亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        晝夜節(jié)律紊亂對急性心肌梗死的作用及機(jī)制的研究進(jìn)展

        2023-04-29 01:51:18聶鸝慶江洪
        心血管病學(xué)進(jìn)展 2023年12期
        關(guān)鍵詞:生物鐘急性心肌梗死

        聶鸝慶 江洪

        [基金項(xiàng)目:國家自然科學(xué)基金(81970287)

        通信作者:江洪,E-mail:hong-jiang@whu.edu.cn]

        【摘要】晝夜節(jié)律是一種廣泛存在于各種生物體內(nèi)的節(jié)律性現(xiàn)象,當(dāng)晝夜節(jié)律發(fā)生紊亂時(shí)會(huì)引起心血管疾病的發(fā)生。急性心肌梗死是一種常見的致死性心血管疾病,研究發(fā)現(xiàn)心肌梗死的發(fā)生存在晝夜節(jié)律改變。晝夜節(jié)律紊亂會(huì)對急性心肌梗死的發(fā)生發(fā)展產(chǎn)生嚴(yán)重影響,最終威脅人類生命健康。但晝夜節(jié)律紊亂促進(jìn)急性心肌梗死發(fā)生發(fā)展的機(jī)制尚未明確,可能是自主神經(jīng)系統(tǒng)、炎癥、腎素-血管緊張素系統(tǒng)等機(jī)制參與其中。現(xiàn)對晝夜節(jié)律與急性心肌梗死之間的相關(guān)性以及潛在的機(jī)制展開綜述。

        【關(guān)鍵詞】晝夜節(jié)律;急性心肌梗死;自主神經(jīng)系統(tǒng) ;生物鐘

        【DOI】10.16806/j.cnki.issn.1004-3934.2023.12.000

        Effect and Mechanism of Circadian Rhythm Disturbance on Acute Myocardial Infarction

        NIE Liqing,JIANG Hong

        (Department of Cardiology,Renmin Hospital of Wuhan University,Cardiac Autonomic Nervous Research Center,Wuhan University,Cardiovascular Research Institute,Wuhan University,Hubei Key Laboratory of Cardiology,Wuhan 430060,Hubei,China)

        【Abstract】The circadian rhythm is a rhythmic phenomenon widely existing in various organisms. When circadian rhythm is disrupted,it can cause the occurrence of cardiovascular disease. Acute myocardial infarction is a common fatal cardiovascular disease,and Studies have found that there is a circadian rhythm change in the occurrence of myocardial infarction. The circadian rhythm disturbance will have a serious impact on the occurrence and development of acute myocardial infarction,ultimately threaten life and health. However,the mechanism by which circadian rhythm disturbance promote the occurrence and development of acute myocardial infarction is still unclear,and may be involved by mechanisms such as the autonomic nervous system,inflammation,renin-angiotensin system. This article reviews the correlation and potential mechanisms between circadian rhythm and acute myocardial infarction.

        【Key words】Circadian rhythm; Acute myocardial infarction; Autonomic nerve; Biological clock

        急性心肌梗死( acute myocardial infarction,AMI) 是常見的致死性疾病,根據(jù)中國心血管健康與疾病報(bào)告[1]顯示其發(fā)病率和死亡率仍呈上升趨勢,并嚴(yán)重危害人類的健康;高脂血癥、高血壓、肥胖、糖尿病、吸煙是 AMI 公認(rèn)的常見危險(xiǎn)因素。而熬夜或夜班輪班工作現(xiàn)象在當(dāng)今社會(huì)已成為新常態(tài),其導(dǎo)致的生物節(jié)律紊亂帶來諸多健康問題。近年來對晝夜節(jié)律的相關(guān)研究深受關(guān)注,研究發(fā)現(xiàn)AMI的發(fā)病呈現(xiàn)晝夜節(jié)律改變,其發(fā)病高峰時(shí)間在清晨[2];在AMI病理過程中,斑塊破裂也呈現(xiàn)晝夜節(jié)律改變,其高峰時(shí)間在09:00,可能與兒茶酚胺在清晨增加有關(guān)[3]。還發(fā)現(xiàn)當(dāng)輪班或其他生活方式因素導(dǎo)致晝夜節(jié)律紊亂時(shí),會(huì)增加AMI發(fā)生發(fā)展的風(fēng)險(xiǎn)[4]。而晝夜節(jié)律改變參與AMI發(fā)生的機(jī)制尚不明確?,F(xiàn)主要就晝夜節(jié)律在AMI中的研究進(jìn)展予以綜述,描述晝夜節(jié)律系統(tǒng)的特征,并討論晝夜節(jié)律在AMI中的作用及其潛在的機(jī)制。

