亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        四苯基甲烷球磨法合成多孔碘蒸氣吸附材料

        2024-09-29 00:00:00張承昕王余蓮蘇峻樟董春陽(yáng)王浩然肖坤富袁志剛蘇德生
        中國(guó)粉體技術(shù) 2024年3期

        摘要:【目的】避免在核能利用過(guò)程中產(chǎn)生的常見(jiàn)放射性污染核素129I和131I等碘蒸氣泄漏對(duì)環(huán)境和生物產(chǎn)生危害,制備并探討具有豐富孔道的有機(jī)多孔聚合物對(duì)碘蒸氣的吸附性能?!痉椒ā坎捎煤?jiǎn)便快捷的機(jī)械合成法,以具有正四面體結(jié)構(gòu)的四苯基甲烷為單體,利用高能行星式球磨機(jī)球磨2 h制備3種具有較大比表面積和豐富孔道的有機(jī)多孔聚合物T-FDA、T-DCM和T-DCE,并利用碘單質(zhì)在溫度為75℃的密閉體系內(nèi)升華模仿放射性碘蒸氣,分別測(cè)試3種多孔材料的碘蒸氣吸附性能?!窘Y(jié)果】T-FDA、T-DCM、T-DCE的碘蒸氣吸附質(zhì)量分?jǐn)?shù)分別可達(dá)461%、486%、444%,達(dá)到飽和吸附量的時(shí)間分別為5、8、6 h,且多孔材料在循環(huán)使用5次后碘吸附性能僅有輕微下降(≤6.8%)?!窘Y(jié)論】以四苯基甲烷為單體,通過(guò)快速球磨法合成的多孔材料具有良好的碘蒸氣吸附性能,有望在放射性碘蒸氣吸附領(lǐng)域發(fā)揮重要作用。

        關(guān)鍵詞:四苯基甲烷;球磨法;有機(jī)多孔材料;碘蒸氣吸附

        中圖分類號(hào):O64;TB4文獻(xiàn)標(biāo)志碼:A

        引用格式:

        張承昕,王余蓮,蘇峻樟,等.四苯基甲烷球磨法合成多孔碘蒸氣吸附材料[J].中國(guó)粉體技術(shù),2024,30(3):158-169.

        ZHANG C X,WANG Y L,SU J Z,et al.Ball-milling synthesis of organic porous materials with tetraphenylmethane for iodine vapor adsorption[J].China Powder Science and Technology,2024,30(3):158?169.

        核能是當(dāng)前應(yīng)用較為廣泛、技術(shù)較為成熟的高效清潔能源之一,具有清潔低碳、經(jīng)濟(jì)高效、能量密度高等優(yōu)點(diǎn),但是在實(shí)際應(yīng)用當(dāng)中,如何更安全地利用核能始終是人類面臨的重要問(wèn)題[1]。當(dāng)前較為成熟的技術(shù)是通過(guò)核裂變反應(yīng)從原子核釋放能量,用于發(fā)電等民生、軍事用途,然而在利用核能過(guò)程中也會(huì)產(chǎn)生放射性污染核素。放射性碘是重要的放射性污染物之一,主要來(lái)源為核工業(yè)、醫(yī)療廢物泄漏。放射性碘主要包括129I、131I等同位素,絕大部分會(huì)以氣體形式釋放,對(duì)人類健康和環(huán)境造成威脅[2]。129I會(huì)與其他元素形成化合物,造成環(huán)境永久性污染,131I會(huì)通過(guò)食物鏈和大氣循環(huán)被人體吸收并富集于甲狀腺內(nèi),嚴(yán)重威脅甲狀腺正常功能[3]。放射性碘同位素半衰期可長(zhǎng)達(dá)1.6?107 a,氣化溫度低(75℃),自然環(huán)境中流動(dòng)性強(qiáng),危害性不能忽視。如何妥善處理放射性碘是當(dāng)前研究者關(guān)注的重要問(wèn)題,其中利用多孔材料吸附碘蒸氣是有效的解決方法之一[4]。

        傳統(tǒng)的多孔碘吸附劑,如活性炭[5]和多孔沸石[6]等,雖然具有生產(chǎn)工藝成熟、成本低廉等優(yōu)點(diǎn),但這些材料仍然存在密度較大、結(jié)構(gòu)功能有限、比表面積較小、孔道尺寸較大、吸附容量不高、循環(huán)性能不佳等缺點(diǎn),在實(shí)際工業(yè)應(yīng)用方面受到較大限制。

        有機(jī)多孔聚合物(porous organic polymers,POPs)是近些年來(lái)興起的一類新型多孔材料,POPs材料的物理化學(xué)穩(wěn)定性高、密度小、孔隙率和比表面積大、吸附性能優(yōu)異、可循環(huán)利用等優(yōu)點(diǎn),在放射性碘的治理領(lǐng)域具有良好的應(yīng)用前景[7]。特別是POPs材料由純有機(jī)元素組成,與傳統(tǒng)無(wú)機(jī)類多孔材料相比具有合成策略多樣、結(jié)構(gòu)可調(diào)節(jié)、成本低廉等優(yōu)勢(shì)[8],因此受到科研工作者的廣泛關(guān)注并已成功應(yīng)用于碘蒸氣吸附領(lǐng)域。例如,Zhai等[9]合成了2種含有甲氧基官能團(tuán)且比表面積大、化學(xué)穩(wěn)定性優(yōu)良的新型共價(jià)有機(jī)骨架,碘蒸氣吸附容量分別3.21、5.07 g/g。Chang等[10]報(bào)道了2種四硫脲基共價(jià)有機(jī)框架(COFs)JUC-560和JUC-561,并對(duì)二者的碘吸附性能進(jìn)行研究,所得材料比表面積可高達(dá)2 359 m2/g,同時(shí)表現(xiàn)出極佳的碘吸附性能(JUC-561碘吸附容量高達(dá)8.19 g/g)。宋玲等[11]合成了2種三嗪基多孔有機(jī)聚合物COP-1和COP-2,對(duì)碘蒸氣的吸附量分別為1.60和2.13 g/g,并通過(guò)實(shí)驗(yàn)證明了碘吸附機(jī)制主要為物理吸附。Zou等[12]合成了2種含有不同長(zhǎng)度炔鍵的類金剛石三維有機(jī)多孔材料CPOF-2和CPOF-3,揮發(fā)性碘吸附容量可高達(dá)5.87 g/g。Liu等[13]基于Tr?ger堿合成了具有三維剛性六連通結(jié)構(gòu)的多孔三萜烯網(wǎng)絡(luò)TB-PTN,比表面積可達(dá)1 528 m2/g,碘蒸氣吸附質(zhì)量分?jǐn)?shù)高達(dá)240%。Hassan等[14]基于六氯環(huán)三磷腈單體合成的HPOP-4,碘蒸氣吸附容量高達(dá)6.25 g/g且具有良好的重復(fù)利用性。綜上所述,具有大比表面積、高孔隙率且具有穩(wěn)定剛性多孔框架結(jié)構(gòu)的POPs材料非常適用于碘蒸氣吸附,然而許多材料為達(dá)到較好的碘蒸氣吸附性能,需要選擇特定合成方法或使用特殊結(jié)構(gòu)單體來(lái)構(gòu)建,且往往使用大量有機(jī)溶劑并加熱數(shù)小時(shí)至數(shù)天不等[8],間接增加了合成成本,材料實(shí)際應(yīng)用的可能性受到較大限制。

