【摘要】主動(dòng)脈瘤(AA)和主動(dòng)脈夾層(AD)是威脅生命健康的主要疾病。氟喹諾酮類抗生素(FQ)具有重要的臨床用途和廣泛的抗菌譜。FQ可導(dǎo)致主動(dòng)脈血管破裂風(fēng)險(xiǎn)增加。FQ誘導(dǎo)AA/AD的確切機(jī)制目前尚不十分清楚?,F(xiàn)討論FQ與AA/AD之間相關(guān)性的最新研究進(jìn)展。
【關(guān)鍵詞】主動(dòng)脈瘤;主動(dòng)脈夾層;氟喹諾酮類藥物
【DOI】10.16806/j.cnki.issn.1004-3934.2023.02.013
【Abstract】Aortic aneurysm(AA) and aortic dissection (AD) are major life-threatening diseases around the world.Fluoroquinolones (FQ) remain one of the most important kind of antibiotics and have a wider clinical use and broad antibacterial spectrum.FQ was warned about an increased risk of ruptures in the aorta blood vessel in certain patients.The exact mechanism of FQ-induced AA/AD remains unclear.This review aims to the latest research progress of the alarming association between FQ and AA/AD.
【Key words】Aortic aneurysm; Aortic dissection; Fluoroquinolones
氟喹諾酮類藥物(fluoroquinolones,F(xiàn)Q)是臨床工作中最常用的抗生素之一,研究[1-3]顯示其可能與急性主動(dòng)脈瘤(aortic aneurysm,AA)和主動(dòng)脈夾層(aortic dissection,AD)有關(guān),F(xiàn)Q的使用可增加AA/AD的發(fā)病風(fēng)險(xiǎn)。AA/AD的發(fā)病率逐年升高,以主動(dòng)脈漸進(jìn)性擴(kuò)張或破裂、主動(dòng)脈壁結(jié)構(gòu)異常的病理改變?yōu)橹饕卣?,是致死率極高的心血管急危重癥[4]?,F(xiàn)就該類藥物的大血管相關(guān)并發(fā)癥做一綜述。
1"AA/AD的發(fā)病特征、流行病學(xué)和危險(xiǎn)因素
1.1"AA/AD的流行病學(xué)及臨床特征
AA可分為胸主動(dòng)脈瘤(thoracic aortic aneurysm,TAA)和腹主動(dòng)脈瘤(abdominal aortic aneurysm,AAA)。AA直徑與動(dòng)脈瘤破裂風(fēng)險(xiǎn)增加有關(guān),與遺傳有一定關(guān)系,發(fā)病年齡較輕,與性別無(wú)明顯相關(guān)性,AD是主動(dòng)脈疾病最嚴(yán)重的并發(fā)癥。AA是主動(dòng)脈的局部或彌漫性擴(kuò)張,導(dǎo)致主動(dòng)脈直徑至少增加50%,而AD是在主動(dòng)脈壁內(nèi)產(chǎn)生真假腔的分離。研究[5]顯示AA的年發(fā)病率為3.0/10萬(wàn)~13.7/10萬(wàn),AD的年發(fā)病率為3/10萬(wàn)~20/10萬(wàn) ,AA在老年人口中的年發(fā)病率較高,為130/10萬(wàn)。在過(guò)去的幾十年中,AA/AD的死亡率上升了1.2~24.8倍[6]。
1.2"AA/AD的常見(jiàn)危險(xiǎn)因素
