【摘要】 微小RNA(miRNA)是一類非編碼RNA,在調(diào)節(jié)基因表達(dá)中發(fā)揮重要作用,平均長度為22個核苷酸,廣泛表達(dá)在不同物種中,在受體細(xì)胞中發(fā)揮生物學(xué)功能,調(diào)控其活性,從而充當(dāng)細(xì)胞間信號分子。這一特征在胰腺腺泡和導(dǎo)管細(xì)胞、免疫細(xì)胞和胰腺星狀細(xì)胞之間的信號轉(zhuǎn)導(dǎo)中至關(guān)重要,對于急性胰腺炎及慢性胰腺炎的發(fā)生發(fā)展具有重要作用。單個miRNA可以調(diào)節(jié)多個靶點的表達(dá),從而為治療干預(yù)提供有效的機(jī)制。此外,miRNA調(diào)節(jié)細(xì)胞因子和趨化因子的表達(dá)及細(xì)胞增殖、組織重塑、遷移,從而調(diào)節(jié)胰腺纖維化的發(fā)展。在胰腺和胰腺炎中共篩選出40個和13個差異表達(dá)的miRNA。目前關(guān)于miRNA在胰腺炎中的表達(dá)及作用研究較多,miRNA對于成為胰腺炎臨床實用性的血清或組織特異性生物標(biāo)志物具有相當(dāng)大的前景。
【關(guān)鍵詞】 微小RNA 急性胰腺炎 慢性胰腺炎 炎癥 自噬
Research Progress of microRNA in Pancreatitis/ZHANG Hongbin. //Medical Innovation of China, 2024, 21(17): -184
[Abstract] microRNA (miRNA) are a type of non coding RNA that play an important role in regulating gene expression, with an average length of 22 nucleotides. They are widely expressed in different species and play biological functions in receptor cells, regulating their activity, and thus acting as intercellular signaling molecules. This feature is crucial in signal transduction between pancreatic acinar and ductal cells, immune cells, and pancreatic stellate cells, and plays an important role in the occurrence and development of acute and chronic pancreatitis. A single miRNA can regulate the expression of multiple targets, providing an effective mechanism for therapeutic intervention. In addition, miRNA regulates the expression of cytokines and chemokines, as well as cell proliferation, tissue remodeling, and migration, thereby regulating the development of pancreatic fibrosis. A total of 40 and 13 differentially expressed miRNA were screened in the pancreas and pancreatitis. At present, there are many studies on the expression and role of miRNA in pancreatitis, and miRNA has great potential as a serum or tissue specific biomarker for clinical application in pancreatitis.
[Key words] miRNA Acute pancreatitis Chronic pancreatitis Inflammatory Autophagy
First-author's address: Surgery Department, Macheng Maternal and Child Health Hospital, Macheng 438300, China