        球磨機(jī)是工業(yè)上常見(jiàn)的破碎設(shè)備之一,廣泛用于選礦、建材及化工等行業(yè)[15]。此外,研究者也將球磨機(jī)用于化學(xué)合成,這種機(jī)械合成方法具有反應(yīng)時(shí)間短、效率高、簡(jiǎn)便易行等優(yōu)勢(shì),具備大規(guī)模工業(yè)化生產(chǎn)的潛力[16]。本文中以具有正四面體結(jié)構(gòu)的四苯基甲烷為單體,以高能行星式球磨機(jī)為反應(yīng)器,通過(guò)成本低廉、簡(jiǎn)便易行的合成方法快速、高效構(gòu)建3種具有豐富孔道結(jié)構(gòu)的POPs材料;對(duì)球磨法合成的多孔材料進(jìn)行物理化學(xué)結(jié)構(gòu)表征,并通過(guò)模擬放射性碘蒸氣環(huán)境,測(cè)試材料對(duì)碘蒸氣的吸附性能及循環(huán)利用性,為POPs材料的大規(guī)模生產(chǎn)和實(shí)際碘蒸氣吸附應(yīng)用提供可行的方案。

        1材料與方法

        1.1試劑材料和儀器設(shè)備

        試劑材料:四苯基甲烷(質(zhì)量分?jǐn)?shù)為98%,安耐吉化學(xué)試劑有限公司)、二甲氧基甲烷(FDA,質(zhì)量分?jǐn)?shù)為98%,阿拉丁生化科技股份有限公司);二氯甲烷、1,2-二氯乙烷、無(wú)水三氯化鐵、無(wú)水三氯化鋁(均為分析純,國(guó)藥集團(tuán)化學(xué)試劑有限公司)。上述所有實(shí)驗(yàn)試劑均可直接使用,無(wú)需進(jìn)一步純化處理。

        儀器設(shè)備:PULVERISETTE-4型可變轉(zhuǎn)速比率高能行星式球磨機(jī)(德國(guó)Fritsch公司);Vertex 70型傅里葉變換紅外光譜分析儀(FTIR,德國(guó)Bruker公司);13C CP/MAS型固態(tài)核磁(400 MHz WB,德國(guó)Bruker公司,AdvanceⅡ);HITACHI SU8010型場(chǎng)發(fā)射掃描電鏡(FE?SEM,日本日立公司);JEM-2100 PLUS型場(chǎng)發(fā)射透射電鏡(FE?TEM,日本電子株式會(huì)社);TGA8000型熱重分析儀(TGA,美國(guó)Perkin-Elmer公司);Micromeritics ASAP 2020型吸脫附等溫線和孔徑分布吸附儀(美國(guó)Micromeritics公司)。

        1.2多孔碘吸附材料制備

        四苯基甲烷—二甲氧基甲烷交聯(lián)材料(T-FDA):稱取質(zhì)量為0.32 g的四苯基甲烷,質(zhì)量為0.912 g的交聯(lián)劑FDA和質(zhì)量為1.95 g的無(wú)水三氯化鐵,量取體積為10 mL的溶劑1,2—二氯乙烷,先后加入到已放有50個(gè)直徑為10 mm氧化鋯微球的250 mL氧化鋯研磨罐中,通入氬氣保護(hù)5 min之后封緊罐蓋。設(shè)置行星式高能球磨機(jī)的公轉(zhuǎn)速度和自轉(zhuǎn)速度均為400 r/min,室溫下球磨工作2 h后停止。球磨罐小心打開(kāi)后,加入100 mL無(wú)水甲醇淬滅反應(yīng)體系并轉(zhuǎn)移,用甲醇和氯仿分別抽濾洗滌數(shù)次后得到棕色粉體產(chǎn)物。最后將產(chǎn)物置于溫度為60℃的真空烘箱中干燥24 h。所得材料命名為T-FDA。

        四苯基甲烷—二氯甲烷交聯(lián)材料(T-DCM):稱取0.32 g四苯基甲烷和1.6 g無(wú)水三氯化鋁,量取10 mL溶劑(兼作交聯(lián)劑)二氯甲烷,球磨合成過(guò)程及相關(guān)參數(shù)與上述T-FDA材料相同。在小心打開(kāi)球磨罐后,加入100 mL無(wú)水乙醇淬滅反應(yīng)體系并轉(zhuǎn)移,用乙醇和氯仿分別抽濾、洗滌數(shù)次后得到棕褐色粉體產(chǎn)物。最后產(chǎn)物干燥過(guò)程與T-FDA相同,所得材料命名為T-DCM。