家族性TAA患者中,部分患有已確定的單基因疾病形式,如馬凡綜合征。20%的患者無(wú)相關(guān)基因遺傳,但有相關(guān)的家庭成員患?。易逍訲AA和AD)。AA/AD相關(guān)的危險(xiǎn)因素包括年齡增長(zhǎng)、男性和生活方式相關(guān)的危險(xiǎn)因素(如吸煙、高血壓和高膽固醇血癥),與動(dòng)脈粥樣硬化性心血管疾病的許多共同的危險(xiǎn)因素參與了AA/AD的進(jìn)展[7]。
1.3"FQ的治療效果
FQ 對(duì)革蘭氏陽(yáng)性、革蘭氏陰性、需氧和厭氧微生物具有廣譜抗菌功效[8]。目前FQ根據(jù)活性譜和藥代動(dòng)力學(xué)特征分為五代[9],第一代包括萘啶酸、惡唑啉酸、哌啶酸和羅沙星,對(duì)革蘭氏陰性菌有活性。由于它們的血清半衰期短,且僅用于革蘭氏陰性菌引起的尿路感染,目前已基本被淘汰。第二代包括環(huán)丙沙星、諾氟沙星、依諾沙星、培氟沙星、洛美沙星、那氟沙星、蘆氟沙星和氧氟沙星,對(duì)革蘭氏陰性菌和對(duì)革蘭氏陽(yáng)性菌有良好的活性。它們通常用于復(fù)雜的膀胱感染、尿路感染、性傳播疾病、特定類型的肺炎、腎盂腎炎和皮膚感染。第三代包括左氧氟沙星、帕珠沙星、替馬沙星、托氟沙星、司帕沙星、格雷帕沙星和巴洛沙星,對(duì)包括銅綠假單胞菌在內(nèi)的革蘭氏陰性菌具有更廣泛的活性,對(duì)革蘭氏陽(yáng)性菌和厭氧菌具有良好的活性[10]。第四代包括普魯沙星、曲伐沙星、阿曲沙星、德拉沙星、克林沙星、貝西沙星、西他沙星、非那沙星、加替沙星、吉米沙星和莫西沙星,對(duì)革蘭氏陽(yáng)性菌有更廣泛的活性,特別是對(duì)肺炎鏈球菌和腸桿菌科細(xì)菌有較好的活性,對(duì)厭氧菌也具有較好的活性。它們被認(rèn)為同時(shí)作用于脫氧核糖核酸(deoxyribonucleic acid,DNA)促旋酶和拓?fù)洚悩?gòu)酶Ⅳ,并減緩細(xì)菌耐藥性的過(guò)程[10]。第五代包括左旋沙星、奈莫沙星和扎博沙星,目前正在進(jìn)行臨床試驗(yàn)[11]。
1.4"FQ的不良反應(yīng)
FQ最常見(jiàn)的不良反應(yīng)是輕微的且可逆的,如頭痛、腹瀉和惡心。除此之外,F(xiàn)Q也可出現(xiàn)嚴(yán)重不良反應(yīng),如肌腱炎、肌腱斷裂、肝毒性、QT 間期延長(zhǎng)、尖端扭轉(zhuǎn)型室性心動(dòng)過(guò)速、光毒性、血糖異常、急性腎功能衰竭和癲癇發(fā)作等。FQ暴露與心律失常風(fēng)險(xiǎn)增加和心血管死亡率之間存在明顯相關(guān)性[12]。FQ干預(yù)在不同性別、年齡、發(fā)病形式和暴露時(shí)間等因素影響下,均不同程度增加了AA/AD的發(fā)生[13]。
2"FQ和AA/AD的相關(guān)性
2.1"FQ增加了AA/AD的風(fēng)險(xiǎn)
研究表明FQ的使用可能會(huì)增加AA/AD的發(fā)病率,Lee等[14]研究發(fā)現(xiàn)使用FQ后AA/AD的概率幾乎增加3倍,其中70歲以上的老年女性患者的風(fēng)險(xiǎn)增加更為顯著。與男性相比,F(xiàn)Q使女性患AA/AD的風(fēng)險(xiǎn)更高[13]。Pasternak等[4]在2018年對(duì)瑞典近230萬(wàn)老年患者的大型隊(duì)列研究中發(fā)現(xiàn),與阿莫西林相比,F(xiàn)Q使AA/AD風(fēng)險(xiǎn)升高約2倍。
Daneman等[15]在170萬(wàn)例以上的老年患者臨床觀察中發(fā)現(xiàn),76歲以上的患者在FQ暴露后,AA/AD的發(fā)生率增加,顯著高于對(duì)照組阿莫西林暴露后的AA/AD風(fēng)險(xiǎn)(1.10% vs 0.35% ),F(xiàn)Q使AA/AD的發(fā)病率增加2~3倍。薈萃分析[16]發(fā)現(xiàn)與阿奇霉素相比,F(xiàn)Q使AA/AD風(fēng)險(xiǎn)增加,其發(fā)病率增加了0.03%。通過(guò)分析美國(guó)2 200萬(wàn)成人的入院數(shù)據(jù),在437 045例AA/AD患者中,27 876例AA/AD患者在主動(dòng)脈修復(fù)前接受了FQ[17]。
