(dá)到提升電池能量密度的目標(biāo)[6-8]。近年來,碳納米管導(dǎo)電劑在鋰電池導(dǎo)電劑的占比越來越高。據(jù)統(tǒng)計(jì),2023年碳納米管導(dǎo)電劑在中國鋰離子動(dòng)力電池市場的滲透率達(dá)到82.2%[9]。

        在鋰離子電池制造的過程中,電池原材料的水分含量對(duì)電池的品質(zhì)有重大影響[10-12]。為了保障鋰電池的性能和安全性,需要對(duì)鋰電池原材料進(jìn)行嚴(yán)格的水分控制。根據(jù)GB/T 33818—2017《碳納米管導(dǎo)電漿料》的規(guī)定,當(dāng)碳納米管導(dǎo)電漿料應(yīng)用于鋰電池中時(shí),水分含量(質(zhì)量分?jǐn)?shù),下同)不能超過2.0×10-3。對(duì)于添加到導(dǎo)電漿料中的碳納米管原材料的水分含量,則需要保持在更低的標(biāo)準(zhǔn)。針對(duì)碳納米管作為鋰離子電池導(dǎo)電劑的行業(yè)要求,碳納米管的水分含量不能超過10-3。由于碳納米管導(dǎo)電漿料一般為油性導(dǎo)電漿料,因此水會(huì)作為油性漿料中的一種雜質(zhì)存在。當(dāng)碳納米管水分含量過高時(shí),引入的過量水分會(huì)導(dǎo)致后續(xù)制備的正極漿料的流動(dòng)性和流平性變差,不利于漿料的涂布。此外,在鋰離子動(dòng)力電池制造過程中,電池原材料的水分對(duì)鋰離子電池電化學(xué)性能有極大的影響。當(dāng)原材料水分含量過高時(shí),注液中的鋰鹽容易分解并產(chǎn)生氣體,使電芯容量與內(nèi)阻的一致性下降,電池的放電容量減小,內(nèi)阻增大,循環(huán)衰減加劇,并且會(huì)使電池的厚度增加,造成安全隱患,所以為了保障鋰離子電池的電化學(xué)性能,在原材料生產(chǎn)加工的各個(gè)工序中都需要嚴(yán)格控制水分含量。

        目前工業(yè)上常采用氣相沉積(chemical vapor deposition,CVD)法制備碳納米管[13-14],該方法制備的碳納米管粗樣水分含量較高,需要用雙錐回轉(zhuǎn)真空干燥機(jī)對(duì)碳納米管進(jìn)行干燥處理[15]。研究表明,水分含量在70%~80%的碳納米管原料采用雙錐回轉(zhuǎn)真空干燥機(jī)干燥24 h后,水分含量能夠減小至2.0×10-3左右,此時(shí)已經(jīng)接近該設(shè)備干燥碳納米管的極限。在此基礎(chǔ)上,再進(jìn)行8 h干燥后,碳納米管水分含量能減小至8.0×10-4左右,達(dá)到碳納米管應(yīng)用于鋰電池導(dǎo)電劑的要求。由于雙錐回轉(zhuǎn)真空干燥機(jī)存在填充率較低、能耗較高等缺點(diǎn)[16],因此,尋求一種碳納米管微量水分控制的工藝及其影響參數(shù)對(duì)碳納米管的導(dǎo)電漿料應(yīng)用至關(guān)重要。

        利用氣流磨進(jìn)行粉碎干燥是制備干燥碳納米管的有效方法之一。氣流磨以高溫氣體為介質(zhì),通過噴嘴產(chǎn)生高速氣流,在旋渦射流的作用下使粉體進(jìn)行碰撞、摩擦,分散團(tuán)聚顆粒[17],使粉體能夠更充分與熱源接觸,從而達(dá)到干燥的目的,生產(chǎn)過程無污染,工藝簡單,被廣泛應(yīng)用于冶金、化工等領(lǐng)域[18-20]。本文中采用LNJ-12A型氣流磨對(duì)碳納米管進(jìn)行干燥,探究分級(jí)機(jī)轉(zhuǎn)速、引風(fēng)機(jī)轉(zhuǎn)速、噴嘴喉部直徑、粉碎腔體積的改變對(duì)碳納米管物料水分含量的影響,為工業(yè)上碳納米管干燥工藝設(shè)計(jì)提供參考依據(jù)和理論指導(dǎo)。