        四苯基甲烷—1,2-二氯乙烷交聯(lián)材料(T-DCE):稱取0.32 g四苯基甲烷和1.6 g無(wú)水三氯化鋁,量取10 mL溶劑(兼作交聯(lián)劑)1,2-二氯乙烷,球磨合成過(guò)程及相關(guān)參數(shù)與上述T-FDA和T-DCM材料相同。將球磨罐小心打開(kāi)后,加入100 mL無(wú)水乙醇淬滅反應(yīng)體系并轉(zhuǎn)移,用質(zhì)量分?jǐn)?shù)為5%的稀鹽酸、乙醇和氯仿分別抽濾、洗滌數(shù)次后得到深褐色粉體產(chǎn)物。最后產(chǎn)物干燥過(guò)程與T-FDA和T-DCM相同,所得材料命名為T-DCE。

        1.3對(duì)碘蒸氣的吸附

        碘蒸氣吸附實(shí)驗(yàn)具體操作過(guò)程如下:精確稱量0.2 g多孔材料粉末放入預(yù)先稱重的邊長(zhǎng)為25 mm的正方體小樣品瓶中,再稱取2 g碘單質(zhì)加入另一個(gè)樣品瓶,將2個(gè)樣品瓶放入玻璃容器中形成密閉體系。之后將密封好的密閉體系置于75℃恒溫烘箱內(nèi),使粉體樣品置于飽和碘蒸氣環(huán)境當(dāng)中,在固定的時(shí)間節(jié)點(diǎn)(1、2、3、4、5、6、8、12、16、20、24 h)取出密閉容器并快速冷卻,取出裝有粉末樣品的樣品瓶并精確稱量其質(zhì)量。

        2結(jié)果與分析

        2.1材料基本結(jié)構(gòu)分析

        四苯基甲烷分子中含有芳環(huán)結(jié)構(gòu),在催化劑和球磨條件作用下,單體通過(guò)交聯(lián)劑連接后形成具有豐富孔道的多孔聚合物,如圖1所示。

        圖2所示為多孔材料T-FDA、T-DCM、T-DCE的FTIR譜圖和固態(tài)核磁共振譜圖。球磨法所合成3種材料的FTIR光譜如圖2(a)所示,在FTIR光譜中,波數(shù)為3 000~2 800 cm-1處存在明顯的亞甲基C—H振動(dòng)特征峰,表明材料結(jié)構(gòu)中具有大量的亞甲基(—CH2—)存在[17]。四苯基甲烷單體中并不存在此類結(jié)構(gòu),由此可判定多孔固體產(chǎn)物中的亞甲基結(jié)構(gòu)來(lái)源于交聯(lián)劑,通過(guò)傅克烷基化反應(yīng)將不同單體通過(guò)亞甲基連接并成功構(gòu)建多孔結(jié)構(gòu)骨架。所有材料在波數(shù)為1 440 cm-1處呈現(xiàn)出亞甲基連接體—CH2—彎曲模式的特征峰,同時(shí)在波數(shù)分別為1 420、1 260 cm-1處呈現(xiàn)出Cl—CH2的彎曲和擺動(dòng)的特征峰,說(shuō)明材料中均有一定的氯元素殘留,可能來(lái)自于催化劑或未完全反應(yīng)的含氯交聯(lián)劑[18]。同樣地,3種材料在波數(shù)為1 650~1 450 cm-1處存在芳環(huán)的骨架伸縮振動(dòng)峰,在波數(shù)為900~650 cm-1處均出現(xiàn)較為明顯的芳環(huán)面外彎曲振動(dòng)吸收峰[19]。在波數(shù)分別為600、800 cm-1處出現(xiàn)的峰是由于芳環(huán)上1、4位置取代所致,說(shuō)明3種材料中亞甲基與苯環(huán)橋聯(lián)的位置主要以單體中苯環(huán)與季碳原子連接位置的對(duì)位為主(圖1結(jié)構(gòu)示意圖中紅色線段所示)。特別地,對(duì)于T-FDA,在波數(shù)為1 100 cm-1處存在明顯的C—O—C彎曲振動(dòng)峰,這是由于交聯(lián)劑二甲氧基甲烷在球磨過(guò)程并未完全反應(yīng),殘存有C—O—C結(jié)構(gòu)所致[20]。此外,通過(guò)固態(tài)核磁共振譜圖(圖2(b))可見(jiàn),在化學(xué)位移δ為142×10-6和132×10-6處出現(xiàn)明顯的特征峰,分別代表四苯基甲烷中苯環(huán)上發(fā)生化學(xué)交聯(lián)反應(yīng)的碳原子和未發(fā)生化學(xué)交聯(lián)反應(yīng)的碳原子,同時(shí)δ為37×10-6處的特征峰屬于連接單元亞甲基碳原子,證明單體之間通過(guò)交聯(lián)劑形成的亞甲基互相連接從而形成多孔骨架結(jié)構(gòu)[21]。δ為60×10-6處的特征峰屬于四苯基甲烷中的季碳原子,δ為18×10-6處的峰屬于材料結(jié)構(gòu)中殘存的甲基(—CH3)[22]。

        3種多孔材料的形貌特征通過(guò)場(chǎng)發(fā)射掃描電子顯微鏡觀察。圖3所示為多孔材料T-FDA、T-DCM、T-DCE的FE-SEM圖像。由圖3(a)中可見(jiàn),以二甲氧基甲烷(FDA)為交聯(lián)劑球磨合成的T-FDA,其形貌主要為微米級(jí)的塊體,表面呈現(xiàn)較為松散的微顆粒聚集狀態(tài)。而T-DCM和T-DCE 2個(gè)樣品沒(méi)有明顯的形貌差異,雖然在掃描電鏡下也主要表現(xiàn)為微米級(jí)的塊體形貌,但是二者的表面相對(duì)較為致密,這有可能與所使用的交聯(lián)劑及化學(xué)反應(yīng)過(guò)程不同所致。本實(shí)驗(yàn)中通過(guò)球磨法制備的多孔材料與通過(guò)傳統(tǒng)溶劑熱方法合成的多孔材料具有相似的形貌特點(diǎn),即:使用FDA作為交聯(lián)劑合成的多孔材料大多呈現(xiàn)類似顆粒狀、珊瑚狀的疏松質(zhì)地形貌,在電鏡圖片中可以觀察到具有許多顆粒堆積形成的介孔和大孔;而使用氯代烷烴(如二氯甲烷等)作為交聯(lián)劑合成的多孔材料則呈現(xiàn)質(zhì)地緊密、表面平整的塊體,甚至可構(gòu)建具有特殊二維層狀形貌的材料18]。

