亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        心肌細(xì)胞鐵死亡及其檢測方法

        2023-12-29 00:00:00孫悅付松波李亦蘭
        心血管病學(xué)進(jìn)展 2023年2期

        【摘要】鐵死亡是一種新型程序性細(xì)胞死亡方式。近年來研究發(fā)現(xiàn),鐵死亡在心臟疾病的發(fā)生發(fā)展中發(fā)揮了重要作用。隨著心肌細(xì)胞鐵死亡領(lǐng)域的深入研究,人們對心肌細(xì)胞鐵死亡檢測的精確性和可重復(fù)性的關(guān)注度日益增加,揭示心肌細(xì)胞鐵死亡的詳細(xì)分子機制及開發(fā)精確的鐵死亡檢測方法具有極其重要的指導(dǎo)意義與臨床價值?,F(xiàn)對目前研究中識別、測量和評估心肌細(xì)胞鐵死亡的最佳方法加以綜述。

        【關(guān)鍵詞】心肌細(xì)胞;鐵死亡;細(xì)胞死亡;檢測方法

        【DOI】10.16806/j.cnki.issn.1004-3934.2023.02.016

        【Abstract】Ferroptosis is a new way of programmed cell death.In recent years,it has been found that ferroptosis plays an important role in the occurrence and development of heart disease.Following the deep research in the field of cardiomyocytes ferroptosis,people pay more attention to the accuracy and repeatability of the detection of myocardial cell ferroptosis,which is of great significance to the research on the mechanism and detection method of cardiomyocyte ferroptosis.In this article,we summarize the best methods to identify,measure and evaluate ferroptosis in cardiomyocytes.

        【Key words】Cardiomyocytes; Ferroptosis; Cell death; Detection method

        鐵死亡是一種新型程序性細(xì)胞死亡模式,當(dāng)細(xì)胞內(nèi)鐵離子代謝異常時,細(xì)胞內(nèi)氧化還原穩(wěn)態(tài)失衡,脂質(zhì)活性氧(reactive oxygen species, ROS)堆積,導(dǎo)致細(xì)胞死亡[1]。與其他細(xì)胞死亡形式不同,鐵死亡具有鐵依賴性、谷胱甘肽(glutathione, GSH)與谷胱甘肽過氧化物酶4(glutathione peroxidase 4, GPX4)介導(dǎo)的氧化還原平衡紊亂及脂質(zhì)過氧化等特征(圖1)[2]。自鐵死亡發(fā)現(xiàn)以來,研究者們發(fā)現(xiàn)其參與了癌癥[3]、神經(jīng)退行性疾病[4]、肝病[5]及腎衰竭[6]等多種疾病的發(fā)生發(fā)展。而鐵死亡在心臟組織中的調(diào)控功能及分子機制,是近年來心血管疾病研究的熱點內(nèi)容。研究表明,通過誘導(dǎo)/抑制心臟鐵死亡的發(fā)生,能調(diào)控不同心血管疾病的發(fā)展進(jìn)程,挽救患者生命[7-12]。

        1"鐵死亡及其在心臟疾病中的作用

        鐵是人體內(nèi)多種分子和酶中必不可少的輔助因子,也是鐵死亡發(fā)生的必需元素。細(xì)胞通過轉(zhuǎn)鐵蛋白/鐵蛋白作用產(chǎn)生具有氧化還原活性的Fe2+,形成氧化還原活性不穩(wěn)定鐵池(labile iron pool, LIP),當(dāng)LIP中鐵含量增加時,F(xiàn)e2+通過芬頓反應(yīng)催化ROS生成,導(dǎo)致細(xì)胞發(fā)生脂質(zhì)過氧化,誘導(dǎo)細(xì)胞發(fā)生鐵死亡[2,10,13-14];而通過鐵螯合劑等方式減少LIP中的鐵會抑制鐵死亡發(fā)生[1,15]。