        1? 晝夜節(jié)律系統(tǒng)

        晝夜節(jié)律是以24 h為周期的生物節(jié)律,使內(nèi)部生物功能與環(huán)境變化保持平衡,其調(diào)控位點(diǎn)位于下丘腦前部的視交叉上核(suprachiasmatic nucleus,SCN),具有參與晝夜節(jié)律產(chǎn)生、維持以及調(diào)控的作用,該區(qū)域?yàn)闀円构?jié)律的起搏點(diǎn),又稱中央生物鐘[5-6]。當(dāng)光照刺激中央生物鐘時(shí),使其在視網(wǎng)膜中轉(zhuǎn)換成神經(jīng)信號(hào),通過視網(wǎng)膜下丘腦束傳遞至下丘腦SCN,繼而通過神經(jīng)-體液調(diào)節(jié)系統(tǒng)將信息傳遞給外周其他部分,從而來調(diào)節(jié)機(jī)體活動(dòng)[7]。

        在分子機(jī)制方面,晝夜節(jié)律是由核心時(shí)鐘基因和時(shí)鐘控制基因共同驅(qū)動(dòng)的。生物鐘的核心分子機(jī)制是由核心時(shí)鐘基因(CLOCK和BMAL1)及其靶基因(Per1、Per2、Cry1、Cry2和Cry3)組成的一個(gè)自我調(diào)節(jié)反饋環(huán)[8]。該負(fù)反饋循環(huán)過程由核心時(shí)鐘基因形成1個(gè)CLOCK/BMAL1異質(zhì)二聚體,通過與時(shí)鐘基因Per和Cry的增強(qiáng)子元件(E-box)位點(diǎn)相結(jié)合,激活Per和Cry的轉(zhuǎn)錄和翻譯;二者在細(xì)胞質(zhì)中積累,形成異質(zhì)二聚體并轉(zhuǎn)移至細(xì)胞核,抑制CLOCK/BMAL1的轉(zhuǎn)錄活性,從而抑制編碼基因的轉(zhuǎn)錄[9]。此外,核心時(shí)鐘基因的表達(dá)受時(shí)鐘控制基因調(diào)節(jié),如基因Rev-erbα和Rorα也參與調(diào)控BMAL1基因的表達(dá)[10-11]。這些時(shí)鐘基因幾乎存在于機(jī)體的各個(gè)細(xì)胞中,包括心臟、腎臟、免疫系統(tǒng)等,它們通過調(diào)節(jié)目的基因的轉(zhuǎn)錄和翻譯,從而影響生理代謝過程[12]。

        2? 晝夜節(jié)律與自主神經(jīng)系統(tǒng)

        自主神經(jīng)系統(tǒng)由交感神經(jīng)系統(tǒng)和副交感神經(jīng)系統(tǒng)組成,能夠調(diào)節(jié)內(nèi)臟、血管平滑肌和腺體的活動(dòng)來維持機(jī)體內(nèi)外環(huán)境的平衡。越來越多的研究發(fā)現(xiàn)自主神經(jīng)系統(tǒng)表現(xiàn)出晝夜節(jié)律改變,交感神經(jīng)活性在夜間最低,在早晨覺醒時(shí)活性上升[13]。Goyal等[14]對56例健康男性受試者的心電圖進(jìn)行研究,發(fā)現(xiàn)自主神經(jīng)系統(tǒng)具有晝夜節(jié)律改變。還發(fā)現(xiàn)長期輪班工作也會(huì)導(dǎo)致自主神經(jīng)系統(tǒng)活性改變,影響機(jī)體健康[15]。此外,心率、血壓以及不良心血管事件也呈現(xiàn)出明顯的晝夜節(jié)律改變。Barazi等[16]發(fā)現(xiàn)自主神經(jīng)系統(tǒng)在心率晝夜節(jié)律波動(dòng)中起著主要決定因素。Mason等[17]發(fā)現(xiàn)在夜間睡眠期間予以光照,會(huì)使心率加快,同時(shí)發(fā)現(xiàn)交感神經(jīng)活性也明顯增加。此外,Liu等[18]在動(dòng)物模型中發(fā)現(xiàn)心率和血壓的高頻功率振蕩與交感神經(jīng)活性中的高頻功率振蕩有關(guān)??傊?,這證實(shí)交感神經(jīng)在心率和血壓晝夜節(jié)律改變中起著重要作用[19]。