        多孔材料的微觀孔道結(jié)構(gòu)特征通過(guò)分辨率更高的FE-TEM觀察。圖4所示為T-FDA、T-DCM、T-DCE的FE-TEM圖像。3種多孔材料在透射電鏡下均可觀察到大量的細(xì)微孔道存在,說(shuō)明與傳統(tǒng)的溶劑熱方法相比,所需時(shí)間更短的球磨法所制備的多孔材料內(nèi)部孔道仍很豐富,并且同樣具有穩(wěn)定的結(jié)構(gòu),在透射電鏡長(zhǎng)時(shí)間高能電子束照射下不會(huì)被破壞。

        多孔材料結(jié)構(gòu)的熱穩(wěn)定性通過(guò)TGA表征。圖5所示為3種材料在氮?dú)鈿夥罩械腡GA曲線。在從室溫逐漸升至800℃的過(guò)程中,3種材料殘余質(zhì)量隨溫度變化的規(guī)律有明顯的差異。當(dāng)升溫超過(guò)150℃時(shí),T-FDA材料的熱重曲線出現(xiàn)斷崖式下降,說(shuō)明此材料的部分組分發(fā)生分解;當(dāng)溫度超過(guò)225℃時(shí),T-FDA質(zhì)量下降趨勢(shì)逐漸放緩,直至溫度達(dá)到800℃過(guò)程中T-FDA的質(zhì)量呈現(xiàn)緩慢下降趨勢(shì)。結(jié)合圖3中T-FDA的形貌特點(diǎn)來(lái)看,這有可能是由于大量尺寸微小且呈松散顆粒狀的T-FDA在較低溫度下首先發(fā)生了熱分解所導(dǎo)致的。而與T-FDA相比,T-DCM和T-DCE的熱重曲線則表現(xiàn)出明顯差異,差異之處在于T-DCM和T-DCE的質(zhì)量均隨著溫度的逐漸升高緩慢降低,未出現(xiàn)斷崖式下降,這與二者相對(duì)致密的塊體形貌有一定的關(guān)系;其中T-DCM在300℃以下的升溫區(qū)間內(nèi)熱穩(wěn)定性優(yōu)于T-DCE,在超過(guò)300℃之后其質(zhì)量損失要比T-DCE略大。在達(dá)到終點(diǎn)溫度800℃后,T-FDA、T-DCM、T-DCE的最終殘余質(zhì)量分別為58.8%、54.1%和62.6%。

        多孔材料的孔道特性利用比表面積和孔徑吸附儀表征,結(jié)果如表1所示。圖6所示為T-FDA、T-DCM、T-DCE的N2吸附-脫附等溫線以及對(duì)應(yīng)的孔徑分布圖。結(jié)合表1中各材料的相關(guān)孔道特征數(shù)據(jù)可見(jiàn),對(duì)于單體四苯基甲烷,雖然常溫常壓狀態(tài)下為粉末狀態(tài),但是不存在任何可檢測(cè)到的孔道;極小的比表面積數(shù)值可能是松散粉末堆積所致。而將單體與不同交聯(lián)劑、催化劑混合球磨反應(yīng)2 h后,所得多孔材料T-FDA、T-DCM和T-DCE的比表面積分別為398、516、753 m2/g,N2吸附-脫附等溫線均表現(xiàn)為Ⅳ型曲線,在低壓條件下(相對(duì)壓力p/p0lt;0.1,p為測(cè)試體系當(dāng)前N2壓力值,p0為標(biāo)準(zhǔn)大氣壓)N2吸附曲線上升較快,說(shuō)明3種多孔材料中均含有大量的微孔結(jié)構(gòu);曲線中段出現(xiàn)的回滯環(huán)表明材料中存在一定的介孔;而高壓區(qū)范圍內(nèi)(p/p0=0.8~1.0)吸附曲線未見(jiàn)明顯上升,表明3種多孔材料中大孔的比例極低。上述特征從圖6(b)的孔徑分布曲線中明顯可見(jiàn),雖然T-FDA、T-DCM、T-DCE 3種多孔材料均含有大量的微孔,但T-FDA的孔徑為2~10 nm的介孔數(shù)量略多于T-DCM和T-DCE,T-DCM和T-DCE的孔徑主要分布區(qū)間為小于2 nm,大多數(shù)為微孔甚至是超微孔(孔徑≤0.7 nm),其中T-DCE的孔徑大于在2 nm的介孔比例較T-DCM略多。由以上分析可知,豐富的微孔甚至是超微孔結(jié)構(gòu)決定了T-FDA、T-DCM、T-DCE 3種材料具有較大的比表面積,而大比表面積和連續(xù)分布的孔道又決定了材料理論上具有優(yōu)異的吸附特性。鑒于多孔材料在物質(zhì)吸附領(lǐng)域尤其是氣體物質(zhì)的吸附與分離方面具有獨(dú)特的應(yīng)用優(yōu)勢(shì),因此將上述3種材料用于碘蒸氣吸附(以常規(guī)碘蒸氣模擬放射性碘蒸氣)并測(cè)試其吸附性能。

        2.2有機(jī)多孔材料的碘蒸氣吸附實(shí)驗(yàn)結(jié)果

        采用重量差法來(lái)計(jì)算樣品在不同時(shí)刻的碘蒸氣吸附量,計(jì)算式為

        式中:wt為碘蒸氣吸附質(zhì)量分?jǐn)?shù);mt為樣品吸附碘后t時(shí)刻的質(zhì)量;m0為樣品的初始質(zhì)量。

        圖7所示為T-FDA、T-DCM、T-DCE的粉體狀態(tài)以及吸附碘蒸氣飽和后的粉體狀態(tài)圖,T-FDA、T-DCM、T-DCE吸附碘蒸氣后顏色變化比較明顯,在吸附碘蒸氣飽和后顏色均呈現(xiàn)棕黑色,表明3種多孔材料對(duì)碘蒸氣均具有明顯的吸附效果。

