王丹 李琳 聶丹丹 王守彬
摘 要:目的:建立CI-LLME-超高效液相色譜-串聯(lián)質(zhì)譜法檢測(cè)果蔬中8種殺菌劑殘留量的方法。方法:使用冷凍誘導(dǎo)液液微萃取前處理技術(shù)結(jié)合三重四極桿分析技術(shù)檢測(cè)果蔬產(chǎn)品中8種殺菌劑的殘留量。結(jié)果:在給定的濃度范圍內(nèi)8種殺菌劑存在良好的線性關(guān)系(R2>0.990);方法檢出限為0.04~1.83 μg·kg-1,定量限為0.12~5.49 μg·kg-1。10.0 μg·L-1、20.0 μg·L-1、100.0 μg·L-1添加水平的回收率為81.5%~117.1%,精密度(RSD)為0.05%~6.12%,重復(fù)性實(shí)驗(yàn)標(biāo)準(zhǔn)偏差為0.045~0.887,RSD為0.47%~9.47%,均符合國(guó)家標(biāo)準(zhǔn)要求。結(jié)論:該前處理技術(shù)具備一步式樣品前處理能力,簡(jiǎn)單快速、成本較低,靈敏度高且重現(xiàn)性好,因此該技術(shù)可用于檢測(cè)果蔬中多種微量殺菌劑的含量。
關(guān)鍵詞:殺菌劑;果蔬;冷凍誘導(dǎo)液液微萃取;超高效液相色譜-串聯(lián)質(zhì)譜法
Abstract: Objective: To create a method for detecting the residues of eight fungicides in fruits and vegetables using CI-LLME-ultra high performance liquid chromatography-tandem mass spectrometry. Method: The residue of eight fungicides in fruit and vegetable products was detected using liquid-liquid freeze-induced liquid-liquid microextraction pre-treatment technology combined with triple quadrupole analysis technology. Result: Good linear relationships (R2>0.990) were observed for the eight fungicides in the given concentration ranges; the limits of detection of the method were in the range of 0.04~1.83 μg·kg-1, and the limits of quantification of the method were in the range of 0.12~5.49 μg·kg-1. The recoveries were in the range of 81.5%~117.1% at the spiked levels of?10.0 μg·L-1, 20.0 μg·L-1, 100.0 μg·L-1 and precision of the method was in the range of 81.5%~117.1%, the precision (RSD) was 0.05%~6.12%, and the standard deviation of repeatability experiment was 0.045~0.887 with the RSD of 0.47%~9.47%. Conclusion: This pre-treatment technology has the capability of one-step sample pretreatment, which is simple, fast, cost-effective, sensitive, and reproducible. Therefore, this technology can be used to detect the content of various trace fungicides in fruits and vegetables.
Keywords: fungicides; fruits and vegetables; liquid liquid freezing induced microextraction; ultra high performance liquid chromatography-tandem mass spectrometry