        隨著中樞和外周神經(jīng)系統(tǒng)的深入研究,發(fā)現(xiàn)中樞神經(jīng)系統(tǒng)可通過控制外周自主神經(jīng)系統(tǒng)影響心血管功能。既往研究[20]發(fā)現(xiàn)SCN參與調(diào)節(jié)血壓和心率的晝夜節(jié)律改變,SCN通過自主神經(jīng)系統(tǒng)對心臟和血管進(jìn)行調(diào)節(jié)。為明確神經(jīng)機(jī)制參與SCN影響心臟的過程,Wang等[21]在動(dòng)物犬模型上通過逆示蹤病毒技術(shù)證實(shí)SCN和心臟之間存在神經(jīng)連接。Mutoh等[22]在小鼠模型中發(fā)現(xiàn)光照刺激SCN可引起交感神經(jīng)活動(dòng)、動(dòng)脈血壓和心率增加,并抑制迷走神經(jīng)活動(dòng),同時(shí),發(fā)現(xiàn)褪黑素通過激活中樞褪黑素受體信號(hào)來調(diào)節(jié)光誘導(dǎo)的自主神經(jīng)反應(yīng)。此外,SCN還可通過神經(jīng)內(nèi)分泌系統(tǒng)發(fā)揮作用。有研究[23]發(fā)現(xiàn)皮質(zhì)醇呈現(xiàn)出的晝夜節(jié)律變化,影響著自主神經(jīng)系統(tǒng)和心血管功能,而皮質(zhì)醇的合成與分泌受下丘腦-垂體-腎上腺軸調(diào)節(jié)。綜上,晝夜節(jié)律改變與自主神經(jīng)系統(tǒng)密切相關(guān)。

        3? 晝夜節(jié)律對AMI的影響

        近年來,隨著生活壓力的不斷加劇,越來越多的證據(jù)表明,除高脂血癥、高血壓、肥胖、糖尿病、吸煙這些常見的危險(xiǎn)因素,晝夜節(jié)律紊亂也成為常見的危險(xiǎn)因素,對AMI的發(fā)生發(fā)展造成嚴(yán)重影響。Xin 等[24]研究發(fā)現(xiàn)AMI的發(fā)病時(shí)間具有明顯的晝夜節(jié)律改變,其發(fā)病高峰在早晨(07:00—09:00)。晝夜節(jié)律紊亂除對AMI的發(fā)生有一定的影響,對AMI的梗死面積也有影響。Zhao等[25]在一項(xiàng)前瞻性、多中心研究中納入412例接受再灌注治療的ST段抬高型心肌梗死(ST segment elevation myocardial infarction,STEMI)患者,通過心臟磁共振成像發(fā)現(xiàn),輪班工作會(huì)增加心肌梗死再灌注損傷后的梗死面積,隨訪還發(fā)現(xiàn)輪班工作會(huì)增加不良心血管事件的發(fā)生風(fēng)險(xiǎn)。Ar?等[26]對252例STEMI患者進(jìn)行回顧性研究發(fā)現(xiàn),STEMI患者心肌梗死面積大小和左心室功能存在晝夜節(jié)律改變。通過超聲心動(dòng)圖發(fā)現(xiàn)最大心肌梗死面積和最差左心室功能發(fā)生在06:00至中午。在治療及遠(yuǎn)期預(yù)后方面也進(jìn)行了研究,Peng等[27]在2013—2019年收錄的1 099例接受原發(fā)性經(jīng)皮冠狀動(dòng)脈介入治療的心肌梗死患者,發(fā)現(xiàn)患者的夜間癥狀發(fā)作與不良心臟事件風(fēng)險(xiǎn)增加獨(dú)立相關(guān)。Henriques等[28]對1 702例接受血管成形術(shù)的STAMI患者進(jìn)行觀察性研究發(fā)現(xiàn),工作時(shí)間接受血管成形術(shù)的失敗率為3.8%,而非工作時(shí)間的失敗率是6.9%,故在非工作時(shí)間接受治療的患者比在日常工作時(shí)間接受治療的患者有更高的失敗率。此外,在分子機(jī)制方面也發(fā)現(xiàn),晝夜節(jié)律基因突變會(huì)增加心血管疾病易感性。?krlec等[29-30]通過病例對照研究發(fā)現(xiàn)CLOCK、Per2、Cry2基因的遺傳變異與心肌梗死的發(fā)生有關(guān)。綜上,晝夜節(jié)律紊亂對AMI的發(fā)病率、心肌梗死面積、治療及遠(yuǎn)期預(yù)后等產(chǎn)生不利影響,嚴(yán)重危害機(jī)體健康。