        圖8所示為T-FDA,T-DCM、T-DCE的碘蒸氣吸附質(zhì)量分?jǐn)?shù)與時(shí)間關(guān)系曲線圖。由圖可以看出,3種多孔材料均可在8 h內(nèi)達(dá)到最大吸附量并保持平衡。T-FDA吸附速率相對(duì)最快,在5 h后可達(dá)到最大吸附質(zhì)量分?jǐn)?shù)461%;而T-DCM碘蒸氣吸附飽和時(shí)間相對(duì)較長(zhǎng),但吸附質(zhì)量分?jǐn)?shù)相對(duì)較大,在8 h之后可達(dá)到486%;T-DCE則在6 h吸附碘蒸氣達(dá)到最大吸附質(zhì)量分?jǐn)?shù)444%。從圖8(d)比較可見(jiàn),T-DCM吸附量相對(duì)最大,達(dá)到飽和的時(shí)間也相對(duì)較長(zhǎng)。結(jié)合表1來(lái)看,這可能是由于材料自身的微孔和極微孔數(shù)量較多、在孔道中所占的比例較大,對(duì)碘蒸氣的吸附能力相對(duì)較強(qiáng),吸附量也較大,但是碘蒸氣分子充分進(jìn)入微孔和極微孔所需時(shí)間較長(zhǎng)。T-FDA達(dá)到碘蒸氣吸附飽和的速率雖快,但是吸附質(zhì)量分?jǐn)?shù)(461%)不及T-DCM。而T-DCE雖然比表面積最大,但是其微孔所占比例最低,T-DCE對(duì)碘蒸氣的吸附效果相對(duì)最弱,吸附質(zhì)量分?jǐn)?shù)相對(duì)也最?。?44%)。由圖可以看出,3種物質(zhì)吸附速率的差異主要由孔道分布的不同所致,吸附質(zhì)量分?jǐn)?shù)與微孔比例的正比規(guī)律較為明顯。除微孔之外,3種材料中均含有一定比例的介孔和大孔,這些多級(jí)孔道也有利于碘分子的擴(kuò)散和傳輸。由于材料中基本不含有碳?xì)渲獾钠渌s元素,因此材料對(duì)碘蒸氣主要通過(guò)孔道(尤其是尺寸較小的微孔)進(jìn)行物理吸附。

        此外,本文中還對(duì)3種多孔材料的循環(huán)使用性進(jìn)行了探索和分析。根據(jù)已有相關(guān)文獻(xiàn)報(bào)道,采用乙醇洗脫的方法可以充分移除多孔材料中吸附的碘[23]。在每次碘蒸氣吸附實(shí)驗(yàn)結(jié)束并稱重后,將吸附碘蒸氣飽和后的樣品用濾紙包好放到索氏提取器中,使用無(wú)水乙醇反復(fù)索提清洗48 h以上,直至回流溶液澄清為止。脫附后的樣品經(jīng)過(guò)溫度為60℃真空干燥24 h后,回收并進(jìn)行下一次碘蒸氣吸附實(shí)驗(yàn)。圖9所示為3種材料脫附再生與循環(huán)性能的測(cè)試結(jié)果,對(duì)每種材料進(jìn)行5次碘蒸氣吸附-乙醇洗脫循環(huán)利用實(shí)驗(yàn),每個(gè)樣品重復(fù)5次得到圖示結(jié)果。由圖可知,T-FDA在循環(huán)使用5次后吸附效率僅有輕微下降,碘蒸氣吸附質(zhì)量分?jǐn)?shù)由第1次的461%下降至第5次的454%,下降幅度僅有1.5%;T-DCM的碘蒸氣吸附質(zhì)量分?jǐn)?shù)由首次的486%下降至第5次的473%,下降幅度為2.7%;T-DCE的碘蒸氣吸附質(zhì)量分?jǐn)?shù)由首次的444%下降至第5次的414%,下降幅度為6.8%。由此可見(jiàn),通過(guò)球磨法合成得到的3種多孔材料的循環(huán)利用性較好,循環(huán)使用5次后吸附效率僅有輕微降低。

        表2所示為近些年部分文獻(xiàn)報(bào)道的各類多孔材料對(duì)碘蒸氣的吸附質(zhì)量分?jǐn)?shù)。通過(guò)比較可見(jiàn),采用球磨法合成的T-FDA、T-DCM、T-DCE與其他已報(bào)道的碘蒸氣吸附材料相比,碘蒸氣吸附性能表現(xiàn)較好。本文中材料的合成過(guò)程簡(jiǎn)便快捷,避免了傳統(tǒng)溶劑熱合成法對(duì)能源和有機(jī)溶劑的大量使用,具有能耗小、成本低的優(yōu)勢(shì)。

        3結(jié)論

        1)采用球磨合成法,以具有立體結(jié)構(gòu)的四苯基甲烷分子為構(gòu)建單元,通過(guò)3種不同的交聯(lián)策略,球磨2 h合成了T-FDA、T-DCM、T-DCE 3種多孔材料,比表面積分別為398、516、753 m2/g,同時(shí)具有豐富的微孔和連續(xù)的多級(jí)孔道分布,結(jié)構(gòu)較為穩(wěn)定。

        2)將T-FDA、T-DCM、T-DCE 3種多孔材料應(yīng)用于碘蒸氣吸附,在溫度為75℃的密閉體系中以常規(guī)碘單質(zhì)模擬放射性碘的蒸氣揮發(fā)環(huán)境,3種多孔材料的碘吸附質(zhì)量分?jǐn)?shù)分別可達(dá)461%、486%和444%,可以循環(huán)重復(fù)使用多達(dá)5次,且性能僅略微下降。

        3)絕大多數(shù)有機(jī)多孔材料的碘蒸氣吸附質(zhì)量分?jǐn)?shù)在200%~600%之間,相比之下,T-FDA、T-DCM、T-DCE 3種多孔材料的碘蒸氣吸附量與同類有機(jī)多孔材料相比處于較高水平,同時(shí)通過(guò)球磨法合成多孔材料具有時(shí)間短、效率高、能耗低等優(yōu)點(diǎn),避免了能源和有機(jī)溶劑的大量消耗和使用,具有一定的工業(yè)化大規(guī)模生產(chǎn)潛力,為有機(jī)多孔材料在碘蒸氣吸附領(lǐng)域的實(shí)際應(yīng)用提供了新的參考思路。

        利益沖突聲明(Conflict of Interests)

        所有作者聲明不存在利益沖突。

        All authors disclose no relevant conflict of interests.