隨著生活水平的提高,人們對(duì)農(nóng)產(chǎn)品的質(zhì)量安全以及農(nóng)產(chǎn)品中農(nóng)藥的使用越來(lái)越關(guān)注。因此,加強(qiáng)農(nóng)藥殘留分析方法的研究至關(guān)重要,目前在檢測(cè)殺菌劑殘留量前,通常會(huì)采用分散固相萃取方法對(duì)樣品進(jìn)行處理。分散固相萃取方法是在水和乙腈溶液中加入無(wú)水硫酸鎂等物質(zhì),實(shí)現(xiàn)乙腈層的分離[1-3]。
研究顯示,利用水和有機(jī)溶液進(jìn)行冷凍誘導(dǎo)液液微萃?。–ryoinduced Liquid-Liquid Microextraction,CI-LLME),能夠減少鹽的使用量,從而降低可能引入的雜質(zhì),在多種食品基質(zhì)中得到了應(yīng)用[4-6]。本研究?jī)?yōu)化了CI-LLME檢測(cè)方法,使該方法可以快速準(zhǔn)確地檢測(cè)果蔬中的殺菌劑。
1 材料與方法
1.1 儀器與設(shè)備
Aglient 1290-6460超高效液相-三重四極桿分析儀、Aglient RRHD Eclipse plus C18分析柱,安捷倫公司。
1.2 材料與試劑
水果和蔬菜樣品為市場(chǎng)銷售產(chǎn)品。
液質(zhì)專用乙腈、甲酸(賽默飛);無(wú)水硫酸鎂、C18、PSA粉末(Aglient);屈臣氏蒸餾水;8種殺菌劑標(biāo)準(zhǔn)品(100 μg·mL-1,農(nóng)業(yè)農(nóng)村部環(huán)境保護(hù)科研監(jiān)測(cè)所)。
1.3 方法
1.3.1 標(biāo)準(zhǔn)系列溶液配制
分別量取一定量的殺菌劑標(biāo)準(zhǔn)溶液(100 μg·mL-1),用乙腈溶液稀釋10倍后,搖勻制成混合標(biāo)準(zhǔn)品儲(chǔ)備液(10 μg·mL-1)。再取不同量的混合標(biāo)準(zhǔn)儲(chǔ)備液,用初始流動(dòng)相配制成濃度為0.5 ng·mL-1、1.0 ng·mL-1、5.0 ng·mL-1、10.0 ng·mL-1、20.0 ng·mL-1、40.0 ng·mL-1、80.0 ng·mL-1和100.0 ng·mL-1的標(biāo)準(zhǔn)系列溶液。
1.3.2 樣品制備
準(zhǔn)確稱量5 g水果、蔬菜樣品,放入50 mL BD管中,加入乙腈溶液10 mL旋渦,混合6 min,加入4 g無(wú)水硫酸鎂和1 g氯化鈉混合5 min,以8 000 r·min-1冷凍離心4 min,取1.5 mL上清液,加入裝有250 mg無(wú)水硫酸鈉、50 mg PSA、25 mg C18粉的混合凈化劑中,混勻40 s,以8 000 r·min-1冷凍離心4 min,取1.0 mL上清液加入5 mL BD管中,加入1.5 mL純水混勻,進(jìn)行冷凍誘導(dǎo)液液微萃取、純化,-80 ?C冷凍6 min,提取上層有機(jī)相,以8 000 r·min-1冷凍離心4 min后,過(guò)0.22 μm濾膜上機(jī)。
1.4 儀器分析條件
(1)液相色譜條件。流動(dòng)相:A為0.05%甲酸水溶液,B為乙腈;洗脫梯度:80%A,0~0.01 min;70%A,0.01~3.00 min;15%A,3~5 min;70%A,5.0~7.5 min;10%A,7.5~10.0 min;80%A,10~15 min;柱溫:40 ℃;流速:0.2 mL·min-1;進(jìn)樣方式:自動(dòng)進(jìn)樣;進(jìn)樣體積:5 μL。
(2)質(zhì)譜條件。掃描方式:正離子掃描;離子源:ESI;檢測(cè)方式:多反應(yīng)監(jiān)測(cè);霧化器壓力:30 psi;鞘氣溫度:300 ℃;流速:11 L·min-1;毛細(xì)管電壓:4 000 V;噴嘴電壓:250 V。8種殺菌劑的相關(guān)參數(shù)見(jiàn)表1。
2 結(jié)果與分析
2.1 方法線性、檢出限和定量限
按照1.4儀器條件測(cè)定1.3.1配制的標(biāo)準(zhǔn)系列溶液,以濃度為橫坐標(biāo)、峰面積為縱坐標(biāo)繪制標(biāo)準(zhǔn)曲線,8種殺菌劑標(biāo)準(zhǔn)曲線線性相關(guān)系數(shù)見(jiàn)表2。線性回歸方程的相關(guān)系數(shù)為0.993 1~0.999 0,表明冷凍誘導(dǎo)液液微萃取技術(shù)聯(lián)合液相三重四極桿分析儀檢測(cè)8種殺菌劑能夠獲得良好的線性表現(xiàn)。以3倍信噪比計(jì)算得到檢出限為0.04~1.83 μg·kg-1,以10倍信噪比得出定量限為0.12~5.49 μg·kg-1,符合國(guó)標(biāo)要求。