doi:10.3969/j.issn.1674-4985.2024.17.041
微小RNA(miRNA)是一類常見的保守的內(nèi)源性非編碼RNA,許多研究已經(jīng)在生物液中檢測到細(xì)胞外miRNA,如血漿和血清、腦脊液、唾液、母乳、尿液、眼淚、初乳、腹膜液、支氣管灌洗液、精液和卵巢卵泡液。miRNA已經(jīng)被證明與許多生物學(xué)過程和人類疾病有關(guān),并作為臨床診斷和治療的新靶點被廣泛研究。目前對于miRNA與胰腺炎的研究較多。多種miRNA作用于胰腺腺泡細(xì)胞,調(diào)節(jié)胰腺腺泡、胰腺星狀細(xì)胞和免疫細(xì)胞之間的信號轉(zhuǎn)導(dǎo)。本文將對近年來miRNA在胰腺炎方面的研究進(jìn)展做一綜述。
1 miRNA的結(jié)構(gòu)與表達(dá)
miRNA是一類非編碼RNA,在調(diào)節(jié)基因表達(dá)中起著重要作用,平均長度為22個核苷酸[1],廣泛表達(dá)于不同種類,在細(xì)胞增殖、免疫反應(yīng)和穩(wěn)態(tài)維持中發(fā)揮重要作用[2]。大量研究表明,miRNA可以被釋放到細(xì)胞外液中,細(xì)胞外miRNA已被廣泛報道為多種疾病的潛在生物標(biāo)志物[3]。細(xì)胞外miRNA可以被遞送到靶細(xì)胞,并且它們可以作為自分泌、旁分泌和/或內(nèi)分泌調(diào)節(jié)因子來調(diào)節(jié)細(xì)胞活性[4]。在這方面,miRNA具有激素樣活性。與細(xì)胞RNA物種相反,細(xì)胞外miRNA是高度穩(wěn)定的,在室溫下和有害條件下(如煮沸、多次凍融循環(huán)和高或低pH)可抵抗長達(dá)4 d的降解[5]。許多研究還表明,miRNA可以調(diào)節(jié)細(xì)胞內(nèi)信號通路,細(xì)胞外miRNA可以在受體細(xì)胞中發(fā)揮生物學(xué)功能,調(diào)節(jié)其活性,從而充當(dāng)細(xì)胞間信號分子。這一特征在胰腺腺泡和導(dǎo)管細(xì)胞、免疫細(xì)胞和胰腺星狀細(xì)胞之間的信號轉(zhuǎn)導(dǎo)中至關(guān)重要。
單個miRNA可以調(diào)節(jié)多個靶點的表達(dá),從而為治療干預(yù)提供有效的機(jī)制。此外,miRNA調(diào)節(jié)細(xì)胞因子和趨化因子的表達(dá)及細(xì)胞增殖、組織重塑、遷移,從而調(diào)節(jié)胰腺纖維化的發(fā)展[6]。最近的研究發(fā)現(xiàn),慢性胰腺炎中miRNA過表達(dá)和抑制[7]。研究表明,單個miRNA通過靶向不同的信使核糖核酸來調(diào)節(jié)人體內(nèi)的多種信號通路,包括磷酸酶和緊張素同源物(PTEN)、核因子κB(NF-κB)、無翼/β-連環(huán)蛋白(Wnt/β-catenin)和Janus激酶/信號轉(zhuǎn)導(dǎo)子及反式激活子(JAK/STAT)。在生物體內(nèi)的各種細(xì)胞活動中,如細(xì)胞發(fā)育、分化、代謝和凋亡的一系列過程[8],miRNA有著廣泛的參與度,并且其在許多疾病的發(fā)生和發(fā)展中同樣扮演著重要的角色,如炎癥、腎損傷和腫瘤[9]。在胰腺和胰腺炎中共篩選出40個和13個差異表達(dá)的miRNA。
2 miRNA與急性胰腺炎
2.1 急性胰腺炎的定義與危害
胰腺炎是一種炎癥性疾病,也是臨床常見的急腹癥之一,每年的患病率高達(dá)十萬分之五十而且呈每年持續(xù)增高的趨勢,住院率和死亡率也居高不下[10-11]。急性胰腺炎的特征是胰腺腺泡細(xì)胞壞死及全身和局部的炎癥反應(yīng)。急性胰腺炎是胰腺中的急性化學(xué)炎癥,激活的胰腺消化酶滲漏是引起炎癥的原因,這會導(dǎo)致胰腺實質(zhì)和胰腺周圍組織的自動消化[12]。急性胰腺炎的發(fā)病機(jī)制具有多種因素,包括Ca2+超載、胰蛋白酶原激活、自噬受損、內(nèi)質(zhì)網(wǎng)(ER)應(yīng)激和外泌體[13]。
2.2 miRNA與炎癥