        細(xì)胞中的鐵在線粒體中發(fā)揮重要功能[16-17]。而線粒體是為心臟組織持續(xù)活動和收縮提供持續(xù)能量的供應(yīng)站,在心肌細(xì)胞中含量豐富,這也說明鐵在心臟功能中的重要性[18]。研究表明,鐵元素含量異常會導(dǎo)致多種心血管疾病的發(fā)生,缺鐵會使線粒體功能降低,心肌細(xì)胞收縮力減弱,導(dǎo)致心臟功能受損[19],50%的慢性心力衰竭患者存在鐵缺乏[20]。而鐵過載可導(dǎo)致心臟組織和心肌細(xì)胞攝取和積聚過量的鐵,ROS產(chǎn)量增加,心肌細(xì)胞更易發(fā)生氧化應(yīng)激[21-24]。此外,過量的鐵也會被線粒體吸收,導(dǎo)致線粒體內(nèi)ROS過量產(chǎn)生,并可能導(dǎo)致線粒體形態(tài)的改變,進(jìn)而造成血管功能受損,加劇動脈粥樣硬化、心律失常和心力衰竭的發(fā)展[1,25-29]。

        研究[30]表明,ROS產(chǎn)生的增加與動脈粥樣硬化、高血壓和充血性心力衰竭等多種心血管疾病相關(guān)。而細(xì)胞內(nèi)氧化還原穩(wěn)態(tài)能保護心肌細(xì)胞免受線粒體中恒定的氧化還原活性和ROS產(chǎn)生所造成的有害影響,對于維持心臟組織的正常功能至關(guān)重要[29]。當(dāng)細(xì)胞發(fā)生氧化應(yīng)激時,膜雙層脂質(zhì)的氧化修飾,特別是脂質(zhì)過氧化,已成為細(xì)胞命運的重要調(diào)節(jié)者[31]。2019年,王福俤教授課題組首次明確了抗腫瘤藥物阿霉素引起的鐵死亡在心臟疾病中發(fā)揮重要作用,并提出由阿霉素引發(fā)的鐵儲存與脂質(zhì)過氧化主要發(fā)生于心肌細(xì)胞線粒體中,明確了線粒體膜的脂質(zhì)過氧化是心肌細(xì)胞發(fā)生鐵死亡的關(guān)鍵機制[9]。GPX4是鐵死亡中重要的抗氧化酶,以GSH為有效還原劑和輔助因子。研究[32-37]表明,維持CPX4活性能抑制ROS的累積,進(jìn)而保護心肌細(xì)胞免受氧化應(yīng)激和脂質(zhì)過氧化傷害。

        近年來隨著對鐵死亡的深入研究及高通量測序技術(shù)的發(fā)展,新一代鐵死亡調(diào)控蛋白被揭示,鐵死亡抑制蛋白1(ferroptosis suppressor protein 1,F(xiàn)SP1)、二氫乳清酸脫氫酶(dihydroorotate dehydrogenase,DHODH)與GPX4成為并重而行的三個鐵死亡關(guān)鍵調(diào)控分子,在各種疾病的發(fā)生發(fā)展中發(fā)揮了重要作用[38-40]。然而,目前FSP1與DHODH在鐵死亡中的詳細(xì)分子機制尚不明確,GPX4仍是鐵死亡調(diào)控的經(jīng)典研究對象,并且目前大部分的鐵死亡誘導(dǎo)劑與抑制劑,靶向目標(biāo)仍為GSH或GPX4。如最早已知的鐵死亡誘導(dǎo)劑之一——Erastin,Erastin能抑制胱氨酸/谷氨酸逆向轉(zhuǎn)運蛋白(Xc-系統(tǒng)),使得細(xì)胞胱氨酸無法被還原為半胱氨酸并因此不能合成GSH,從而抑制GPX4降低細(xì)胞中ROS的能力[32](圖1)。另一種鐵死亡誘導(dǎo)劑RSL3的機制相對簡單,直接抑制GPX4活性,從而使細(xì)胞的氧化還原平衡傾向于ROS積累,進(jìn)而發(fā)生氧化應(yīng)激和鐵死亡[2,41](圖1)。