2.2 加標(biāo)回收率
在空白樣品中分別加入1.0 μg·L-1、20.0 μg·L-1、100.0 μg·L-1 3種濃度標(biāo)準(zhǔn)物質(zhì),3次進(jìn)樣測(cè)定。圖1展示了8種殺菌劑TIC圖,加標(biāo)回收率結(jié)果見(jiàn)表3。樣品加標(biāo)回收率在81.5%~117.1%,相對(duì)標(biāo)準(zhǔn)偏差(RSD)在0.05%~6.12%。
2.3 樣品重復(fù)性實(shí)驗(yàn)
對(duì)已知濃度的樣品進(jìn)行6次連續(xù)進(jìn)樣檢測(cè),結(jié)果見(jiàn)表4。標(biāo)準(zhǔn)偏差在0.045~0.887,相對(duì)標(biāo)準(zhǔn)偏差(RSD)在0.47%~9.47%,均符合國(guó)標(biāo)要求。
3 結(jié)論
冷凍誘導(dǎo)液液微萃取前處理技術(shù)結(jié)合UPLC-MS/MS分析技術(shù)檢測(cè)果蔬中8種殺菌劑線性關(guān)系良好,檢出限和定量限均符合國(guó)標(biāo)要求,且方法重現(xiàn)性令人滿意。冷凍誘導(dǎo)液液微萃取前處理技術(shù)快速、高效,易操作,節(jié)約了試劑和時(shí)間成本。冷凍誘導(dǎo)液液微萃取前處理技術(shù)結(jié)合UPLC-MS/MS分析技術(shù)能夠?qū)崿F(xiàn)樣品提取、富集和凈化一步式處理,適用于果蔬中多種殺菌劑的檢測(cè)。
參考文獻(xiàn)
[1]呂冰,尹帥星,陳達(dá)煒,等.QuEChERS-四極桿/靜電場(chǎng)軌道阱高分辨質(zhì)譜測(cè)定動(dòng)物性食品中氟蟲(chóng)腈及其代謝物殘留[J].分析測(cè)試學(xué)報(bào),2017,36(12):1424-1430.
[2]ZHANG C Y,DENG Y C,ZHENG J F,et al.The application of the QuEChERS methodology in the determination of antibiotics in food : a review[J].Trends in Analytical Chemistry,2019,118:517-537.
[3]PERESTRELO R,SILVA P,PORTO-FIGUEIRA P,et al.QuEChERS-Fundamentals, relevant improvements, applications and future trends[J].Analytica Chimica Acta,2019,1070:1-28.
[4]LI S H,CHEN D W,LV B.et al.Enhanced sensitivity and effective cleanup strategy for analysis of neonicotinoids in complex dietary samples and the application in the total diet study[J].Journal of Agricultural and Food Chemistry,2019,67(9):2732-2740.
[5]CHUNG S W C,LAM C H.Development of a 15-classes multiresidue method for analyzing 78 hydrophilic and hydrophobic veterinary drugs in milk, egg and meat by liquid chromatography-tandem mass spec-trometry[J].Analytical Methods,2015,7(16):6764-6776.
[6]WANG F Q,LI S H,F(xiàn)ENG H,et al.An enhanced sensitivity and clean-up strategy for the nontargeted screening and targeted determina- tion of pesticides in tea using modified dispersive solid-phase ex-traction and cold-induced acetonitrile aqueous two-phase sys-tems coupled with liquid chromatography-high resolution mass spectrometry[J].Food Chemistry,2019,275:530-538.