系統(tǒng)性促炎期會在急性胰腺炎發(fā)生時出現(xiàn),其被稱為系統(tǒng)性炎癥反應(yīng)綜合征,胰腺腺泡細(xì)胞已被證明能分泌多種炎癥細(xì)胞因子以響應(yīng)胰腺炎引起的刺激[14]。胰腺腺泡細(xì)胞損傷和炎癥反應(yīng)的激活源于胰腺中的消化酶被過早激活。miR對維持活細(xì)胞的完整性至關(guān)重要,并已被證明在急性胰腺炎期間調(diào)節(jié)多種過程,如炎癥[15]。相關(guān)研究表明,miR-216在胰腺中特異性表達(dá),并且在由L-精氨酸誘導(dǎo)的急性胰腺炎大鼠模型中,miR-216a和miR-216b的血漿濃度有顯著增加[16]。Blenkiron等[17]在使用膽汁酸誘導(dǎo)的急性胰腺炎的大鼠模型中觀察到,在腸系膜淋巴液中,miRNA miR-148a、miR-216a、miR-122、miR-138、miR-214、miR-217和miR-375表達(dá)增加。最近的一項研究表明,miR-21-3p靶向LAMP-2 mRNA(1)和LAMP-2的缺失與胰腺炎的發(fā)生有關(guān)[18]。LAMP-2敲除小鼠發(fā)展為自發(fā)性胰腺炎。與用天藍(lán)素處理的野生型(WT)小鼠相比,miR-21KO小鼠的血清和胰腺組織中一個已鑒定的下調(diào)基因Hmgb1減少。炎癥、免疫和細(xì)胞死亡的過程由Hmgb1來協(xié)調(diào)。相關(guān)研究表明,如果減少Hmgb1的分泌,那么促炎細(xì)胞因子也會減少,這可能對降低從局部病變發(fā)展為全身炎癥反應(yīng)綜合征甚至導(dǎo)致多器官衰竭的風(fēng)險有幫助。Li等[19]發(fā)現(xiàn)Hmgb1刺激導(dǎo)致外周血單核細(xì)胞中miR-21的過度表達(dá),miR-21的缺失通過抑制Hmgb1的表達(dá)導(dǎo)致雨蛙素誘導(dǎo)的急性胰腺炎相關(guān)肺損傷減少。急性胰腺炎期間的炎癥反應(yīng)由miR-21通過上調(diào)Pias3和下調(diào)Hmgb1來調(diào)節(jié)。
研究發(fā)現(xiàn),NF-κB通過促進(jìn)炎性細(xì)胞因子的轉(zhuǎn)錄來加重急性胰腺炎的進(jìn)展[20]。miR-9通過下調(diào)FGF10來抑制核因子κB(NF-κB)通路相關(guān)蛋白的表達(dá)。在目前的研究中,螢光素酶、RIP和RNA下拉分析顯示,miR-9可以與FGF10結(jié)合,表明FGF10是miR-9的功能靶標(biāo)。據(jù)報道,F(xiàn)GF2在急性胰腺炎中表現(xiàn)出高表達(dá)并刺激炎癥反應(yīng)[21]。此外,F(xiàn)GF10的過表達(dá)或敲低減弱了miR-9對雨蛙素誘導(dǎo)的急性胰腺炎進(jìn)展的影響,表明miR-9可以通過靶向FGF10減輕炎癥損傷。先前的研究報道,F(xiàn)GF10是NF-κB依賴性炎癥反應(yīng)的重要調(diào)節(jié)因子[22],炎癥細(xì)胞因子TNF-α、IL-1β和IL-6的分泌可能就是由FGF10促進(jìn)的。此外,與急性胰腺炎中的細(xì)胞凋亡有關(guān)的是NF-κB通路[23]。此外,有研究表明miR-9抑制了雨蛙素誘導(dǎo)的NF-κB通路的激活[24]。有關(guān)數(shù)據(jù)表明,miR-9可能通過靶向FGF10來實現(xiàn)對NF-κB通路的阻斷,從而抑制雨蛙素處理的細(xì)胞的炎癥反應(yīng)和凋亡。然而,目前的研究只報道了體外結(jié)果。miR-9在體內(nèi)的作用是需要進(jìn)一步來研究的,用以全面闡明急性胰腺炎的發(fā)病機(jī)制??偠灾?,在雨蛙素誘導(dǎo)的急性胰腺炎細(xì)胞模型中,miR-9的表達(dá)降低[25]。Fu等[26]報道,通過靶向腫瘤壞死因子(TNF)受體1A,miR-29被上調(diào),隨后促進(jìn)AR42J細(xì)胞凋亡,其被用作急性胰腺炎的細(xì)胞模型。此外,Zhang等[27]證明miR-551b-5p促進(jìn)炎癥反應(yīng)和急性胰腺炎進(jìn)展。有研究報道,RT-PCR分析證實,TGF-β以劑量依賴的方式增加miR-216a的表達(dá),miR-216a通過靶向調(diào)節(jié)Smad7和PTEN激活TGF-β和PI3K/AKT信號通路,同時促進(jìn)急性胰腺炎的進(jìn)展[28]。
2.3 miRNA與自噬
自噬廣泛存在于細(xì)胞中,是一個動態(tài)平衡同時進(jìn)化高度保守的過程。受損的自噬是細(xì)胞保護(hù)的核心機(jī)制,使細(xì)胞能夠去除受損、老化和無功能的細(xì)胞器及變性的蛋白質(zhì)大分子,為細(xì)胞再生和循環(huán)提供能量[29]。在急性胰腺炎過程中,細(xì)胞器功能障礙發(fā)生,導(dǎo)致胰蛋白酶原活化,并參與受損的自噬變化[30]。自噬已被證明在不同階段受到miRNA的調(diào)節(jié):miR-216a、miR-376b、miR-30b和miR-17-5p可以通過抑制beclin1的表達(dá)來抑制其形成,這發(fā)生在自噬體的初始階段。而抑制其伸長階段則是由miR-204通過直接作用于自噬體上的輕鏈3(LC3)來實現(xiàn)。miR-101、miR-34a、miR-24-3p和miR-376b能夠調(diào)節(jié)ATG4。阻礙自噬體的成熟則是由miR-423-5p的上調(diào)通過抑制巨噬細(xì)胞中的自噬體-溶酶體融合來實現(xiàn)。最近,miRNA在調(diào)節(jié)急性胰腺炎的自噬中發(fā)揮著各種功能已被多種研究證實[31]。