        1材料與方法

        1.1材料和儀器設(shè)備

        材料:碳納米管原材料為塊狀濕料,由云南某新能源公司提供。原材料水分含量為70%~80%,原料粒徑d10=20.3μm,d50=40.5μm,d90=80.1μm。

        儀器設(shè)備:LNJ-12A型氣流磨成套設(shè)備(綿陽流能粉體設(shè)備有限公司)結(jié)構(gòu)示意圖如圖1所示。成套設(shè)備主要包括壓縮機(jī)(工作壓強(qiáng)為1.3 MPa,驅(qū)動(dòng)功率為55 kW)、加熱器(功率為360 kW,加熱溫度區(qū)間為25~400℃,最大體積流量為50 m3/min)、加料機(jī)、粉碎主機(jī)、分級(jí)機(jī)(功率為30 kW,分級(jí)機(jī)直徑為180 mm)、FSR-150V型引風(fēng)機(jī)(功率為7.5 kW,最大體積流量為30 m3/min)、除塵器等;SX2-5-12A型箱式電阻爐(紹興市上虞道墟科析儀器廠)。

        1.2實(shí)驗(yàn)原理

        使用箱式電阻爐加熱樣料至180℃并烘干2 h,進(jìn)行水分含量的測定,計(jì)算公式為

        式中:w為水分含量;m為樣品烘干前質(zhì)量;m′為樣品烘干后質(zhì)量。

        碳納米管原料經(jīng)加料機(jī)輸送至粉碎腔體內(nèi)并下落至粉碎區(qū)后,在高溫氮?dú)獾纳淞髯饔孟逻M(jìn)行加速運(yùn)動(dòng),并在射流交匯處進(jìn)行相互碰撞、剪切和粉碎。當(dāng)物料被粉碎干燥到一定程度后,在引風(fēng)機(jī)提供的負(fù)壓作用下隨氣流上升至分級(jí)區(qū)進(jìn)行分級(jí)。部分粗顆粒在上升過程中因失速而在重力的作用下回落至粉碎區(qū)內(nèi)進(jìn)行再次粉碎干燥。另一部分粗顆粒會(huì)在分級(jí)機(jī)的離心作用下與粉碎腔內(nèi)壁發(fā)生碰撞,并回落至粉碎區(qū)內(nèi)進(jìn)行再次粉碎干燥,有效阻止粗顆粒進(jìn)入到除塵器中進(jìn)行收集,使物料進(jìn)行充分的水分去除。粒徑較小的顆粒通過分級(jí)機(jī)后經(jīng)輸料管輸送至除塵器內(nèi),附著在濾筒表面上,最后通過脈沖噴吹的方式將附著在濾筒上的物料進(jìn)行收集。

        2結(jié)果與分析

        2.1分級(jí)機(jī)轉(zhuǎn)速的影響

        在氣源壓強(qiáng)為0.4 MPa、直噴嘴喉部直徑為4.5 mm、引風(fēng)機(jī)轉(zhuǎn)速為2 400 r/min的情況下,將分級(jí)機(jī)轉(zhuǎn)速分別設(shè)置為1 200、2 400、3 600、4 800、6 000 r/min,考察分級(jí)機(jī)轉(zhuǎn)速對(duì)碳納米管物料水分含量的影響,結(jié)果如圖2所示。當(dāng)分級(jí)機(jī)轉(zhuǎn)速至少為3 600 r/min時(shí),經(jīng)過5次干燥后物料水分含量為9.85×10-4,才能達(dá)到要求(水分含量lt;10-3)。繼續(xù)提高分級(jí)輪轉(zhuǎn)速,物料能夠在更少的干燥次數(shù)下使碳納米管物料達(dá)到水分要求,且干燥效果更好。分析原因是當(dāng)分級(jí)機(jī)轉(zhuǎn)速逐漸增大時(shí),粗顆粒在受到葉片強(qiáng)制作用力變大,易獲得較大離心力而被甩至分級(jí)輪外部,下降至粉碎區(qū)內(nèi)再次進(jìn)行粉碎干燥。此外,分級(jí)機(jī)轉(zhuǎn)速的增大會(huì)導(dǎo)致分級(jí)機(jī)葉片的鼓風(fēng)作用增強(qiáng),從而使碳納米管物料在粉碎腔內(nèi)停留時(shí)間變長,導(dǎo)致碳納米管物料水分含量更低。