        2"鐵死亡的鑒定

        2.1"GSH/GPX4

        由上述內(nèi)容可知,鐵死亡在包括心血管疾病在內(nèi)的人類多種疾病中發(fā)揮重要功能,因此,鐵死亡的鑒定對各種疾病的診斷及治療具有重要價值。目前研究認(rèn)為,鐵死亡的必要條件、氧化還原機制和副產(chǎn)物可作為檢測鐵死亡的基礎(chǔ)(表1)。就機制而言,GSH和GPX4活性失衡是鐵死亡的獨特特征,且并不是已知的心臟中其他類型細(xì)胞死亡的主要途徑,因此,可針對GSH及GPX4活性的變化情況判斷鐵死亡的發(fā)生。以5,5’-二硫代雙-2-硝基苯甲酸作為檢測試劑,氧化型谷胱甘肽(谷胱甘肽二硫酸鹽)作為標(biāo)準(zhǔn)顯色來測量GSH和總谷胱甘肽的降低[42]。總谷胱甘肽過氧化物酶活性可通過測量由GSH和煙酰胺腺嘌呤二核苷酸磷酸催化的叔丁基氫過氧化物的還原速率來定量[43]。Western Blot也能檢測GPX的活性,以確定鐵死亡降低是否是由于直接抑制GPX4蛋白本身的酶活性或下調(diào)表達(dá)(表1)[44]。

        2.2"ROS

        ROS的產(chǎn)生是鐵死亡發(fā)生的關(guān)鍵環(huán)節(jié),目前可通過熒光探針如2’,7’-二氯二氫熒光素二乙酸酯或其他細(xì)胞器特異性探針MitoSOX等很容易地檢測到細(xì)胞內(nèi)ROS的產(chǎn)量[7,51]。然而,由于ROS的分子機制較為復(fù)雜,在細(xì)胞壞死和壞死性凋亡中也扮演著重要角色,單純的ROS檢測不能單獨用于表明心肌細(xì)胞發(fā)生鐵死亡,需更具有特異性的檢測方法進(jìn)一步區(qū)分鐵死亡中ROS與心臟中其他形式的細(xì)胞死亡所產(chǎn)生的ROS。

        2.3"脂質(zhì)過氧化

        脂質(zhì)過氧化是鐵死亡的另一個明顯特征,也是氧化應(yīng)激的下游結(jié)果。細(xì)胞脂質(zhì)過氧化物水平可通過免疫染色法、比色法或流式細(xì)胞術(shù)測定法進(jìn)行測定[52]。親脂性熒光探針Liperfluo和C11-BODIPY在被脂質(zhì)過氧化物氧化時可與脂質(zhì)雙層結(jié)合并發(fā)出熒光,進(jìn)而利用流式細(xì)胞儀測定活細(xì)胞中脂質(zhì)過氧化物的水平[45,52-53]。ELISA和免疫組織化學(xué)可用來檢測特定的脂質(zhì)過氧化物如4-羥基壬烯醛[46-47]。將硫代巴比妥酸作為檢測試劑通過比色法可測定丙二醛含量。

        2.4"鐵元素

        雖然具有氧化還原活性的鐵是發(fā)生鐵死亡的必需元素,但需注意的是,當(dāng)細(xì)胞內(nèi)鐵濃度正常時仍可能發(fā)生鐵死亡,而細(xì)胞可溶性、氧化還原活性鐵的丟失可抑制鐵死亡[1,7,9]。在細(xì)胞或組織裂解物樣品中檢測鐵的總量可確定鐵死亡的發(fā)生是否由于過量鐵的積累。Ferrozine(菲洛嗪)是一種鐵檢測化合物,當(dāng)與亞鐵離子結(jié)合時形成品紅色復(fù)合物,可用于檢測和量化納摩爾級的鐵總量[48]。向紅菲咯啉和呋喃三嗪二鈉鹽也可使用比色測定法檢測樣品中的總鐵,后者更敏感并且僅需更小的樣品體積[54]。此外,可使用T2和T2*核磁共振成像在機體水平進(jìn)行鐵檢測,觀察心肌和其他器官和組織中的鐵沉積[55]。

        2.5"抑制劑類

        除了上述鐵死亡檢測方法和實驗外,鐵死亡抑制劑如Ferrostatin-1、Liproxstatin-1和維生素E等通過清除自由基降低細(xì)胞內(nèi)ROS與脂質(zhì)過氧化總量的脂溶性抗氧化劑也可用于確定是否發(fā)生鐵死亡[7,9,11,56]。如懷疑在實驗中發(fā)生鐵死亡,可加入Ferrostatin-1或類似的鐵死亡抑制劑觀察是否會減少細(xì)胞脂質(zhì)過氧化和細(xì)胞死亡。