細(xì)胞質(zhì)Hmgb1作為Beclin-1結(jié)合蛋白,通過分離其被抑制的蛋白Beclin-2誘導(dǎo)自噬[32]。通過Hmgb1/Beclin-1途徑,miR-141在自噬體形成過程中抑制急性胰腺炎中的自噬[33],發(fā)現(xiàn)miR-141通過與Hmgb1 mRNA的3'UTR區(qū)結(jié)合而影響蛋白質(zhì)翻譯。有研究觀察到miR-181b降低了Beclin-1和IL3-Ⅱ的表達(dá)并抑制了自噬。在由牛磺膽酸鹽誘導(dǎo)的急性胰腺炎大鼠中,miR-181b的表達(dá)水平顯著降低。通過尾靜脈注射載有miR-181b的腺病毒,mTOR/Akt的激活增加,Beclin-1和LC3-Ⅱ的表達(dá)和自噬受到抑制,急性胰腺炎大鼠血清淀粉酶和脂肪酶水平降低,急性胰腺炎減輕。進(jìn)一步證實miR-181b通過激活mTOR/Akt信號通路抑制自噬并減少急性胰腺炎引起的損傷。有研究將miR-375模擬物/抑制劑轉(zhuǎn)染到AR42j細(xì)胞中進(jìn)行了進(jìn)一步的探索,發(fā)現(xiàn)miR-375通過抑制靶基因ATG7來抑制自噬[34],以促進(jìn)腺泡細(xì)胞的炎癥反應(yīng)和凋亡,同時加重S急性胰腺炎。
TLCs誘導(dǎo)的細(xì)胞顯示炎癥細(xì)胞因子TNFα和IL-6及自噬標(biāo)記物L(fēng)C3-Ⅱ/Ⅰ的mRNA和蛋白表達(dá)水平增加,而p62下調(diào)[35]。與之相反的是,TLCs治療的效果由于miRNA-146a-5p的過表達(dá)而被逆轉(zhuǎn)了。類似地,Irak1或Traf6的下調(diào)表現(xiàn)出與miR-146a-5p的過表達(dá)相似的作用,表明miR-146a-5p的過度表達(dá)可以通過抑制Irak1/Traf6/NF-κB途徑抑制TLCs誘導(dǎo)的炎癥和自噬。在天藍(lán)素誘導(dǎo)的AR42J細(xì)胞中,miR-92b-3p的過表達(dá)也顯示了對炎癥和自噬的抑制[36]。Ji等[37]表明,Atg7過表達(dá)通過抑制miR-30b-5p來促進(jìn)CAMKⅡ的激活。結(jié)果表明,ATG7增強(qiáng)的自噬通過miR-30b-5p/CAMKⅡ途徑促進(jìn)調(diào)節(jié)性壞死,從而進(jìn)一步加重急性胰腺炎。
有研究表明miR-155調(diào)節(jié)TAB2的表達(dá)。TAB2表達(dá)的增加抑制了Beclin-1水平的增加并阻礙了自噬體的形成,而miR-155的過表達(dá)增加了Becliin-1的表達(dá),導(dǎo)致細(xì)胞質(zhì)中的空泡化(LC3 Ⅱ水平的增加)和p62的過度積累,最終惡化自噬損傷的程度同時促進(jìn)急性胰腺炎的進(jìn)展[38]。
2.4 miRNA在急性胰腺炎診斷和預(yù)后中的作用
急性胰腺炎的早期診斷和準(zhǔn)確評估對于減少急性胰腺并發(fā)癥的發(fā)生率和增加治愈率至關(guān)重要,目前包括尿淀粉酶、血清淀粉酶、血清脂肪酶在內(nèi)的一些生物標(biāo)志物,它們的指標(biāo)可用于診斷急性胰腺炎,但卻不具備特異性,雖然Ca2+對于急性胰腺炎的嚴(yán)重程度有一定的判斷作用,但目前仍沒有用于預(yù)測急性胰腺炎的嚴(yán)重程度的單一的金標(biāo)準(zhǔn)。miRNA在急性胰腺炎的發(fā)生和發(fā)展中起著關(guān)鍵作用,因此可能成為急性胰腺炎早期診斷和準(zhǔn)確預(yù)測其嚴(yán)重程度的生物標(biāo)志物。Lu等[39]報道,miR-9在急性胰腺炎患者的血清中高度表達(dá),這種表達(dá)可作為急性胰腺炎的關(guān)鍵診斷和預(yù)后標(biāo)志物。
越來越多的證據(jù)表明,在人類血清或血漿中miRNA可以被檢測到。相比于其他基于血液的生物標(biāo)志物,血清miRNA相對穩(wěn)定,并且通過使用定量逆轉(zhuǎn)錄聚合酶鏈?zhǔn)椒磻?yīng)(RT-qPCR)的方式,其很容易被檢測到。