        由圖2可知,不同分級(jí)機(jī)轉(zhuǎn)速下,隨著干燥次數(shù)的增加,碳納米管物料水分含量下降幅度均減緩,這是由于經(jīng)過1次干燥后的碳納米管物料密度較?。s為200 kg/m3),在2次及以上的干燥過程中容易在不同分級(jí)機(jī)轉(zhuǎn)速下通過分級(jí)機(jī)進(jìn)入到除塵器中進(jìn)行收集,干燥次數(shù)的增加對(duì)碳納米管物料水分含量的去除有限。當(dāng)分級(jí)機(jī)轉(zhuǎn)速為4 800、6 000 r/min時(shí),經(jīng)過4次干燥后碳納米管物料均能達(dá)到水分要求,水分含量分別為9.08×10-4和8.45×10-4。綜合考慮能耗和水分干燥效果,該氣流磨干燥碳納米管時(shí)分級(jí)機(jī)轉(zhuǎn)速設(shè)置為4 800 r/min效果較好。

        2.2引風(fēng)機(jī)轉(zhuǎn)速的影響

        在氣源壓力為0.4 MPa、直噴嘴喉部直徑為4.5 mm、分級(jí)機(jī)轉(zhuǎn)速為4 800 r/min的情況下,通過調(diào)節(jié)引風(fēng)機(jī)轉(zhuǎn)速分別為1 200、1 800、2 400、3 000、3 600 r/min,考察引風(fēng)機(jī)轉(zhuǎn)速對(duì)碳納米管物料水分含量的影響,結(jié)果如圖3所示。由圖可知,隨著引風(fēng)機(jī)轉(zhuǎn)速的增大,相同干燥次數(shù)下的碳納米管物料水分含量逐漸增加。當(dāng)引風(fēng)機(jī)轉(zhuǎn)速超過3 000 r/min時(shí),5次干燥后碳納米管物料水分含量未達(dá)到要求。原因?yàn)橐L(fēng)機(jī)轉(zhuǎn)速的增大會(huì)導(dǎo)致分級(jí)區(qū)內(nèi)氣流上升的軸向速度增大,使被葉輪阻留的粗顆粒的下降速度減小,粗顆粒在分級(jí)區(qū)滯留的時(shí)間延長,濃度增大,容易通過分級(jí)機(jī)進(jìn)入除塵器中。粗顆粒的水分去除程度較低,除塵器中收集的碳納米管物料中的粗顆粒占比變高,導(dǎo)致碳納米管物料的水分含量增大。

        由圖3可知,引風(fēng)機(jī)轉(zhuǎn)速越小,對(duì)水分去除的效果越好。而實(shí)驗(yàn)中,當(dāng)引風(fēng)機(jī)轉(zhuǎn)速過低時(shí),其提供的負(fù)壓不能夠使碳納米管有效遷移至除塵器中進(jìn)行收集,使后續(xù)的碳納米管物料無法進(jìn)入到粉碎腔內(nèi)進(jìn)行粉碎干燥,造成加料困難。引風(fēng)機(jī)轉(zhuǎn)速分別為1 200、1 800、2 400 r/min時(shí),經(jīng)過4次干燥后碳納米管物料水分含量均小于10-3??紤]原料加料以及有效收集問題,在碳納米管物料水分含量差距不大的情況下,引風(fēng)機(jī)轉(zhuǎn)速應(yīng)設(shè)置為2 400 r/min較好。