        4? 晝夜節(jié)律在AMI發(fā)生發(fā)展中的可能的機(jī)制

        4.1? 自主神經(jīng)系統(tǒng)

        自主神經(jīng)系統(tǒng)在心血管系統(tǒng)中起到重要的調(diào)節(jié)作用。既往研究[31]表明,心血管疾病的發(fā)生常伴隨著自主神經(jīng)失衡。反之,交感神經(jīng)系統(tǒng)活性增加會(huì)導(dǎo)致心血管疾病發(fā)病率和死亡率增加[32]。Yu等[33]研究發(fā)現(xiàn)在犬的心肌梗死模型中交感神經(jīng)活性明顯增強(qiáng),并發(fā)現(xiàn)刺激迷走神經(jīng)可降低心肌梗死后室性心律失常的發(fā)生。有研究[34]發(fā)現(xiàn)心肌梗死的發(fā)生呈現(xiàn)出明顯的晝夜節(jié)律改變,在其機(jī)制研究中發(fā)現(xiàn),早晨的交感神經(jīng)活性增加會(huì)改變血流動(dòng)力學(xué),從而使得動(dòng)脈粥樣硬化斑塊易破裂,增加心肌梗死患者的發(fā)病率和死亡率。另外,自主神經(jīng)系統(tǒng)在晝夜節(jié)律的中樞和外周信號(hào)傳遞過程中起著重要作用,同時(shí)還調(diào)節(jié)心血管系統(tǒng)的病理生理過程[35]。SCN可能通過自主神經(jīng)系統(tǒng)直接影響心血管疾病的發(fā)生[36]。Wang等[21]為弄清楚晝夜節(jié)律紊亂在腦-心軸之間的神經(jīng)機(jī)制,在心肌梗死模型上進(jìn)行驗(yàn)證,采用逆病毒示蹤技術(shù)驗(yàn)證SCN與心臟之間存在解剖學(xué)連接,即“下丘腦-室旁核-頸上神經(jīng)節(jié)-心臟”交感軸;同時(shí),發(fā)現(xiàn)晝夜節(jié)律紊亂可使心肌梗死后的心臟功能和結(jié)構(gòu)改變,并促進(jìn)交感神經(jīng)重塑,進(jìn)一步證明晝夜節(jié)律紊亂可能通過激活交感神經(jīng)系統(tǒng)對心肌梗死后的心臟重構(gòu)產(chǎn)生不利影響,這為自主神經(jīng)系統(tǒng)參與晝夜節(jié)律紊亂調(diào)控機(jī)制提供重要證據(jù)。Jiao等[37]研究也發(fā)現(xiàn)晝夜節(jié)律紊亂可降低血清褪黑素水平,加重心臟交感神經(jīng)重塑,導(dǎo)致腦-心交感神經(jīng)系統(tǒng)過度激活,從而加重心功能障礙,并增加心肌梗死后的心臟纖維化。此外,室旁核是調(diào)節(jié)自主神經(jīng)系統(tǒng)和心血管功能的重要核團(tuán),有研究[38]發(fā)現(xiàn)調(diào)節(jié)室旁核的交感神經(jīng)活性可以降低心肌梗死后大鼠的外周交感活性,從而減少室性心律失常的誘發(fā)率。綜上,晝夜節(jié)律紊亂會(huì)加劇AMI后心臟重構(gòu),而自主神經(jīng)系統(tǒng)可能是其重要的神經(jīng)機(jī)制。