        3"總結(jié)與展望

        鐵死亡作為新型程序性細(xì)胞死亡方式,近年來在心臟疾病中的重要作用逐漸被揭示,但詳細(xì)分子機制仍有待研究。精確、可重復(fù)的心肌細(xì)胞鐵死亡的檢測技術(shù)能直觀地反映心臟損傷形式,準(zhǔn)確的鐵死亡生物標(biāo)志物可為心臟疾病提供新的靶向治療模式,具有重大的臨床轉(zhuǎn)化價值。因此,未來的挑戰(zhàn)在于進(jìn)一步揭示鐵死亡在心臟疾病中的詳細(xì)調(diào)控機制,開發(fā)新的鐵死亡特異性標(biāo)志物檢測技術(shù),為心臟疾病患者帶來最大的福音。

        參考文獻(xiàn)

        [1]Dixon SJ,Lemberg KM,Lamprecht MR,et al.Ferroptosis:an iron-dependent form of nonapoptotic cell death[J].Cell,2012,149(5):1060-1072.

        [2]Cao JY, Dixon SJ.Mechanisms of ferroptosis[J].Cell Mol Life Sci,2016,73(11-12):2195-2209.

        [3]Kim SE, Zhang L, Ma K, et al.Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth[J].Nat Nanotechnol,2016,11(11):977-985.

        [4]Ishii T,Warabi E,Mann GE.Circadian control of BDNF-mediated Nrf2 activation in astrocytes protects dopaminergic neurons from ferroptosis[J].Free Radic Biol Med,2019,133:169-178.

        [5]Zhang Z,Yao Z,Wang L,et al.Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells[J].Autophagy,2018,14(12):2083-2103.

        [6]Adedoyin O,Boddu R,Traylor A,et al.Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells[J].Am J Physiol Renal Physiol,2018,314(5):F702-F714.

        [7]Baba Y,Higa JK,Shimada BK,et al.Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes[J].Am J Physiol Heart Circ Physiol,2018,314(3):H659-H668.

        [8]Bai YT,Chang R,Wang H,et al.ENPP2 protects cardiomyocytes from erastin-induced ferroptosis[J].Biochem Biophys Res Commun,2018,499(1):44-51.

        [9]Fang X,Wang H,Han D,et al.Ferroptosis as a target for protection against cardiomyopathy[J].Proc Natl Acad Sci U S A,2019,116(7):2672-2680.

        [10]Gao M,Monian P,Quadri N,et al.Glutaminolysis and transferrin regulate ferroptosis[J].Mol Cell,2015,59(2):298-308.

        [11]Li W,F(xiàn)eng G,Gauthier JM,et al.Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation[J].J Clin Invest,2019,129(6):2293-2304.

        [12]Liu B,Zhao C,Li H,et al.Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis[J].Biochem Biophys Res Commun,2018,497(1):233-240.

        [13]Hou W,Xie Y,Song X,et al.Autophagy promotes ferroptosis by degradation of ferritin[J].Autophagy,2016,12(8):1425-1428.

        [14]Thomas C,Mackey MM,Diaz AA,et al.Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress:implications for diseases associated with iron accumulation[J].Redox Rep,2009,14(3):102-108.

        [15]Kwon MY,Park E,Lee SJ,et al.Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death[J].Oncotarget,2015,6(27):24393-24403.

        [16]Levi S,Rovida E.The role of iron in mitochondrial function[J].Biochim Biophys Acta,2009,1790(7):629-636.

        [17]Stehling O,Lill R.The role of mitochondria in cellular iron-sulfur protein biogenesis:mechanisms,connected processes,and diseases[J].Cold Spring Harb Perspect Biol,2013,5(8):a011312.

        [18]Barth E,Stammler G,Speiser B,et al.Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man[J].J Mol Cell Cardiol,1992,24(7):669-681.

        [19] Hoes MF,Grote Beverborg N,Kijlstra JD,et al.Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function[J].Eur J Heart Fail,2018,20(5):910-919.