2.2"FQ使用持續(xù)時(shí)間和AA/AD的發(fā)生率
目前,不同研究結(jié)果對(duì)FQ使用持續(xù)時(shí)間與AA/AD的發(fā)生率存在差異。
Howard等[18]發(fā)現(xiàn)AA/AD風(fēng)險(xiǎn)與FQ暴露時(shí)間>14 d有關(guān)。Pasternak等[4] 觀察到使用FQ 60 d后不會(huì)增加AA/AD的風(fēng)險(xiǎn)。通過(guò)對(duì)易感期分析顯示,在60 d內(nèi)使用FQ與AA/AD的最高風(fēng)險(xiǎn)相關(guān),長(zhǎng)期使用FQ會(huì)增加AA/AD的風(fēng)險(xiǎn)[14]。
2.3"FQ使用的類型和劑型與AA/AD的發(fā)生率
環(huán)丙沙星、左氧氟沙星和莫西沙星是最常用的FQ,被確定為與AA/AD密切相關(guān)。Dolladille等[19]在總共264 917份與FQ相關(guān)的報(bào)告中,確定103份與FQ相關(guān)的AA/AD報(bào)告,觀察到所有FQ(OR=1.57,95%CI 1.12~2.09)、環(huán)丙沙星(OR=2.89,95%CI 2.24~3.74)、左氧氟沙星(OR=2.89,95%CI 2.24~3.74)和莫西沙星(OR=3.22,95%CI 2.21~4.71) 均增加了AA/AD的發(fā)病率。
在LeMaire等[20]進(jìn)行的一項(xiàng)研究中,接受環(huán)丙沙星的高脂肪飲食和低劑量血管緊張素輸注的小鼠,胸主動(dòng)脈和腎上腹主動(dòng)脈中動(dòng)脈瘤形成的發(fā)生率增加,但腎下腹主動(dòng)脈中沒(méi)有。當(dāng)健康野生型小鼠的白細(xì)胞介素-6水平升高時(shí),出現(xiàn)腹部擴(kuò)張,而胸主動(dòng)脈不受影響[21]。對(duì)來(lái)自臺(tái)灣的1 477例AA/AD患者和147 700例匹配的對(duì)照病例進(jìn)行了分析,使用口服FQ的患者患AA/AD的風(fēng)險(xiǎn)增加,發(fā)現(xiàn)FQ增加AA/AD的風(fēng)險(xiǎn)[7,14]。
3"FQ誘導(dǎo)AA/AD的機(jī)制
3.1"FQ對(duì)細(xì)胞外基質(zhì)及血管平滑肌細(xì)胞的影響
主動(dòng)脈血管中膜層主要成分為細(xì)胞外基質(zhì)(extracellular matrix,ECM)和平滑肌細(xì)胞(vascular smooth muscle cell,VSMC)。ECM的組成和完整性是決定主動(dòng)脈壁物理特性的關(guān)鍵因素[22]。VSMC是主動(dòng)脈壁主要的細(xì)胞成分,是主動(dòng)脈壁正常收縮的基礎(chǔ)。VSMC數(shù)量減少是主動(dòng)脈病變形成的原因之一,而VSMC數(shù)量減少的原因是細(xì)胞生成減少與凋亡增加。AA/AD主要病理生理機(jī)制為主動(dòng)脈壁中層彈力纖維斷裂,ECM降解,以及VSMC數(shù)目減少、凋亡增多。肌成纖維細(xì)胞在主動(dòng)脈壁外膜中具有豐富的細(xì)胞群,并具有結(jié)構(gòu)性動(dòng)脈ECM重塑的能力。研究[23]發(fā)現(xiàn),F(xiàn)Q會(huì)導(dǎo)致ECM 調(diào)節(jié)過(guò)程失衡,并增加人主動(dòng)脈肌成纖維細(xì)胞進(jìn)行ECM重塑的能力,進(jìn)而導(dǎo)致主動(dòng)脈壁功能削弱,組織結(jié)構(gòu)穩(wěn)定性降低。FQ抑制細(xì)胞增殖和誘導(dǎo)細(xì)胞凋亡的作用可能導(dǎo)致主動(dòng)脈破壞,致使ECM穩(wěn)態(tài)失調(diào)破壞了ECM的完整性并損害了生物力學(xué)強(qiáng)度,最終引發(fā)進(jìn)行性主動(dòng)脈弱化、破裂或AD。