        4.2? 炎癥

        生物鐘在免疫系統(tǒng)激活中起重要作用[39],而炎癥也是AMI 的發(fā)生發(fā)展過程中的重要環(huán)節(jié)[40]。其中生物鐘基因Rev-erbα可參與調(diào)節(jié)晝夜節(jié)律、葡萄糖和脂質(zhì)代謝以及炎癥反應(yīng)。Gibbs等[41]研究發(fā)現(xiàn)生物鐘基因Rev-erbα敲除后小鼠血清中白細(xì)胞介素-6的晝夜節(jié)律性消失,同時(shí),發(fā)現(xiàn)Rev-erbα可作為時(shí)鐘和免疫功能之間的關(guān)鍵環(huán)節(jié),也可作為炎癥性疾病的獨(dú)特治療靶點(diǎn)。Stujanna等[42]研究發(fā)現(xiàn)Rev-erbα激動(dòng)劑可通過抑制細(xì)胞因子產(chǎn)生和炎性細(xì)胞浸潤來改善AMI小鼠的心臟功能和生存率。Morris等[43]研究也發(fā)現(xiàn)晝夜節(jié)律紊亂使24 h血清白細(xì)胞介素-6、C反應(yīng)蛋白、腫瘤壞死因子-α水平提高3%~29%,使得健康成年人的心血管風(fēng)險(xiǎn)增加。此外,有研究[44]發(fā)現(xiàn)白細(xì)胞黏附在動(dòng)脈和靜脈上呈晝夜節(jié)律波動(dòng),其動(dòng)脈黏附在早晨達(dá)到峰值,靜脈黏附在晚上達(dá)到峰值,白細(xì)胞黏附的這些峰值與血管炎癥增加和局部血管阻塞事件發(fā)生時(shí)間縮短有關(guān)。因此,生物鐘在炎癥過程中發(fā)揮著重要的調(diào)節(jié)作用,這可能為探究AMI的發(fā)生發(fā)展提供重要思路。

        4.3? 腎素-血管緊張素系統(tǒng)機(jī)制

        既往研究[45]表明,腎素-血管緊張素系統(tǒng)表現(xiàn)出晝夜節(jié)律改變,在心血管疾病的發(fā)生過程中起著重要作用。而血管緊張素和褪黑激素在心血管系統(tǒng)中具有拮抗作用。Sadeghi等[46]發(fā)現(xiàn)褪黑激素是晝夜節(jié)律的重要調(diào)節(jié)劑,它可能通過中樞和外周受體誘導(dǎo)血管舒張,逆轉(zhuǎn)血管緊張素Ⅱ產(chǎn)生的分解代謝狀態(tài),從而拮抗血管緊張素Ⅱ?qū)π难芟到y(tǒng)的影響。此外,褪黑激素可以防止血管緊張素Ⅱ誘導(dǎo)的心肌細(xì)胞肥大和氧化應(yīng)激,對心臟具有保護(hù)作用[47]。還有研究[48]發(fā)現(xiàn)血漿腎素及血管緊張素增加與心肌梗死風(fēng)險(xiǎn)增加有關(guān)。因此,晝夜節(jié)律改變時(shí),可激活腎素-血管緊張素系統(tǒng),引起腎素、血管緊張素等活性物質(zhì)改變,從而作用于心血管系統(tǒng),最終可能導(dǎo)致AMI的發(fā)生。

        5? 總結(jié)與展望

        維持正常晝夜節(jié)律對機(jī)體健康具有重要意義。晝夜節(jié)律是由SCN的中央時(shí)鐘和外周時(shí)鐘基因共同參與調(diào)控的,在心血管的病理生理學(xué)機(jī)制中起著重要作用。AMI是一種常見的心血管疾病,大量研究表明其發(fā)生呈晝夜節(jié)律改變。反之,當(dāng)晝夜節(jié)律發(fā)生紊亂時(shí),會(huì)導(dǎo)致其發(fā)病率、死亡率以及手術(shù)等風(fēng)險(xiǎn)增加。但目前晝夜節(jié)律在AMI中的作用機(jī)制還未完全揭示,可能是自主神經(jīng)活動(dòng)、炎癥因子以及腎素-血管緊張素系統(tǒng)等多種因素共同作用的結(jié)果。近年來晝夜節(jié)律因素受到廣泛關(guān)注,希望未來有更多的研究來進(jìn)一步解釋二者之間的作用機(jī)制,為后續(xù)的治療靶點(diǎn)提供理論基礎(chǔ)。

        參 考 文 獻(xiàn)

        [1] 中國心血管健康與疾病報(bào)告編寫組.中國心血管健康與疾病報(bào)告2021概要[J]. 心腦血管病防治,2022,22(4):20-36,40.