        [20]van der Wal HH, Grote Beverborg N, Dickstein K, et al.Iron deficiency in worsening heart failure is associated with reduced estimated protein intake,fluid retention,inflammation,and antiplatelet use[J].Eur Heart J,2019,40(44):3616-3625.

        [21]de Montalembert M, Ribeil JA, Brousse V, et al.Cardiac iron overload in chronically transfused patients with thalassemia,sickle cell anemia,or myelodysplastic syndrome[J].PLoS One,2017,12(3):e0172147.

        [22]Fujikura K,Golive AD,Ando T,et al.Increased iron deposition is directly associated with myocardial dysfunction in patients with sickle cell disease[J].JACC Cardiovasc Imaging,2018,11(2 Pt 1):279-280.

        [23]Oudit GY,Sun H,Trivieri MG,et al.L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy[J].Nat Med,2003,9(9):1187-1194.

        [24]Melenovsky V,Petrak J,Mracek T,et al.Myocardial iron content and mitochondrial function in human heart failure:a direct tissue analysis[J].Eur J Heart Fail,2017,19(4):522-530.

        [25]Grammer TB,Scharnagl H,Dressel A,et al.Iron metabolism,hepcidin,and mortality (the Ludwigshafen Risk and Cardiovascular Health Study)[J].Clin Chem,2019,65(7):849-861.

        [26]Kowdley KV,Brown KE,Ahn J,et al.ACG Clinical Guideline:Hereditary Hemochromatosis[J].Am J Gastroenterol,2019,114(8):1202-1218.

        [27]Vinchi F,Porto G,Simmelbauer A,et al.Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction[J].Eur Heart J,2020,41(28):2681-2695.

        [28]Gao X,Qian M,Campian JL,et al.Mitochondrial dysfunction may explain the cardiomyopathy of chronic iron overload[J].Free Radic Biol Med,2010,49(3):401-407.

        [29]Murphy MP.How mitochondria produce reactive oxygen species[J].Biochem J,2009,417(1):1-13.

        [30]Sugamura K,Keaney JF Jr.Reactive oxygen species in cardiovascular disease[J].Free Radic Biol Med,2011,51(5):978-992.

        [31]Jiang X,Stockwell BR,Conrad M.Ferroptosis:mechanisms,biology and role in disease[J].Nat Rev Mol Cell Biol,2021,22(4):266-282.

        [32]Conrad M, Friedmann Angeli JP.Glutathione peroxidase 4 (Gpx4) and ferroptosis:what’s so special about it?[J].Mol Cell Oncol,2015,2(3):e995047.

        [33]Shi ZZ, Osei-Frimpong J, Kala G, et al.Glutathione synthesis is essential for mouse development but not for cell growth in culture[J].Proc Natl Acad Sci U S A,2000,97(10):5101-5106.

        [34]Yant LJ,Ran Q,Rao L,et al.The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults[J].Free Radic Biol Med,2003,34(4):496-502.

        [35]Banjac A,Perisic T,Sato H,et al.The cystine/cysteine cycle:a redox cycle regulating susceptibility versus resistance to cell death[J].Oncogene,2008,27(11):1618-1628.

        [36]Mandal PK,Seiler A,Perisic T,et al.System x(c)-"and thioredoxin reductase 1 cooperatively rescue glutathione deficiency[J].J Biol Chem,2010,285(29):22244-22253.

        [37]Seiler A,Schneider M,F(xiàn)orster H,et al.Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent-"and AIF-mediated cell death[J].Cell Metab,2008,8(3):237-248.

        [38]Bersuker K,Hendricks JM,Li Z,et al.The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J].Nature,2019,575(7784):688-692.

        [39]Doll S,F(xiàn)reitas FP,Shah R,et al.FSP1 is a glutathione-independent ferroptosis suppressor[J].Nature,2019,575(7784):693-698.

        [40]Mao C,Liu X,Zhang Y,et al.DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J].Nature,2021,593(7860):586-590.

        [41]Shintoku R,Takigawa Y,Yamada K,et al.Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3[J].Cancer Sci,2017,108(11):2187-2194.

        [42]Pang X,Panee J,Liu X,et al.Regional variations of antioxidant capacity and oxidative stress responses in HIV-1 transgenic rats with and without methamphetamine administration[J].J Neuroimmune Pharmacol,2013,8(3):691-704.