3.2"FQ對(duì)基質(zhì)金屬蛋白酶的影響
基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMP)類在降解ECM過(guò)程中發(fā)揮了重要作用,其降解功能超過(guò)ECM降解酶活性的70%,MMP是ECM降解過(guò)程的重要限速酶。MMP對(duì)ECM的酶促降解和血管重塑構(gòu)成了AA最突出的特征[24]。組織金屬蛋白酶抑制物(tissue inhibitor of metalloproteinase,TIMP)可能會(huì)抑制AA/AD的發(fā)展,F(xiàn)Q上調(diào)MMP的同時(shí)抑制TIMP表達(dá),MMP與TIMP比例失衡,致使主動(dòng)脈壁成分生成與破壞比例失衡、加速ECM的降解,使得主動(dòng)脈中ECM含量明顯減少,彈性纖維降解,加速血管彈性的下降,最終AA壁進(jìn)一步發(fā)生變性,使得動(dòng)脈瘤生長(zhǎng)、破裂的風(fēng)險(xiǎn)增加[25]。環(huán)丙沙星可抑制TIMP-1的表達(dá),增強(qiáng)肌腱細(xì)胞和組織中的MMP表達(dá),最終促進(jìn)MMP活化和組織破壞。環(huán)丙沙星在人體主動(dòng)脈VSMC中上調(diào)MMP活性的兩倍以上[26]。研究[27]證實(shí),在AA/AD小鼠模型中,環(huán)丙沙星會(huì)誘導(dǎo)主動(dòng)脈中的主動(dòng)脈細(xì)胞損傷,此外,環(huán)丙沙星在培養(yǎng)的人主動(dòng)脈VSMC中抑制細(xì)胞增殖并促進(jìn)細(xì)胞死亡,顯著增加小鼠AA/AD的發(fā)病率。
3.3"FQ對(duì)DNA的影響
臨床中使用的FQ主要抗菌機(jī)制為抑制細(xì)菌的DNA拓?fù)洚悩?gòu)酶Ⅱ和拓?fù)洚悩?gòu)酶Ⅳ,當(dāng)FQ與靶點(diǎn)相結(jié)合,阻止細(xì)菌DNA的正常復(fù)制,誘使其發(fā)生氧化性損害并啟動(dòng)細(xì)胞死亡機(jī)制,導(dǎo)致細(xì)胞凋亡[28]。FQ抑制各種細(xì)胞的增殖,并誘導(dǎo)各種細(xì)胞的凋亡,在分子結(jié)構(gòu)上,作為一種DNA拓?fù)洚悩?gòu)酶抑制劑,環(huán)丙沙星誘導(dǎo)細(xì)胞核、線粒體DNA損傷和DNA釋放,最終促進(jìn)線粒體功能障礙、活性氧產(chǎn)生、干擾素基因刺激劑和胞質(zhì)DNA傳感器激活以及細(xì)胞死亡[26]。FQ降低了周期素及周期素依賴性酶的表達(dá)[29],以及周期素與周期素依賴性酶結(jié)合而成的復(fù)合物水平,減少了周期素及周期素依賴性酶對(duì)特定底物的激活,從而使細(xì)胞復(fù)制周期中斷,減少VSMC的生成。通過(guò)作用在線粒體細(xì)胞膜,改變線粒體膜電位,引起細(xì)胞色素C、細(xì)胞凋亡誘導(dǎo)因子等凋亡啟動(dòng)因子激活級(jí)聯(lián)反應(yīng)啟動(dòng)凋亡[30]。
4"小結(jié)與展望
通過(guò)總結(jié)目前FQ的現(xiàn)狀,回顧描述FQ的使用及其與主動(dòng)脈病變之間存在關(guān)聯(lián)的文獻(xiàn),了解FQ對(duì)主動(dòng)脈病變的影響至關(guān)重要,暴露于FQ與AA/AD風(fēng)險(xiǎn)的增加密切相關(guān)。鑒于AA/AD的全球負(fù)擔(dān)和世界各地日益增長(zhǎng)的FQ使用,特別是對(duì)AA/AD高危人群應(yīng)進(jìn)行重點(diǎn)關(guān)注。
參考文獻(xiàn)
[1]Newton ER,Akerman AW,Strassle PD,et al.Association of fluoroquinolone use with short-term risk of development of aortic aneurysm[J].JAMA Surg,2021,156(3):264-272.