        作者貢獻(xiàn)(Author’s Contributions)

        張承昕和王余蓮進(jìn)行了方案設(shè)計(jì)和論文寫作,蘇峻樟、董春陽(yáng)、王浩然和肖坤富進(jìn)行合成實(shí)驗(yàn)與表征,袁志剛和蘇德生參與了論文的修改。所有作者均閱讀并同意了最終稿件的提交。

        The study was designed by ZHANG Chengxin and WANG Yulian,who also conducted paper writing.While SU Junzhang,DONG Chunyang,WANG Haoran,and XIAO Kunfu conducted synthesis experiments and characterization.YUAN Zhigang and SU Desheng participated in the revision of the paper.All authors have read the last version of paper and consentedfor submission.

        參考文獻(xiàn)(References)

        [1]AHAD J,AHMAD M,F(xiàn)AROOQ A,et al.Removal of iodine by dry adsorbents in filtered containment venting system after 10 years of Fukushima accident[J].Environmental Science and Pollution Research,2023,30(30):74628-74670.

        [2]GENG T,ZHANG H C,LIU M,et al.Preparation of biimidazole-based porous organic polymers for ultrahigh iodine cature and formation of liquid complexes with iodide/polyiodide ions[J].Journal of Materials Chemistry A,2020,8(5):2820-2826.

        [3]SHETTY D,RAYA J,HAN D S,et al.Lithiatedpolycalix[4]arenes for efficient adsorption of iodine from solution and vapor phases[J].Chemistry of Materials,2017,29(21):8968-8972.

        [4]HO K,PARK D,PARK M K,et al.Adsorption mechanism of methyl iodide by triethylenediamine and quinuclidine-impregnated activated carbons at extremely low pressures[J].Chemical Engineering Journal,2020,396 125215.

        [5]HUVE J,RYZHIKOV A,NOUALI H,et al.Porous sorbents for the capture of radioactive iodine compounds:a review[J].RSC Advances,2018,8(51):29248-29273.

        [6]ZHAO Q,LIAO C,CHEN G,et al.In situ confined synthesis of a copper-encapsulated silicalite-1 zeolite for highly efficient iodine capture[J].Inorganic Chemistry,2022,61(49):20133-20143.

        [7]XIONG S,TANG X,PAN C,et al.Carbazole-bearing porous organic polymers with a mulberry-like morphology for effi?cient iodine capture[J].ACS Applied Materialsamp;Interfaces,2019,11(30):27335-27342.

        [8]HAO Q,TAO Y,DING X,et al.Porous organic polymers:a progress report in China[J].Science China Chemistry,2023,66(3):620-682.

        [9]ZHAI L,HAN D,DONG J,et al.Constructing stable and porous covalent organic frameworks for efficient iodine vapor cap?ture[J].Macromolecular Rapid Communications,2021,42(13):2100032.

        [10]CHANG J,LI H,ZHAO J,et al.Tetrathiafulvalene-based covalent organic frameworks for ultrahigh iodine capture[J].Chemical Science,2021,12(24):8452-8457.

        [11]宋玲,黃清,蔣選峰.三嗪基有機(jī)多孔材料的制備及碘吸附性能研究[J].化學(xué)工程,2022,50(8):20-25.

        SONG L,HUANG Q,JIANG X F.Preparation of triazine-based organic porous materials and iodine adsorption properties[J].Chemical Engineering(China),2022,50(8):20-25.

        [12]ZOU J,WEN D,ZHAOY.Flexible three-dimensional diacetylene functionalized covalent organicframeworks for efficient iodine capture[J].Dalton Transactions,2023,52(3):731-736.

        [13]LIU N,MA H,SUN R,et al.Porous triptycene network based on Tr?ger’s base for CO2 capture and iodine enrichment[J].ACS Applied Materialsamp;Interfaces,2023,15(25):30402-30408.

        [14]HASSAN A,DAS N.Chemically stable and heteroatom containing porous organic polymers for efficient iodine vapor cap?ture and its storage[J].ACS Applied Polymer Materials,2023,5(7):5349-5359.

        [15]李瀅,康曉明,陳曦,等.再生微粉顆粒級(jí)配對(duì)水泥凝膠體微觀結(jié)構(gòu)及強(qiáng)度的影響[J].中國(guó)粉體技術(shù),2022,28(3):107-115.

        LI Y,KANG X M,CHEN X,et al.Effect of particle size distribution of recycled concrete powders on microstructure and strength of cement gel[J].China Powder Science and Technology,2023,28(3):107-115.

        [16]于穎,曹丙強(qiáng).無(wú)鉛雙鈣鈦礦納米粉體Cs2AgBiBr6的球磨法制備工藝與性能[J].中國(guó)粉體技術(shù),2023,29(6):91-100.

        YU Y,CAO B Q.Preparation process and property of lead-free double perovskite nano-powder Cs2AgBiBr6by ball milling[J].China Powder Science and Technology,2023,29(6):91-100.

        [17]ZHAN Z,YU J,LI S,et al.Ultrathin hollow Co/N/C spheres from hyper-crosslinked polymers by a new universal strategy with boosted ORR efficiency[J].Small,2023,19(16):2207646.

        [18]WANG S L,ZHANG C X,SHU Y,et al.Layered microporous polymers by solvent knitting method[J].Science Advances,2017,3(3):e1602610.