        [2] Black N,DSouza A,Wang Y,et al. Circadian rhythm of cardiac electrophysiology,arrhythmogenesis,and the underlying mechanisms[J]. Heart Rhythm,2019,16(2):298-307.

        [3] Araki M,Yonetsu T,Kurihara O,et al. Circadian variations in pathogenesis of ST-segment elevation myocardial infarction:an optical coherence tomography study[J]. J Thromb Thrombolysis,2021,51(2):379-387.

        [4] Ruan W,Yuan X,Eltzschig HK. Circadian rhythm as a therapeutic target[J]. Nat Rev Drug Discov,2021,20(4):287-307.

        [5] Dudás B. Anatomy and cytoarchitectonics of the human hypothalamus[J]. Handb Clin Neurol,2021,179:45-66.

        [6] Harding C,Bechtold DA,Brown TM. Suprachiasmatic nucleus-dependent and independent outputs driving rhythmic activity in hypothalamic and thalamic neurons[J]. BMC Biol,2020,18(1):134.

        [7] Pilorz V,Helfrich-F?rster C,Oster H. The role of the circadian clock system in physiology[J]. Pflugers Arch,2018,470(2):227-239.

        [8] Mohawk JA,Green CB,Takahashi JS. Central and peripheral circadian clocks in mammals[J]. Annu Rev Neurosci,2012,35:445-462.

        [9] Shearman LP,Sriram S,Weaver DR,et al. Interacting molecular loops in the mammalian circadian clock[J]. Science,2000,288(5468):1013-1019.

        [10] Cho H,Zhao X,Hatori M,et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β[J]. Nature,2012,485(7396):123-127.

        [11] Kojetin DJ,Burris TP. REV-ERB and ROR nuclear receptors as drug targets[J]. Nat Rev Drug Discov,2014,13(3):197-216.

        [12] Chellappa SL,Vujovic N,Williams JS,et al. Impact of circadian disruption on cardiovascular function and disease[J]. Trends Endocrinol Metab,2019,30(10):767-779.

        [13] Matsushita Y,Takata Y,Kawamura R,et al. The fluctuation in sympathetic nerve activity around wake-up time was positively associated with not only morning but also daily glycemic variability in subjects with type 2 diabetes[J]. Diabetes Res Clin Prac,2019,152:1-8.

        [14] Goyal M,Goel A,Singh R,et al. Circadian rhythm of airways caliber and its autonomic modulation[J]. Chronobiol Int,2020,37(6):845-855.

        [15] Chen M,Sun J,Chen TZ,et al. Loss of nocturnal dipping pattern of skin sympathetic nerve activity during and following an extended-duration work shift in residents in training[J]. J Cardiol,2021,78(6):509-516.

        [16] Barazi N,Polidovitch N,Debi R,et al. Dissecting the Roles of the Autonomic Nervous System and Physical Activity on Circadian Heart Rate Fluctuations in Mice[J]. Front Physiol,2021,12:692247.

        [17] Mason IC,Grimaldi D,Reid KJ,et al. Light exposure during sleep impairs cardiometabolic function[J]. Proc Natl Acad Sci U S A,2022,119(12):e2113290119.

        [18] Liu X,Yuan Y,Wong J,et al. The frequency spectrum of sympathetic nerve activity and arrhythmogenicity in ambulatory dogs[J]. Heart Rhythm,2021,18(3):465-472.

        [19] Hou T,Chacon AN,Su W,et al. Role of sympathetic pathway in light-phase time-restricted feeding-induced blood pressure circadian rhythm alteration[J]. Front Nutr,2022,9:969345.

        [20] Baschieri F,Cortelli P. Circadian rhythms of cardiovascular autonomic function:Physiology and clinical implications in neurodegenerative diseases[J]. Auton Neurosci,2019,217:91-101.

        [21] Wang Y,Jiang W,Chen H,et al. Sympathetic nervous system mediates cardiac remodeling after myocardial infarction in a circadian disruption model[J]. Front Cardiovasc Med,2021,8:668387.