        2.3噴嘴喉部直徑的影響

        在氣源壓強(qiáng)為0.4 MPa、分級(jí)機(jī)轉(zhuǎn)速為4 800 r/min、引風(fēng)機(jī)轉(zhuǎn)速為2 400 r/min的情況下,改變直通噴嘴的直徑分別為2.2、3.2、4.5、7.0、9.0 mm,考察噴嘴喉部直徑對(duì)碳納米管水分含量的影響。所用噴嘴結(jié)構(gòu)如圖4所示,噴嘴喉部至出口長度l=10 mm,漸縮角α=36°,噴嘴長度L=50 mm,噴嘴喉部直徑為dc。

        圖5所示為噴嘴喉部直徑對(duì)碳納米管物料水分含量的影響。由圖可知,隨著噴嘴喉部直徑的增大,相同干燥次數(shù)下的碳納米管成品水分含量呈現(xiàn)先減小后增大的趨勢。原因?yàn)樵跉庠磯簭?qiáng)一定的情況下,噴嘴喉部直徑較小時(shí),射流速度較大,導(dǎo)致碳納米管更容易進(jìn)入到分級(jí)區(qū)內(nèi),使碳納米管在粉碎腔的停留時(shí)間縮短,其內(nèi)部水分釋放不徹底,從而導(dǎo)致碳納米管成品水分含量較高。當(dāng)噴嘴喉部直徑較大時(shí),噴嘴處射流速度較小,導(dǎo)致高溫氣流施加于碳納米管物料的動(dòng)能變小,使得碳納米管在粉碎腔內(nèi)碰撞、剪切、破碎的程度較低,其內(nèi)部水分釋放不充分,也會(huì)導(dǎo)致成品水分較高。直噴嘴直徑為4.5 mm時(shí),碳納米管成品水分去除程度最優(yōu),經(jīng)過5次干燥后碳納米管物料水分含量可減小至6.68×10-4,干燥效果較好。

        2.4粉碎腔體體積的影響

        在分級(jí)機(jī)轉(zhuǎn)速為4 800 r/min、引風(fēng)機(jī)轉(zhuǎn)速為2 400 r/min、氣源壓強(qiáng)為0.4 MPa、直噴嘴喉部直徑為4.5 mm的情況下,通過改變粉碎腔體積,考察粉碎腔體積對(duì)碳納米管水分含量的影響。其中,采用粉碎腔體A的高度為30 cm,直徑為22 cm,總腔體體積約為1.14×10-2 m3。粉碎腔體B的高度為120 cm,直徑為50 cm,腔體體積約為23.56×10-2 m3。圖6所示為粉碎腔體積對(duì)碳納米管物料水分含量的影響。由圖可知,當(dāng)干燥次數(shù)相同時(shí),腔體體積更大的粉碎腔體B中的碳納米管物料水分含量更小。原因是粉碎腔體增大延長了碳納米管從粉碎區(qū)到分級(jí)區(qū)的遷移路徑。遷移路徑的延長導(dǎo)致粗粉更難通過分級(jí)機(jī)被除塵器收集,使更多干燥程度高的碳納米管通過分級(jí)機(jī)進(jìn)入到收集裝置中,從而使碳納米管物料水分含量更低。此外,粉碎腔體體積的增加在一定程度上延長了每次干燥過程中碳納米管物料停留在粉碎腔內(nèi)的時(shí)間,使碳納米管物料水分去除更充分。

        由圖6可知,適當(dāng)增大粉碎腔體能夠在更少的干燥次數(shù)下使碳納米管物料達(dá)到水分要求。相比粉碎腔體A,采用粉碎腔體B時(shí),該氣流磨系統(tǒng)干燥碳納米管效果更好。

        3結(jié)論

        1)使用氣流粉碎干燥機(jī)對(duì)碳納米管進(jìn)行水分干燥,討論了分級(jí)機(jī)轉(zhuǎn)速、引風(fēng)機(jī)轉(zhuǎn)速對(duì)碳納米管水分去除的影響,并得出當(dāng)分級(jí)機(jī)轉(zhuǎn)速為4 800 r/min、引風(fēng)機(jī)轉(zhuǎn)速為2 400 r/min時(shí),碳納米管的干燥效果較好。