        [19]ZHANG C X,WANG S L,ZHAN Z,et al.Synthesis of MWCNT-based hyper-cross-linked polymers with thickness-tunable organic porous layers[J].ACS Macro Letters,2019,8(4):403-408.

        [20]陳瀟祿,袁珍閆,仲迎春,等.機(jī)械球磨制備三苯胺基PAF-106s及C2烴吸附性質(zhì)[J].高等學(xué)?;瘜W(xué)學(xué)報(bào),2022,43(3):20210771.

        CHEN X L,YUAN Z Y,ZHONG Y C,et al.Preparation of triphenylamine based PAF-106s via mechanical ball milling and C2 hydrocarbons adsorption property[J].Chemical Journal of Chinese Universities,2022,43(3):20210771.

        [21]OUYANG H,SONG K,DU J,et al.Creating chemisorption sites for enhanced CO2 chemical conversion activity through amine modification of metalloporphyrin-based hypercrosslinked polymers[J].Chemical Engineering Journal,2022,431:134326.

        [22]ERRAHALI M,GATTI G,TEI L,et al.Microporous hyper-cross-linked aromatic polymers designed for methane and car?bon dioxide adsorption[J].The Journal of Physical Chemistry C,2014,118(49):28699-28710.

        [23]SUN H,LA P,ZHU Z,et al.Capture and reversible storage of volatile iodine by porous carbon with high capacity[J].Journal of Materials Science,2015,50(22):7326-7332.

        [24]HE X,ZHANG SY,TANG X,et al.Exploration of 1D channels in stable and high-surface-area covalent triazine polymers for effective iodine removal[J].Chemical Engineering Journal,2019,371:314-318.

        [25]SHAO L,SANG Y,LIU N,et al.One-step synthesis of N-containing hyper-cross-linked polymers by two crosslinking strategies and their CO2 adsorption and iodine vapor capture[J].Separation and Purification Technology,2021,262:118352.

        [26]CHEN R,HU T,ZHANG W,et al.Synthesis of nitrogen-containing covalent organic framework with reversible iodine capture capability[J].Microporous and Mesoporous Materials,2021,312:110739.

        [27]WANG J,WANG L,WANG Y,et al.Covalently connected core–shell NH2-UiO-66@Br-COFshybrid materials for CO2 capture and I2 vapor adsorption[J].Chemical Engineering Journal,2022,438:135555.

        [28]HE D,JIANG L,YUAN K,et al.Synthesis and study of low-cost nitrogen-rich porous organic polyaminals for efficient adsorption of iodine and organic dye[J].Chemical Engineering Journal,2022,446:137119.

        [29]LIU C,JIN Y,YU Z,et al.Transformation of porous organic cages and covalent organic frameworks with efficient iodine vapor capture performance[J].Journal of the American Chemical Society,2022,144(27):12390-12399.

        [30]萬(wàn)歡愛(ài),邵禮書,劉娜,等.氮修飾木質(zhì)素基超交聯(lián)聚合物的制備及其放射性碘捕獲[J].化工進(jìn)展,2022,41(10):5599-5611.

        WAN H A,SHAO L S,LIU N,et al.Preparation of nitrogen modified lignin-based hyper-cross-linked polymers and their radioactive iodine capture[J].Chemical Industry and Engineering Progress,2022,41(10):5599-5611.

        [31]RUIDAS S,CHOWDHURY A,GHOSH A,et al.Covalent organic framework as a metal-free photocatalyst for dye degra?dation and radioactive iodine adsorption[J].Langmuir,2023,39(11):4071-4081.

        [32]QIU N,WANG H,TANG R,et al.Synthesis of phenothiazine-based porous organic polymer and its application to iodine adsorption[J].Microporous and Mesoporous Materials,2024,363:112833.

        [33]ZHANG J,PU N,LI M,et al.High-efficient Ag(I)ion binding,Ag(0)nanoparticle loading,and iodine trapping in ultra?stable benzimidazole-linked polymers[J].Separation and Purification Technology,2024,328:125052.

        Ball?milling synthesis of organic porous materials with tetraphenylmethane for iodine vapor adsorption

        ZHANG Chengxin1,WANG Yulian1,SU Junzhang1,DONG Chunyang1,WANG Haoran1,XIAO Kunfu1,YUAN Zhigang1,SUDesheng2,3

        1.School of Materials Science and Engineering,Shenyang Ligong University,Shenyang 110159,China;

        2.Liaoning Dan Carbon Group Corporation Limited,Dandong 118100,China;

        3.Liaoning Province Ultra?high Power Graphite Electrode Material Professional Technology Innovation Center,Dandong 118100,China

        Abstract

        Objective Radioactive isotopes of iodine,such as iodine-129 and iodine-131,are prevalent contaminants during nuclear energy utilization.Managing radioactive iodine is a critical concern for researchers and the use of porous materials for iodine vapor adsorption presents a promising solution.However,traditional porous iodine adsorbents,including activated carbon and porous zeolite,exhibit drawbacks such as high density,limited structural versatility,low specific surface area,large pore size,low adsorption capacity,and inadequate cycling performance,significantly impeding their industrial applicability.Given these chal?lenges,it is necessary to develop novel porous materials for efficient iodine vapor adsorption.Porous Organic Polymers(POPs)emerge as a potential solution,characterized by high physical and chemical stability,low density,high porosity,large specific surface area,outstanding adsorption performance,and recyclability,offering a promising prospects in radioactive iodine treat?ment.Ball mills,as common crushing equipment,find widespread application in industries such as mineral processing,build?ing materials,and chemical industry.Furthermore,researchers use ball mills for chemical synthesis due to their advantages such as brief reaction times,high efficiency,simplicity,and potential for low-cost,straightforward,large-scale industrial pro?duction.In this study,tetraphenylmethane,featuring a three-dimensional structure served as the monomer,while a high-energy planetary ball mill functioned as areactor,enabling swift and efficient construction of three POPs materials.Thesemateri?als were evaluated for their adsorption performance and recycling ability in a simulated radioactive iodine vapor environment.Our research offers a viable solution for large-scale production of POPs materials and their practical application in iodine vapor adsorption.