Liu等[36]的研究發(fā)現(xiàn),在急性胰腺炎患者的血液中,miR-10a、miR-92b、和miR-7被發(fā)現(xiàn)下調(diào),在急性胰腺炎患者組和健康對照組中,使用ROC曲線分析這些miR的表達(dá)水平,結(jié)果表明其表達(dá)水平對急性胰腺炎的診斷有意義,ROC分析顯示,miR-551b-5p作為嚴(yán)重程度標(biāo)志物的預(yù)測能力與血清鈣水平、CT和急性生理與慢性健康狀況(APACHEⅡ)評分作為急性胰腺炎嚴(yán)重程度的預(yù)測能力相當(dāng)。其研究結(jié)果強(qiáng)烈表明,急性胰腺炎的早期標(biāo)志物可能是循環(huán)miR-92b、miR-10a和miR-7,急性胰腺炎的嚴(yán)重程度預(yù)測標(biāo)志物可能是miR-551b-5p。
2.5 miRNA在急性胰腺炎治療中的作用
有研究表明,miR-21-3p的上調(diào)在急性胰腺炎的所有小鼠模型中一致被觀察到。在過度刺激的人類腺泡細(xì)胞中miR-21-3p的上調(diào)被復(fù)制。miR-21-3p有希望成為急性胰腺炎的新治療靶點[15]。有研究發(fā)現(xiàn)通過降低TNF-α、IL-1β和IL-6的表達(dá),并調(diào)節(jié)AR42J細(xì)胞中的Bcl-2家族蛋白和半胱天冬酶,miR-9抑制細(xì)胞凋亡,從而抑制雨蛙素誘導(dǎo)的炎癥反應(yīng),miR-9可能通過靶向FGF10和調(diào)節(jié)NF-κB通路來減弱雨蛙素誘導(dǎo)的炎癥反應(yīng)和細(xì)胞凋亡,從而顯示出miR-9在急性胰腺炎中的潛在治療作用[25]。通過HMGB1/Beclin-1途徑miR-141形成自噬體,在這一過程中,急性胰腺炎的自噬過程受到損害。因此,miR-141有望成為急性胰腺炎治療的新靶點[33]。
3 miRNA與慢性胰腺炎
3.1 慢性胰腺炎的定義
慢性胰腺炎的特征是進(jìn)行性炎癥、胰腺纖維化和胰腺功能喪失[40]。臨床表現(xiàn)和影像學(xué)結(jié)果是慢性胰腺炎現(xiàn)在主要的診斷依據(jù)。目前需要一種靈敏、準(zhǔn)確的慢性胰腺炎診斷方法。慢性胰腺炎的發(fā)生發(fā)展與酒精、吸煙、遺傳因素及自身免疫性疾病等風(fēng)險因素相關(guān)[41],通過調(diào)節(jié)內(nèi)源性信號通路如轉(zhuǎn)化生長因子(TGF)-β1和甲狀旁腺激素相關(guān)蛋白,上述因素可促進(jìn)慢性胰腺炎的發(fā)生發(fā)展[42]。據(jù)相關(guān)報道,miRNA在胰腺疾病的發(fā)病機(jī)制中扮演著重要角色,許多研究表明,一些miRNA具有對慢性胰腺炎診斷、治療、預(yù)后的潛力[43]。
3.2 miRNA在慢性胰腺炎中診斷與治療的作用
有研究發(fā)現(xiàn)hsa-miR-324-5p在慢性胰腺炎患者中上調(diào),靶向COX5A以調(diào)節(jié)氧化磷酸化,并且有可能結(jié)合ANAPC13來調(diào)節(jié)泛素介導(dǎo)的蛋白水解[44]。hsa-miR-324-5p對慢性胰腺炎的預(yù)測準(zhǔn)確率在風(fēng)險miRNA中是最高的,是慢性胰腺炎的潛在生物標(biāo)志物。mir-146a可顯著抑制促炎細(xì)胞因子TNF-α、NF-κB、IL-1β、IL-6和趨化因子MCP-1的誘導(dǎo),在慢性胰腺炎中,上述這些因子可能發(fā)揮重要作用。有研究發(fā)現(xiàn),mir-146a rs2910164可能與慢性胰腺炎的遺傳易感性有關(guān),并且mir-146a可能參與慢性胰腺炎的發(fā)展[45]。
盡管很少有研究表明miR-34a與酒精誘導(dǎo)的胰腺炎之間的相關(guān)性,但可能因過度飲酒使得miR-34a上調(diào),從而導(dǎo)致慢性胰腺炎纖維化。同樣,在胰腺纖維化中,與飲酒相關(guān)的miRNA可能發(fā)揮重要作用。除此之外,在其他疾病中,miR-34a的表達(dá)可以被升高的TGF-β活性抑制[46]。因此,特別是在高飲酒量的患者中,miR-34a或其他特定的miRNA可以用作慢性胰腺炎的潛在生物標(biāo)志物。涉及慢性胰腺炎的主要基因之一是CFTR,它編碼一種參與氯離子穿過細(xì)胞膜運輸?shù)牡鞍踪|(zhì)[47]。在一系列可靶向CFTR mRNA的假定miRNA被計算機(jī)鑒定了之后,體外分析表明CFTR表達(dá)可由miR-494和miR-101單獨或聯(lián)合顯著抑制[48]。miR-29a和miR-29b有助于胰腺β細(xì)胞特異性沉默[49]。此外,miR-29可能參與慢性胰腺炎中的這種分子事件。miR-21可作為參與細(xì)胞凋亡及炎癥和纖維化信號通路的調(diào)節(jié)因子發(fā)揮作用[50]。除此之外,在組織損傷(如急性胰腺損傷)過程中,miR-21是上調(diào)程度最高的miRNA之一。在組織損傷過程中,TGF-β信號傳導(dǎo)事件由于miR-21的過度表達(dá)而被增強(qiáng)了,并導(dǎo)致胰腺纖維化。因此在慢性胰腺炎中,miR-21可能發(fā)揮了關(guān)鍵的致病作用。