        2)直噴嘴的喉部直徑從2.2 mm增加至9.0 mm,相同干燥次數(shù)下碳納米管物料水分含量呈現(xiàn)先降低后增大的趨勢。在直噴嘴直徑為4.5 mm時(shí),經(jīng)過4次干燥后碳納米管物料水分含量為9.08×10-4,碳納米管干燥效果較好。

        3)增加氣流磨的粉碎腔體的體積能夠有效延長碳納米管物料停留在粉碎腔內(nèi)的時(shí)間,從而降低碳納米管物料的水分含量以及減少碳納米管達(dá)到水分要求時(shí)的干燥次數(shù)。

        利益沖突聲明(Conflict of Interests)

        所有作者聲明不存在利益沖突。

        All authors disclose no relevant conflict of interests.

        作者貢獻(xiàn)(Author’s Contributions)

        顏翠平提供了理論方向指導(dǎo),張明星提供了實(shí)驗(yàn)場地與設(shè)備,李楊和嚴(yán)紹文進(jìn)行了方案設(shè)計(jì)和具體實(shí)驗(yàn),李世龍參與了論文的寫作和修改,李紅提供了所主持的基金項(xiàng)目。所有作者均閱讀并同意了最終稿件的提交。

        YAN Cuiping provided theoretical guidance,ZHANGMingxing provided experimental venues and equipment,LI Yang and YAN Shaowen conducted scheme design and specific experiments.Themanuscript was written and revised by LI Shilong.LI Hong provided the fund project she was leading.All authors have read the last ver-sion of paper and consented for submission.

        參考文獻(xiàn)(References)

        [1]欒紫林,楊樂之,涂飛躍,等.多孔石墨烯的制備及其在導(dǎo)電劑領(lǐng)域的應(yīng)用[J].炭素技術(shù),2023,42(5):11-15.

        LUAN Z L,YANG L Z,TU F Y,etal.Preparation and application of porous graphene in the field of conductive agents[J].Carbon Techniques,2023,42(5):11-15.

        [2]潘強(qiáng),谷小虎,林雄超,等.煤基石墨烯在鋰離子電池中的應(yīng)用[J].潔凈煤技術(shù),2022,28(6):82-90.

        PAN Q,GU X H,LIN X C,etal.Application of coal-based graphene for lithium-ion batteries[J].Clean Coal Technology,2022,28(6):82-90.

        [3]賈玉龍,王菁,桂裕鵬,等.導(dǎo)電劑梯度化分布對(duì)鋰離子電池性能的影響[J].電源技術(shù),2023,47(1):37-40.

        JIA Y L,WANG J,GUI Y P,etal.Influence of gradient distribution of conductive agent on performance of lithium-ion battery[J].Chinese Journal of Power Sources,2023,47(1):37-40.

        [4]袁佩玲,丁星星,郭鵬,等.新能源電池領(lǐng)域?qū)щ妱┘夹g(shù)的研究與產(chǎn)業(yè)化[J].過程工程學(xué)報(bào),2023,23(8):1118-1130.

        YUAN P L,DING X X,GUO P,etal.Research and industrialization of conductive additive technology in the field of new energy batteries[J].The Chinese Journal of Process Engineering,2023,23(8):1118-1130.

        [5]郭子霆,黃錦朝,肖青梅,等.石墨烯與導(dǎo)電炭黑Super-P復(fù)合導(dǎo)電劑對(duì)LiNi0.5 Co0.2 Mn0.3 O2鋰離子電池性能的影響[J].有色金屬科學(xué)與工程,2023,14(2):227-234.

        GUO Z T,HUANG J C,XIAO Q M,etal.Effect of composite conductive agent consisting of graphene and Super-P carbon black on the performance of LilNi0.5 Co0.2 Mn0.3 O2 lithium-ion battery[J].Nonferrous Metals Science and Engineering,2023,14(2):227-234.

        [6]KIMER J,QIN Y,ZHANG L,etal.Optimization of graphite-SiO blend electrodes for lithium-ion batteries:stable cycling enabled by single-walled carbon nanotube conductive additive[J].Journal of Power Sources,2020,450.