        Methods In this study,we successfully synthesized three distinct porous organic polymers(POPs),namely T-FDA,T-DCM,and T-DCE,utilizing a rapid and efficient ball milling approach.This method resulted in materials characterized by high spe?cific surface area and abundant pore structure.The synthesis process involved employing tetraphenylmethane as a three-dimensional structure monomer,along with either anhydrous ferric chloride or anhydrous aluminum trichloride as catalysts,and three different crosslinking agents(dimethoxymethane,dichloromethane,and 1,2-dichloroethane)to generate the aforemen?tioned POPs materials.The synthesis procedure commenced by introducing the requisite reagents into a 250 mL zirconia grinding jar containing 50 zirconia spheres(Diameter:10 mm).After purging the jar with an argon atmosphere and sealing it,the plan?etary high-energy ball mill was set to a revolution speed and rotation speed of 400 r/min,with the milling process lasting for 2 hours at room temperature.Subsequently,the iodine vapor adsorption capacity of the porous materials was evaluated.Specifi?cally,0.2 g of POPs powders were accurately weighed and placed into a pre-weighed small sample bottle while 2 g of iodine was introduced into another sample bottle.These two bottles were then positioned within a glass container to create a sealed sys?tem,which was subsequently transferred into an oven set at 75℃to expose the powder to a saturated iodine vapor environment.At predetermined time intervals(1,2,3,4,5,6,8,12,16,20,and 24 hours),the sealed container was removed from the oven and rapidly cooled,following which the mass of the sample bottle was accurately determined.

        Results and Discussion The resulting porous materials,T-FDA,T-DCM,and T-DCE,exhibited high specific surface area(398,516,and 753 m2/g respectively),abundant pore channels,and excellent structural stability.These materials were char?acterized by a significant presence of micropores(lt;2 nm)and even ultra-micropores(lt;0.7 nm),alongside a certain proportion of mesopores.The interconnected nature of these pores gave unique advantages to the materials,particularly in the realm of adsorption,notably in the adsorption and separation of gas substances such as radioactive iodine vapor.Based on experimental findings,the iodine adsorption capacity of T-FDA,T-DCM,and T-DCE could reach up to 461%,486%,and 444%respec?tively.These materials achieved adsorption saturation at the 5th,8th,and 6th hour respectively.Furthermore,to assess the materials'cycling performance,iodine vapor adsorption recycling experiments were conducted five times for each of T-FDA,T-DCM,and T-DCE.The results indicated that the iodine vapor adsorption efficiency of T-FDA only slightly decreased after five cycles of use,with the iodine vapor adsorption amount reducing from 461%initially to 454%after the fifth cycling,representing a decrease of only 1.5%.For T-DCM,its iodine vapor adsorption capacity decreased from 486%in the first time to 473%in the fifth time,corresponding to a reduction of 2.7%.Similarly,the iodine vapor adsorption of T-DCE decreased from 444%in the first time to 414%in the fifth time,with a reduction of 6.8%.Notably,the iodine adsorption performance of the three porous materials only slightly decreased after five cycles of use.

        Conclusion In this study,utilizing the ball-milling method,three porous materials(T-FDA,T-DCM,and T-DCE)were syn?thesized within a remarkably short period of 2 hours.Subsequently,structural analyses and iodine vapor adsorption performance of these materials were conducted.Our findings revealed that T-FDA,T-DCM,and T-DCE exhibited specific surface areas of 398,516,and 753 m2/g,respectively.These materials showcased abundant micropores,continuous multi-level pore distribu?tion,and a relatively stable structure.To assess their practical utility,we applied these porous materials to iodine vapor adsorp?tion in a closed system operating at 75℃,simulating the vapor evaporation environment of radioactive iodine with standard iodine elements.The experimental outcomes demonstrated impressive iodine adsorption mass fractions of 461%,486%,and 444%for T-FDA,T-DCM,and T-DCE,respectively.Remarkably,these materials exhibited reusability for up to 5 cycles with only a marginal decrease in performance(≤6.8%).Our results underscore the exceptional iodine vapor adsorption performance of the porous materials synthesized via fast ball milling,suggesting their potential significance in the context of radioactive iodine adsorption.Moreover,the ball milling synthetic method offers advantages including short reaction time,high efficiency,low energy consumption,and avoidance of extensive energy and organic solvent usage,thereby harboring considerable potential for large-scale industrial production.

        Keywords:tetraphenylmethane;ball-milling method;porous organic polymer;iodine vapor adsorption

        (責(zé)任編輯:王雅靜)

        精品深夜av无码一区二区 | 精品国模人妻视频网站| 中文字幕久久久久人妻无码 | 国产另类av一区二区三区| 人妻少妇中文字幕在线| 国产精品_国产精品_k频道w| 中文人妻无码一区二区三区信息 | 日本一道综合久久aⅴ免费| 亚洲综合网站久久久| 国产国产裸模裸模私拍视频| 躁躁躁日日躁| 无码专区亚洲avl| 国产精品丝袜一区二区三区在线| 狼人伊人影院在线观看国产| 奇米影视第四色首页| 欧洲熟妇乱xxxxx大屁股7| 在线视频一区二区亚洲| 亚洲中文字幕人成乱码在线| 久久精品国产亚洲7777| 亚洲精品国产综合一线久久| 日本成人免费一区二区三区| 神马影院日本一区二区| 国产成人无码a区在线观看导航| 国产亚洲人成a在线v网站| 亚洲精品免费专区| 亚洲av人妖一区二区三区| 国产白浆一区二区三区佳柔| 自拍视频在线观看首页国产| 婷婷五月深深久久精品| 久久午夜伦鲁片免费无码| 永久无码在线观看| 一本之道加勒比在线观看| 亚洲av无码国产精品久久| 亚洲av无码精品色午夜果冻不卡| 最新手机国产在线小视频| 一本色道久在线综合色| 成人区人妻精品一区二区不卡网站| 久久亚洲国产中v天仙www| 偷拍熟女露出喷水在线91| 日本一区二区三区视频国产| 亚洲欧美aⅴ在线资源|