4 總結(jié)
急性胰腺炎與慢性胰腺炎發(fā)病率逐年上升,目前面臨的一個主要挑戰(zhàn)是找到診斷、預(yù)后和治療效果判斷的生物標(biāo)志物,以及確定臨床有效的治療方法。細(xì)胞外miRNA不僅可以作為疾病的生物標(biāo)志物,而且在細(xì)胞間通訊中,它還扮演重要角色。miRNA調(diào)節(jié)宿主細(xì)胞的活性,它們也被分泌并轉(zhuǎn)移到受體細(xì)胞。許多研究表明,在受體細(xì)胞中,細(xì)胞外miRNA具有功能活性。由于一些miRNA甚至可以與細(xì)胞表面受體相互作用,因此miRNA具有激素樣活性。目前關(guān)于miRNA在胰腺炎中的表達(dá)及作用研究較多,miRNA對于成為胰腺炎臨床實用性的血清或組織特異性生物標(biāo)志物具有相當(dāng)大的前景。然而,在臨床應(yīng)用之前,相關(guān)研究面臨著重大挑戰(zhàn),將miRNA或抗miR應(yīng)用于胰腺炎治療的研究仍處于發(fā)展階段,還需要進(jìn)一步的研究工作。
參考文獻(xiàn)
[1] PATEL H R,DIAZ ALMANZAR V M,LACOMB J F,et al.The role of microRNAs in pancreatitis development and progression[J].Int J Mol Sci,2023,24(2):1057.
[2] WU D, WANG H,TENG T,et al.Hydrogen sulfide and autophagy: a double edged sword[J].Pharmacological Research,2018,131:120-127.
[3] HAYES J,PERUZZI P P,LAWLER S.MicroRNAs in cancer: biomarkers,functions and therapy[J].Trends Mol Med,2014,20:460-469.
[4] IFTIKHAR H,CARNEY G E.Evidence and potential in vivo functions for biofluid miRNAs: from expression profiling to functional testing: potential roles of extracellular miRNAs as indicators of physiological change and as agents of intercellular information exchange[J].Bioessays,2016,38:367-378.
[5] MITCHELL P S,PARKIN R K,KROH E M,et al.Circulating microRNAs as stable blood-based markers for cancer detection[J].Proc Natl Acad Sci USA,2008,105:10513-10518.
[6] WANG D,ZHU Z M,TU Y L,et al.Identfication of key miRNAs in pancreatitis using bioinformatics analysis of microarray data[J].Mol Med Rep,2016,14(6):5451-5460.
[7] BLOOMSTON M,F(xiàn)RANKEL W L,PETROCCA F,et al.
MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis[J].JAMA,2007,297:1901-1908.
[8] SALIMINEJAD K,KHORRAM KHORSHID H R,SOLEYMANI FARD S,et al.An overview of microRNAs: biology,functions,therapeutics,and analysis methods[J].J Cell Physiol,2019,234(5):5451-5465.