        [7]GANTER J M,SCHAUERMAN M C,ROGERSR E,etal.Differential scanning calorimetry analysis of an enhanced LiNi0.8 Co0.2 O2 cathode with single wall carbon nanotube conductive additives[J].Electrochimica Acta,2011,56(21):7272-7277.

        [8]周镕卿,劉旭鋒,廖宋娣,等.單壁碳納米管導(dǎo)電添加劑對(duì)鋰離子電池正極材料電化學(xué)性能的影響[J].廈門大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,62(1):53-60.

        ZHOU R Q,LIU X F,LIAO S D,etal.Effect of single-walled carbon nanotubes as conductive additives on electrochemical performanceof cathode materials of lithium-ion batteries[J].Journal of Xiamen University(Natural Science),2023,62(1):53-60.

        [9]崔小粟.天奈科技:納米級(jí)碳材料領(lǐng)先者[N].中國證券報(bào),2019-07-09(A5).

        CUI X S.CnanoTechnology is a leader in nanoscale carbon materials[N].China Securities Journal,2019-07-09(A5).

        [10]陳育新,楊家沐,李東博,等.圓柱形鋰離子電池真空干燥過程的數(shù)值模擬[J].儲(chǔ)能科學(xué)與技術(shù),2023,12(6):1957-1967.

        CHEN Y X,YANG J M,LI D B,etal.Numerical simulation of the vacuum drying process of cylindrical lithium-ion batteries[J].Energy Storage Science and Technology,2023,12(6):1957-1967.

        [11]劉欣,趙坤,黃波,等.水分對(duì)水系大容量磷酸鐵鋰電池電性能的影響[J].電源技術(shù),2022,46(9):988-990.

        LIU X,ZHAO K,HUANG B,etal.Effect of moisture on electrical performance of large capacity water menstruum LiFePO4 power battery[J].Chinese Journal of Power Sources,2022,46(9):988-990.

        [12]關(guān)玉明,姜釗,趙芳華,等.鋰離子電池電芯真空烘烤過程導(dǎo)熱與水分蒸發(fā)的機(jī)理研究[J].真空科學(xué)與技術(shù)學(xué)報(bào),2017,37(9):862-865.

        GUAN Y M,JIANG Z,ZHAO F H,etal.Simulation of moisture evaporation from Li-lon battery cell in baking at low vacuum[J].Chinese Journal of Vacuum Science and Technology,2017,37(9):862-865.

        [13]JOSé-YACAMáN M,MIKI-YOSHIDA M,RENDóN L,etal.Catalytic growth of carbon microtubules with fullerene struc-ture[J].Applied Physics Letters,1993,62(6):657-659.

        [14]VOHS J K,BREGE J J,RAYMOND J E,etal.Low-temperature growth of carbon nanotubes from the catalytic decomposi-tion of carbon tetrachloride[J].Journal of the American Chemical Society,2004,126(32):9936-9937.

        [15]蔣大明,肖彥旭,種豹.雙錐回轉(zhuǎn)真空干燥機(jī)抽真空密封結(jié)構(gòu)改進(jìn)與應(yīng)用分析[J].中國設(shè)備工程,2023(1):11-13.

        JIANG D M,XIAO Y X,ZHONG B.Improvement and application analysis of the vacuum sealing structure of the double cone rotary vacuum dryer[J].China Plant Engineering,2023(1):11-13.

        [16]張明宇,劉侹楠,黃生龍,等.氣流粉碎干燥制備超細(xì)磷酸鐵鋰粉的工藝[J].中國粉體技術(shù),2018,24(3):11-14.

        ZHANG M Y,LIU T N,HUANG S L,etal.Preparation of ultrafine lithium iron phosphate powder by airflow crushing and drying[J].China Powder Science and Technology,2018,24(3):11-14.

        [17]李星宇,章林,秦明禮,等.氣流磨處理對(duì)燒結(jié)鎢粉微觀組織和力學(xué)性能的影響[J].粉末冶金技術(shù),2021,39(3):251-257.

        LI X Y,ZHANG L,QIN M L,etal.Effect of jet milling processing on microstructure and mechanical propertiesof the sintered tungsten powders[J].Powder Metallurgy Technology,2018,24(3):11-14.