        [22] Mutoh T,Shibata S,Korf HW,et al. Melatonin modulates the light-induced sympathoexcitation and vagal suppression with participation of the suprachiasmatic nucleus in mice[J]. J Physiol,2003,547(Pt 1):317-332.

        [23] Mohd Azmi NAS,Juliana N,Azmani S,et al. Cortisol on circadian rhythm and its effect on cardiovascular system[J]. Int J Environ Res Public Health,2021,18(2):676.

        [24] Xin M,Zhang S,Zhao L,et al. Circadian and seasonal variation in onset of acute myocardial infarction[J]. Medicine,2022,101(28):e29839.

        [25] Zhao Y,Lu X,Wan F,et al. Disruption of circadian rhythms by shift work exacerbates reperfusion injury in myocardial infarction[J]. J Am Coll Cardiol,2022,79(21):2097-2115.

        [26] Ar? H,Sonmez O,Koc F,et al. Circadian rhythm of infarct size and left ventricular function evaluated with tissue doppler echocardiography in ST elevation myocardial infarction[J]. Heart Lung Circ,2016,25(3):250-256.

        [27] Peng H,Sun Z,Di B,et al. Contemporary impact of circadian symptom-onset patterns of acute ST-Segment elevation myocardial infarction on long-term outcomes after primary percutaneous coronary intervention[J]. Ann Med,2021,53(1):247-256.

        [28] Henriques JP,Haasdijk AP,Zijlstra F. Outcome of primary angioplasty for acute myocardial infarction during routine duty hours versus during off-hours[J]. J Am Coll Cardiol,2003,41(12):2138-2142.

        [29] ?krlec I,Milic J,Heffer M,et al. Genetic variations in circadian rhythm genes and susceptibility for myocardial infarction[J]. Genet Mol Biol,2018,41(2):403-409.

        [30] ?krlec I,Mili? J,Steiner R. The impact of the circadian genes CLOCK and ARNTL on myocardial infarction[J]. J Clin Med,2020,9(2):484.

        [31] Wang Y,Po SS,Scherlag BJ,et al. The role of low-level vagus nerve stimulation in cardiac therapy[J]. Expert Rev Med Devices,2019,16(8):675-682.

        [32] Khan AA,Lip GYH,Shantsila A. Heart rate variability in atrial fibrillation:the balance between sympathetic and parasympathetic nervous system[J]. Eur J Clin Invest,2019,49(11):e13174.

        [33] Yu L,Wang S,Zhou X,et al. Chronic intermittent low-level stimulation of tragus reduces cardiac autonomic remodeling and ventricular arrhythmia inducibility in a post-infarction canine model[J]. JACC Clin Electrophysiol,2016,2(3):330-339.

        [34] Aronson D. Impaired modulation of circadian rhythms in patients with diabetes mellitus:a risk factor for cardiac thrombotic events?[J]. Chronobiol Int,2001,18(1):109-121.

        [35] Huang T,Mariani S,Redline S. Sleep irregularity and risk of cardiovascular events:the Multi-Ethnic Study of Atherosclerosis[J]. J Am Coll Cardiol,2020,75(9):991-999.

        [36] Takeda N,Maemura K. Circadian clock and the onset of cardiovascular events[J]. Hypertens Res,2016,39(6):383-390.

        [37] Jiao L,Wang Y,Zhang S,et al. Melatonin improves cardiac remodeling and brain-heart sympathetic hyperactivation aggravated by light disruption after myocardial infarction[J]. J Pineal Res,2022,73(4):e12829.

        [38] Shi Y,Yin J,Hu H,et al. Targeted regulation of sympathetic activity in paraventricular nucleus reduces inducible ventricular arrhythmias in rats after myocardial infarction[J]. J Cardiol,2019,73(1):81-88.

        [39] Hergenhan S,Holtkamp S,Scheiermann C. Molecular interactions between components of the circadian clock and the immune system[J]. J Mol Biol,2020,432(12):3700-3713.

        [40] Ross R. The pathogenesis of atherosclerosis--an update[J]. N Engl J Med,1986,314(8):488-500.

        [41] Gibbs JE,Blaikley J,Beesley S,et al. The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines[J]. Proc Natl Acad Sci U S A,2012,109(2):582-587.