[2]張波,王文艷,陳蒙華.氟喹諾酮抗生素與主動(dòng)脈瘤/夾層發(fā)生和發(fā)展的關(guān)系[J].臨床心血管病雜志,2020,36(12):1083-1087.
[3]管玉瑤,劉雪梅,楊靜,等.某院氟喹諾酮類注射液高風(fēng)險(xiǎn)因素人群用藥安全性分析[J].藥物流行病學(xué)雜志,2020,29(10):666-669.
[4]Pasternak B,Inghammar M,Svanstrm H,et al.Fluoroquinolone use and risk of aortic aneurysm and dissection: nationwide cohort study[J].BMJ,2018,360:k678.
[5]Lee CC,Lee MG,Hsieh R,et al.Oral fluoroquinolone and the risk of aortic dissection[J].J Am Coll Cardiol,2018,72(12):1369-1378.
[6]Sidloff D,Choke E,Stather P,et al.Mortality from thoracic aortic diseases and associations with cardiovascular risk factors[J].Circulation,2014,130(25):2287-2294.
[7]Schmitz-Rixen T,Keese M,Hakimi M,et al.Ruptured abdominal aortic aneurysm epidemiology,predisposing factors,and biology[J].Langenbecks Arch Surg,2016,401(3):275-288.
[8]Ezelarab HAA,Abbas SH,Hassan HA,et al.Recent updates of fluoroquinolones as antibacterial agents[J].Arch Pharm,2018,351(9):e1800141.
[9]Jun C,F(xiàn)ang B.Current progress of fluoroquinolones-increased risk of aortic aneurysm and dissection[J].BMC Cardiovasc Disord,2021,21(1):470.
[10]Zhang GF,Zhang S,Pan B,et al.4-quinolone derivatives and their activities against Gram positive pathogens[J].Eur J Med Chem,2018,1(143):710-723.
[11]Zhang GF,Liu X,Zhang S,et al.Ciprofloxacin derivatives and their antibacterial activities[J].Eur J Med Chem,2018,25(146):599-612.
[12]Kuula LSM,Viljemaa KM,Backman JT,et al.Fluoroquinolone-related adverse events resulting in health service use and costs:a systematic review[J].PLoS One,2019,14(4):e0216029.
[13]Noman AT,Qazi AH,Alqasrawi M,et al.Fluoroquinolones and the risk of aortopathy:a systematic review and meta-analysis[J].Int J Cardiol,2019,1(274):299-302.