[9] LI X,JIANG W,GAN Y,et al.The application of exosomal microRNAs in the treatment of pancreatic cancer and its research progress[J].Pancreas,2021,50(1):12-16.
[10] PEERY A F,CROCKETT S D,MURPHY C C,et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States:update 2018[J].Gastroenterology,2019,156:254-272.
[11] LEW D,AFGHANI E,PANDOL S.Chronic pancreatitis: current status and challenges for prevention and treatment[J].Dig Dis Sci,2017,62:1702-1712.
[12] BANKS P A,BOLLEN T L,DERVENIS C,et al. Acute pancreatitis classification working group classification of acute pancreatitis—2012: revision of the Atlanta classification and definitions by international consensus[J].Gut,2013,62:102-111.
[13] ZHENG Z,DING Y X,QU Y X,et al.A narrative review of acute pancreatitis and its diagnosis,pathogenetic mechanism,and management[J].Ann Transl Med,2021,9(1):69.
[14] SALUJA A,DUDEJA V,DAWRA R,et al. Early intra-acinar events in pathogenesis of pancreatitis[J].Gastroenterology,2019,156:1979-1993.
[15] DIXIT A.K,SARVER A.E,YUAN Z,et al.Comprehensive analysis of microRNA signature of mouse pancreatic acini: overexpression of miR-21-3p in acute pancreatitis[J].Am J Physiol Gastrointest Liver Physiol,2016,311:G974-G980.
[16] GOODWIN D,ROSENZWEIG B,ZHANG J,et al.Evaluation of miR-216a and miR-217 as potential biomarkers of acute pancreatic injury in rats and mice[J].Biomarkers,2014,19(6): 517-529.
[17] BLENKIRON C,ASKELUND K J,SHANBHAG S T,et al.
MicroRNAs in mesenteric lymph and plasma during acute pancreatitis[J].Ann Surg,2014,260(2): 341-347.
[18] MARENINOVA O A,SENDLER M,MALLA S R,et al.
Lysosome-associated membrane proteins (LAMP) maintain pancreatic acinar cell homeostasis:LAMP-2-deficient mice develop pancreatitis[J].Cell Mol Gastroenterol Hepatol,2015,1(6):678-694.
[19] LI X,LIN Z,WANG L,et al.RNA-Seq analyses of the role of miR-21 in acute pancreatitis[J].Cell Physiol Biochem,2018,51(5):2198-2211.
[20] JIN H Z,YANG X J,ZHAO K L,et al.Apocynin alleviates lung injury by suppressing NLRP3 inflammasome activation and NF-κB signaling in acute pancreatitis[J].Int Immunopharmacol,2019,75:105821.
[21] WARZECHA Z,DEMBINSKI A,CERANOWICZ P,et al.
Immunohistochemical expression of FGF-2, PDGF-A, VEGF and TGF beta RⅡ in the pancreas in the course of ischemia/reperfusion-induced acute pancreatitis[J].J Physiol Pharmacol,2004,55(4):791-810.
[22] LI Y H,F(xiàn)U H L,TIAN M L,et al.Neuron-derived FGF10 ameliorates cerebral ischemia injury via inhibiting NF-κB-dependent neuroinflammation and activating PI3K/Akt survival signaling pathway in mice[J].Sci Rep,2016,6:19869.
[23] LIU Z,LIU J,ZHAO K,et al.Role of daphnetin in rat severe acute pancreatitis through the regulation of TLR4/NF-[Formula: see text]B signaling pathway activation[J].Am J Chin Med,2016,44(1):149-163.
[24] QIAN D,WEI G,XU C,et al.Bone marrow-derived mesenchymal stem cells (BMSCs) repair acute necrotized pancreatitis by secreting microRNA-9 to target the NF-κB1/p50 gene in rats[J].Sci Rep,2017,7(1):581.
[25] SHEN Y,XUE C,YOU G,et al.miR-9 alleviated the inflammatory response and apoptosis in caerulein-induced acute pancreatitis by regulating FGF10 and the NF-κB signaling pathway[J].Exp Ther Med,2021,22(2):795.
[26] FU Q,QIN T,CHEN L,et al.miR-29a up-regulation in AR42J cells contributes to apoptosis via targeting TNFRSF1A gene[J].World J Gastroenterol,2016,22(20):4881-4890.
[27] ZHANG Y,YAN L,HAN W.Elevated level of miR-551b-5p is associated with inflammation and disease progression in patients with severe acute pancreatitis[J].Ther Apher Dial,2018,22(6):649-655.
[28] ZHANG J,NING X,CUI W,et al.Transforming growth factor (TGF)-β-induced microRNA-216a promotes acute pancreatitis via Akt and TGF-β pathway in mice[J].Dig Dis Sci,2015,60(1):127-135.