        [42] Stujanna EN,Murakoshi N,Tajiri K,et al. Rev-erb agonist improves adverse cardiac remodeling and survival in myocardial infarction through an anti-inflammatory mechanism[J]. PloS One,2017,12(12):e0189330.

        [43] Morris CJ,Purvis TE,Hu K,et al. Circadian misalignment increases cardiovascular disease risk factors in humans[J]. Proc Natl Acad Sci U S A,2016,113(10):E1402-E1411.

        [44] de Juan A,Ince LM,Pick R,et al. Artery-associated sympathetic innervation drives rhythmic vascular inflammation of arteries and veins[J]. Circulation,2019,140(13):1100-1114.

        [45] Geng YJ,Smolensky MH,Sum-Ping O,et al. Circadian rhythms of risk factors and management in atherosclerotic and hypertensive vascular disease:modern chronobiological perspectives of an ancient disease[J]. Chronobiol Int,2023,40(1):33-62.

        [46] Sadeghi M,Khosrawi S,Heshmat-Ghahdarijani K,et al. Effect of melatonin on heart failure:design for a double-blinded randomized clinical trial[J]. ESC Heart Fail,2020,7(5):3142-3150.

        [47] Zhai M,Liu Z,Zhang B,et al. Melatonin protects against the pathological cardiac hypertrophy induced by transverse aortic constriction through activating PGC-1β:in vivo and in vitro studies[J]. J Pineal Res,2017,63(3).

        [48] Xiao M,Zeng W,Wang J,et al. Exosomes protect against acute myocardial infarction in rats by regulating the renin-angiotensin system[J]. Stem Cells Dev,2021,30(12):622-631.

        收稿日期:2023-02-06

        猜你喜歡
        生物鐘急性心肌梗死
        周末“補(bǔ)覺”是一個(gè)謊言
        從計(jì)時(shí)鐘到生物鐘
        打亂生物鐘會(huì)讓人變丑
        奧秘(2018年1期)2018-07-02 10:56:34
        智能生物鐘
        一念之間
        急性心肌梗死合并左束支阻滯的心電圖診斷
        今日健康(2016年12期)2016-11-17 19:24:29
        優(yōu)化急診護(hù)理流程對急性心肌梗死患者搶救效果的影響
        今日健康(2016年12期)2016-11-17 13:16:30
        急診全程優(yōu)化護(hù)理在搶救急性心肌梗死患者中的應(yīng)用
        今日健康(2016年12期)2016-11-17 13:09:54
        阿托伐他汀對老年急性心肌梗死患者經(jīng)皮冠狀動(dòng)脈介入治療后心肌損傷的保護(hù)作用分析
        今日健康(2016年12期)2016-11-17 12:06:09
        急性心肌梗死患者的中醫(yī)辨證治療分析
        久久人人爽爽爽人久久久| 日本在线视频二区一区 | 国产精品欧美日韩在线一区| 男女激情床上视频网站| 美女露出奶头扒开内裤的视频| 婷婷色香五月综合缴缴情 | 国产麻豆精品精东影业av网站| 丰满少妇高潮惨叫正在播放| 欧美精品一区二区精品久久| 青青草绿色华人播放在线视频| 亚洲乱码中文在线观看| 成人a级视频在线观看| 国产丝袜在线精品丝袜不卡| 男女午夜视频一区二区三区| 亚洲人不卡另类日韩精品| 久久久精品国产sm调教网站| 日韩在线不卡免费视频| 精品一区二区三区女同免费| 华人免费网站在线观看| 国产女人高潮视频在线观看| 亚洲日韩精品A∨片无码加勒比| 亚洲一区二区女优视频| 精品综合一区二区三区| 无码国产精品一区二区免费模式 | 日本丰满熟妇hd| 国产资源在线视频| 蜜桃视频一区视频二区| 久久99国产精品久久| 欧美性videos高清精品| 中文字幕亚洲综合久久| 一区二区三区av在线| 欧美狠狠入鲁的视频777色| 成年视频国产免费观看| 亚洲中文有码一区二区| 激情五月婷婷一区二区| 野花社区视频www官网| 亚洲地区一区二区三区| 国产亚洲3p一区二区| 亚洲国产精品无码中文字| 成人欧美一区二区三区白人| 在线日本高清日本免费|