[14]Lee CC,Lee MT,Chen YS,et al.Risk of aortic dissection and aortic aneurysm in patients taking oral fluoroquinolone[J].JAMA Intern Med,2015,175(11):1839-1847.
[15]Daneman N,Lu H,Redelmeier DA,et al.Fluoroquinolones and collagen associated severe adverse events: a longitudinal cohort study[J].BMJ Open,2015,5(11):e010077.
[16]Latif A,Ahsan MJ,Kapoor V,et al.Fluoroquinolones and the risk of aortopathy:a systematic review and meta-analysis[J].WMJ,2020,119(3):185-189.
[17]Frankel WC,Trautner BW,Spiegelman A,et al.Patients at risk for aortic rupture often exposed to fluoroquinolones during hospitalization[J].Antimicrob Agents Chemother,2019,63(2):e01712-e01718.
[18]Howard DP,Banerjee A,F(xiàn)airhead JF,et al.Age-specific incidence,risk factors and outcome of acute abdominal aortic aneurysms in a defined population[J].Br J Surg,2015,102(8):907-915.
[19]Dolladille C,Chrétien B,Sassier M,et al.Fluoroquinolone and aortic dissection:is it a class effect[J].J Am Coll Cardiol,2019,73(3):382-383.
[20]LeMaire SA,Zhang L,Luo W,et al.Effect of ciprofloxacin on susceptibility to aortic dissection and rupture in mice[J].JAMA Surg,2018,153(9):e181804.
[21]Ogino H,F(xiàn)ujii M,Ono M,et al.In vivo and in vitro effects of fluoroquinolones on lipopolysaccharide-induced pro-inflammatory cytokine production[J].J Infect Chemother,2009,15(3):168-173.
[22]Bouissou C, Lacolley P, Dabire H,et al.Increased stiffness and cell-matrix interactions of abdominal aorta in two experimental nonhypertensive models:long-term chemically sympathectomized and sinoaortic denervated rats[J].J Hypertens,2014,32(3):652-658.
[23]Rodríguez-Carrio J, Cerro-Pardo I, Lindholt JS,et al.Malondialdehyde-modified HDL particles elicit a specific IgG response in abdominal aortic aneurysm[J].Free Radic Biol Med,2021,174:171-181.
[24]Hadi T,Boytard L,Silvestro M,et al.Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells[J].Nat Commun,2018,9(1):5022.
[25]Guzzardi DG, Teng G, Kang S,et al.Induction of human aortic myofibroblast-mediated extracellular matrix dysregulation:a potential mechanism of fluoroquinolone-associated aortopathy[J].J Thorac Cardiovasc Surg,2019,157(1):109-119.e2.
[26]Son N,Choi E,Chung SY,et al.Risk of aortic aneurysm and aortic dissection with the use of fluoroquinolones in Korea: a nested case-control study[J].BMC Cardiovasc Disord,2022,22(1):44.
[27]Chen YY,Yang SF,Yeh HW,et al.Association between aortic aneurysm and aortic dissection with fluoroquinolones use in patients with urinary tract infections:a population-based cohort study[J].J Am Heart Assoc,2022,11(6):e023267.
[28]Smart DJ, Halicka HD, Traganos F,et al.Ciprofloxacin-induced G2 arrest and apoptosis in TK6 lymphoblastoid cells is not dependent on DNA double-strand break formation[J].Cancer Biol Ther,2008,7(1):113-119.
[29]Pommicr Y,Sun Y,Huang SN,et al.Roles of eukaryotic topoisomerases in transcription,replication and genomic stability[J].Nat Rev Mol Cell Biol,2016:17(11):703-721.
[30]Lim EJ, Yoon YJ, Heo J,et al.Ciprofloxacin enhances TRAIL-induced apoptosis in lung cancer cells by upregulating the expression and protein stability of death receptors through CHOP expression[J].Int J Mol Sci,2018,19(10):3187.