[29] BICZO G,VEGH E T,SHALBUEVA N,et al.Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress,deregulated lipid metabolism,and pancreatitis in animal models[J].Gastroenterology,2018,154(3):689-703.
[30] GUKOVSKAYA A S,GORELICK F S,GROBLEWSKI G E,
et al.Recent insights into the pathogenic mechanism of pancreatitis: role of acinar cell organelle disorders[J].Pancreas,2019,48(4):459-470.
[31] YUAN X,WU J,GUO X,et al.Autophagy in acute pancreatitis: organelle interaction and microRNA regulation[J].Oxid Med Cell Longev,2021:8811935.
[32] TANG D,KANG R,LIVESEY K. M,et al.Endogenous HMGB1 regulates autophagy[J].The Journal of Cell Biology,2010,190(5):881-892.
[33] ZHU H,HUANG L,ZHU S,et al.Regulation of autophagy by systemic admission of microRNA-141 to target HMGB1 in L-arginine-induced acute pancreatitis in vivo[J].Pancreatology,2016,16(3):337-346.
[34] PARK S,ZUBER C,ROTH J.Selective autophagy of cytosolic protein aggregates involves ribosome-free rough endoplasmic reticulum[J].Histochemistry and Cell Biology,2020,153(2):89-99.
[35] ZHENG C,JI Z,XU Z,et al.Overexpression of miR-146a-5p ameliorates inflammation and autophagy in TLCs-induced AR42J cell model of acute pancreatitis by inhibiting IRAK1/TRAF6/NF-κB pathway[J].Ann Clin Lab Sci,2022,52(3):416-425.
[36] LIU P,XIA L,ZHANG W L,et al.Identification of serum microRNAs as diagnostic and prognostic biomarkers for acute pancreatitis[J].Pancreatology,2014,14(3):159-166.
[37] JI L,WANG Z H,ZHANG Y H,et al.ATG7-enhanced impaired autophagy exacerbates acute pancreatitis by promoting regulated necrosis via the miR-30b-5p/CAMKII pathway[J].Cell Death Dis,2022,13(3):211.
[38] ZHOU W,DONG S,CHEN Z,et al.New challenges for microRNAs in acute pancreatitis: progress and treatment[J].
J Transl Med,2022,20(1):192.
[39] LU P,WANG F,WU J,et al.Elevated serum miR-7, miR-9,
miR-122,and miR-141 are noninvasive biomarkers of acute pancreatitis[J].Dis Markers,2017,2017:7293459.
[40] BRAGANZA J M,LEE S H,MCCLOY R F,et al.Chronic pancreatitis[J].Lancet,2011,377(11):84-97.
[41] COTé G A,YADAV D,SLIVKA A,et al.Alcohol and smoking as risk factors in an epidemiology study of patients with chronic pancreatitis[J].Clin Gastroenterol Hepatol,2011,9(2):66-73.
[42] AGHDASSI A A,WEISS F U,MAYERLE J,et al.Genetic susceptibility factors for alcohol-induced chronic pancreatitis[J].Pancreatology,2015,15(4):S23-31.
[43] XIN L,GAO J,WANG D,et al.Novel blood-based microRNA biomarker panel for early diagnosis of chronic pancreatitis[J].Sci Rep,2017,7:40019.
[44] BARROW J J,BALSA E,VERDEGUER F,et al.
Bromodomain inhibitors correct bioenergetic deficiency caused by mitochondrial disease complex i mutations[J].Mol Cell,2016,64(1):63-75.
[45] WANG Z,LI D,JIN J,et al.Association between microRNA polymorphisms and chronic pancreatitis[J].Pancreatology,2016,16(2):244-248.
[46] YANG P,LI Q J,F(xiàn)ENG Y,et al.TGF-2-miR-34a-CCL22 signaling-induced treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma[J].Cancer Cell,2012,22(3):291-303.
[47] GILLEN A E,HARRIS A.Transcriptional regulation of CFTR gene expression[J].Front Biosci,2012,4(2):587-592.
[48] PEREZ A,ISSLER A C,COTTON C U,et al.CFTR inhibition mimics the cystic fibrosis inflammatory profile[J].Am J Physiol Lung Cell Mol Physiol,2007,292(2):383-395.
[49] PULLEN T J,DA SILVAXAVIER G,KELSEY G,et al.miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1)[J].Mol Cell Biol,2011,31(15):3182-3194.
[50] LI Y F,JING Y,HAO J,et al.MicroRNA-21 in the pathogenesis of acute kidney injury[J].Protein Cell,2013,4(11):813-819.
(收稿日期:2023-10-20) (本文編輯:白雅茹)