        [43]Panee J,Stoytcheva ZR,Liu W,et al.Selenoprotein H is a redox-sensing high mobility group family DNA-binding protein that up-regulates genes involved in glutathione synthesis and phase II detoxification[J].J Biol Chem,2007,282(33):23759-23765.

        [44]Yang WS,Sriramaratnam R,Welsch ME,et al.Regulation of ferroptotic cancer cell death by GPX4[J].Cell,2014,156(1-2):317-331.

        [45]Kagan VE,Mao G,Qu F,et al.Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J].Nat Chem Biol,2017,13(1):81-90.

        [46]Weber D,Milkovic L,Bennett SJ,et al.Measurement of HNE-protein adducts in human plasma and serum by ELISA-Comparison of two primary antibodies[J].Redox Biol,2013,1:226-233.

        [47]Yoritaka A,Hattori N,Uchida K,et al.Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease[J].Proc Natl Acad Sci U S A,1996,93(7):2696-2701.

        [48]Jeitner TM.Optimized ferrozine-based assay for dissolved iron[J].Anal Biochem,2014,454:36-37.

        [49]Riemer J,Hoepken HH,Czerwinska H,et al.Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells[J].Anal Biochem,2004,331(2):370-375.

        [50]Jelinek A,Heyder L,Daude M,et al.Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis[J].Free Radic Biol Med,2018,117:45-57.

        [51]Mukhopadhyay P,Rajesh M,Hasko G,et al.Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy[J].Nat Protoc,2007,2(9):2295-2301.

        [52]Martinez AM,Kim A,Yang WS.Detection of ferroptosis by BODIPY 581/591 C11[J].Methods Mol Biol,2020,2108:125-130.

        [53]Drummen GP, van Liebergen LC, Op den Kamp JA,et al.C11-BODIPY(581/591),an oxidation-sensitive fluorescent lipid peroxidation probe:(micro)spectroscopic characterization and validation of methodology[J].Free Radic Biol Med,2002,33(4):473-490.

        [54]Pieroni L,Khalil L,Charlotte F,et al.Comparison of bathophenanthroline sulfonate and ferene as chromogens in colorimetric measurement of low hepatic iron concentration[J].Clin Chem,2001,47(11):2059-2061.

        [55]Bulluck H, Rosmini S, Abdel-Gadir A, et al.Residual myocardial iron following intramyocardial hemorrhage during the convalescent phase of reperfused ST-segment-elevation myocardial infarction and adverse left ventricular remodeling[J].Circ Cardiovasc Imaging,2016,9(10):e004940.

        [56]Zilka O,Shah R,Li B,et al.On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death[J].ACS Cent Sci,2017,3(3):232-243.

        国产精品毛片一区二区| 中文字幕影片免费在线观看| 91制服丝袜| 伊人网视频在线观看| 国产午夜亚洲精品不卡免下载| 激情视频在线观看国产中文| 免费在线亚洲视频观看| 偷拍色图一区二区三区| 国产欧美性成人精品午夜| 人人妻人人澡人人爽精品欧美| 日本久久久| 久久久婷婷综合亚洲av| 中文字幕精品亚洲字幕| 国产做爰又粗又大又爽动漫| 男人边吃奶边做好爽免费视频| 无码AV高潮喷水无码专区线| 中日无码精品一区二区三区| 宅男视频一区二区三区在线观看| 亚洲va中文字幕无码一二三区 | 中文亚洲欧美日韩无线码| 国产亚洲一本大道中文在线| 91蜜桃国产成人精品区在线| 亚洲美女自拍偷拍视频| 国产精品无码aⅴ嫩草| 国产极品美女高潮无套在线观看| 亚洲精品2区在线观看| 青青草成人免费在线观看视频| 综合色区亚洲熟妇另类| 在线免费黄网| 久草久热这里只有精品| 中文字幕女优av在线| 亚洲国产成人片在线观看无码| 国产高级黄区18勿进一区二区| 日本精品久久中文字幕| 久久国产精品色av免费看| 日本丰满少妇裸体自慰| 乱色熟女综合一区二区三区| 乱伦一区二| 在线亚洲精品免费视频| 国产精品免费观看调教网| 欧美日韩精品一区二区三区不卡|