        [18]楊盈盈,侯越,王立東,等.氣流超微粉碎對(duì)馬鈴薯淀粉顆粒形貌及理化性質(zhì)的影響[J].高分子通報(bào),2021(7):43-50.

        YANG Y Y,HOU Y,WANG L D,etal.Influence of jet milling on granule morphology and physicochemical properties of potato starch[J].Polymer Bulletin,2021(7):43-50.

        [19]XU Z H,HU D,AN R,etal.Preparation of superfine and semi-hydrated flue gas desulfurization gypsum powder by a superheated steam powdered jet mill and its application to produce cement pastes[J].Case Studies in Construction Materials,2022,17:e01549.

        [20]ZHANG Q,HUANG D,ZHANG X,etal.Improving the properties of metakaolin/fly ash composite geopolymers with ultrafine fly ash ground by steam-jet mill[J].Construction and Building Materials,2023,387:131673.

        Effect of airflow crushing and drying onmoisture content of carbon nanotubes

        YAN Cuiping,LIYang,LIShilong,YANShaowen,ZHANGMingxing,LI Hong

        School of Environment and Resources,Key Laboratory of Solid Waste Treatment and Resource Recycle,Ministry of Education,Southwest University of Science and Technology,Mianyang 621000,China

        Abstract

        Objective In the production of lithium-ion batteries positive electrode conductive paste,it′s imperative to incorporate carbon nano-tubes with extremely low moisture content(moisture contentlt;103).Currently,the Chemical Vapor Deposition(CVD)method is widely employed in industry to prepare carbon nanotubes,which requires the use of a double cone rotary vacuum dryer.However,this process has disadvantages such as a low filling rate and high energy consumption.This study proposes the use of jet mill in the moisture drying process of carbon nanotubes and analyzes the influence of various process parameters on moisture content.It aims to provide insights into the industrial-scale moisture drying of carbon nanotubes.

        Methods In this study,the LNJ-12A jet mill was utilized to ultrafine crush and dry wet carbon nanotubes materials.A series of single-factor experiments were conducted to investigate the effects of various parameters,including the speed of the classifier,the speed of the induced draft fan,the diameter of the nozzle throat,and the volume of the grinding chamber on the water content of carbon nanotubes.Finally,the optimal parameter combination for moisture drying of carbon nanotubes was obtained.

        Results and Discussion Increasing the speed of the classifier enhanced the drying effect of carbon nanotube moisture.As the classifier speed increased,the coarse particles experienced heightened forces from the blades,resulting in increased centrifugal force that propelled them outwards from the classification wheel.Subsequently,these particles descended into the crushing area for further refinement and drying.Moreover,an elevated classifier speed amplified the blowing effect of the classifier blades,ex-tending the residence time of carbon nanotube materials within the crushing chamber.However,excessive classifier speed could also lead to increased energy consumption,therefore a reasonable increase in speed was required.It was observed that reducing the speed of the induced draft fan enhanced the drying effect of carbon nanotubes.An escalation in the speed of the induced draft fan induced a corresponding increase in the axial velocity of the airflow within the classification area.This,inturn,diminished the descent rate of coarse particles impeded by the impeller,extending their residence time in the classification area and leading to an augmented concentration.This heightened concentration facilitated the particles’facile descent into the dust collector through the classification machine.Additionally,the reduced drying extent of moisture in the coarse particles contributed to a higher proportion of coarse particles in the carbon nanotube material collected in the dust collector,resulting in an elevated mois-ture content of the overall carbon nanotube material.However,if the speed of the induced draft fan was too low,the insufficient negative pressure it provided could lead to difficulty in feeding.Therefore,the speed of the induced draft fan should not be too low.The diameter of the nozzle throat affected the jet velocity of the material in the crushing chamber.When the gas source pressure was constant,a smaller nozzle throat diameter and higher jet velocity facilitated the entry of carbon nanotubes into the classification zone.This,inturn,reduced the residence time in the crushing chamber,resulting in incomplete internal water release and elevated water content in the final carbon nanotube product.Conversely,a larger nozzle throat diameter lowered the jet velocity at the nozzle,diminishing the kinetic energy applied to carbon nanotubes by the airflow and leading to a decrease in the collision,shear,and fragmentation of carbon nanotubes within the crushing chamber.The inadequate release of internal mois-ture in turn resulted in higher moisture content in the finished product.When the volume of the crushing chamber increaseed,the migration path of the material from the crushing zone to the classification zone was extended,increasing the retention time of the material in the crushing chamber and improving the moisture drying effect of the carbon nanotubes.Considering energy consumption and actual operating conditions,optimal drying effects for carbon nanotubes were achieved with a classifier speed of 4 800 r/min(the single-factor variables),induced draft fan speed of 2 400 r/min,straight nozzle throat diameter of 4.5 mm,and a crushing chamber volume of 23.56×10-2 m3,resulting in moisture content of 845×10-6,668×10-6,688×10-6,and 589×10-6,respec-tively.

        Conclusion In this paper,optimizing the process by appropriately increasing the speed of the classifier,reducing the speed of the induced draft fan,using a suitable diameter straight nozzle,and increasing the volume of the airflow grinding chamber is found to have a beneficial effect on the moisture drying effect of carbon nanotubes.With consistent drying times,this approach results in lower moisture content in carbon nanotubes materials,thereby efficiently meeting moisture requirements.

        Keywords:carbonnanotube;ultrafinepowdering;jet milling

        (責(zé)任編輯:王雅靜)

        猜你喜歡
        碳納米管
        電子輻照對(duì)碳納米管彎曲度控制的實(shí)驗(yàn)研究
        纏繞型碳納米管增強(qiáng)陶瓷基復(fù)合材料的有效剛度和應(yīng)力分析
        密度泛函理論研究鈉原子在不同直徑碳納米管內(nèi)部和外部的吸附
        碳納米管在半導(dǎo)電屏蔽材料中的應(yīng)用
        電線電纜(2017年6期)2018-01-03 07:27:07
        碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
        聚賴氨酸/多壁碳納米管修飾電極測定大米中的鉛
        拓?fù)淙毕輰?duì)Armchair型小管徑多壁碳納米管輸運(yùn)性質(zhì)的影響
        改性碳納米管在礦用阻燃輸送帶覆蓋膠中的應(yīng)用
        碳納米管對(duì)Al/Al2O3復(fù)合相變蓄熱材料蓄熱與導(dǎo)熱性能的影響
        定向碳納米管陣列的轉(zhuǎn)移技術(shù)研究進(jìn)展
        亚洲色图视频在线| 国产一区亚洲二区三区| 亚洲2022国产成人精品无码区| 男人进去女人爽免费视频| 精品久久综合亚洲伊人| 久久久久亚洲av无码专区| 欧美日韩亚洲精品瑜伽裤| 亚洲AV秘 无套一区二区三区 | 一本大道久久精品一本大道久久| 青青久在线视频免费视频| 高清日韩av在线免费观看 | 久久久久久99精品| 色窝综合网| 国产高清一区二区三区三州| 国产私人尤物无码不卡| 女人和拘做受全程看视频| 国产日产高清欧美一区| yw193.can尤物国产在线网页| 精品麻豆一区二区三区乱码| 18岁日韩内射颜射午夜久久成人| 久久久久亚洲av无码专区导航| 精品久久久久久久久免费午夜福利| 亚洲综合网一区二区三区| 伊人久久亚洲综合av影院| 在线成人影院国产av| 久久久久99精品成人片直播| 中文无码成人免费视频在线观看| 青青草一级视频在线观看| 人妻少妇满足中文字幕| 亚洲av永久无码精品一福利 | 免费a级毛片无码a∨免费软件| 精品人妻伦九区久久AAA片69| 日韩综合无码一区二区| 无码手机线免费观看| 欧美日韩综合在线视频免费看 | 无码人妻久久一区二区三区蜜桃| 囯产精品一品二区三区| 久久精品国产久精国产69| 亚洲国产精品中文字幕久久| 久久久亚洲欧洲日产国码aⅴ| 国产精品免费久久久久影院 |