亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        2022年浙江省數(shù)學(xué)高考第22題探析

        2022-09-09 12:24:44虞哲駿
        關(guān)鍵詞:浙江省素養(yǎng)數(shù)學(xué)

        虞哲駿, 馮 斌

        (1.寧波市鎮(zhèn)海中學(xué),浙江 寧波 315200;2.寧波市教育局教研室,浙江 寧波 315100)

        “本手、妙手、俗手”是圍棋的3個(gè)術(shù)語(yǔ).對(duì)于數(shù)學(xué)而言,筆者認(rèn)為“本手”是基礎(chǔ)知識(shí)與通性通法,“妙手”是靈感乍現(xiàn)的“秒殺”與“創(chuàng)造”,“俗手”是死記硬背的“模型”和“套路”.數(shù)學(xué)教學(xué)應(yīng)該立足“本手”,只有“本手”的功夫扎實(shí)了,理解深刻了,數(shù)學(xué)能力水平與素養(yǎng)才會(huì)提高,才有可能出現(xiàn)“妙手”.在高三復(fù)習(xí)中,我們有大量的題目要做要講,但筆者認(rèn)為真正要用好的題目是高考真題.挖掘高考真題的本質(zhì)內(nèi)涵才是正道,才能引導(dǎo)學(xué)生從“本手”走向“妙手”.自2004年起,浙江省數(shù)學(xué)高考自主命題形成了自己的特點(diǎn)和風(fēng)格,它始終遵循有利于學(xué)生、有利于高中數(shù)學(xué)教學(xué)、有利于高校選拔人才的原則,在堅(jiān)持考查基礎(chǔ)知識(shí)的同時(shí),注重考查思維能力[1].2022年是浙江省自主命題的最后一年,下面筆者從2022年浙江省數(shù)學(xué)高考第22題入手,分析第2)小題第②問(wèn)的3種解法,嘗試從本質(zhì)上探究該題的背景,以期為平時(shí)的復(fù)習(xí)和教學(xué)提供參考.

        1 真題呈現(xiàn)

        1)求f(x)的單調(diào)區(qū)間.

        2)已知a,b∈R,曲線y=f(x)上不同的3個(gè)點(diǎn)(x1,f(x1)),(x2,f(x2)),(x3,f(x3))處的切線都經(jīng)過(guò)點(diǎn)(a,b).證明:

        ②若0

        (注:e=2.718 28……是自然對(duì)數(shù)的底數(shù).)

        (2022年浙江省數(shù)學(xué)高考試題第22題)

        該題結(jié)構(gòu)簡(jiǎn)潔、精煉,但所蘊(yùn)涵的思想?yún)s很豐富,求解難度也極大.主要考查導(dǎo)數(shù)在求解函數(shù)切線方程、判斷函數(shù)的單調(diào)性以及函數(shù)與不等式的綜合問(wèn)題中的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力、化歸與轉(zhuǎn)化的思想,貫穿了數(shù)學(xué)運(yùn)算和邏輯推理的核心素養(yǎng).

        2 解法探究

        第1)小題難度不大,主要考查函數(shù)的單調(diào)區(qū)間,此處不再討論.第2)小題的第①問(wèn)主要考查切線方程,從方程有3個(gè)不同的解的角度入手,證明不等式,難度適中.第②問(wèn)看上去結(jié)構(gòu)比較復(fù)雜,涉及的變量較多,主要考查零點(diǎn)范圍估計(jì)問(wèn)題,難度較大.以下筆者將從減元的視角出發(fā),介紹第②問(wèn)的3種解法.

        分析由x1,x2,x3滿足y=f′(xi)(x-xi)+f(xi),知x1,x2,x3是f′(x)(x-a)-f(x)+b=0的3個(gè)正實(shí)數(shù)根,即

        因?yàn)閍

        0

        于是

        上式等價(jià)于

        由g(t1)=g(t3)=0,得

        t1>t3,

        從而φ(x)在(1,+∞)上單調(diào)遞增,于是

        可知h(x)在(0,1)上單調(diào)遞增,故h(x)

        兩式相減,得

        化簡(jiǎn)得

        要證

        只需證

        故只需證

        從而

        (1)

        分析y=g(t)的圖像可知:對(duì)于給定的m∈(0,1),當(dāng)b增大時(shí),g(t)圖像下移,t1,t3均減小;反之當(dāng)b減小時(shí),g(t)圖像上移,t1,t3均增大.

        從而φ(x)在(0,+∞)上單調(diào)遞增.又φ(0)=0,故引理得證.

        m(t1-1)2=2(t1-1-lnt1),

        由引理1可知

        解得

        從而

        再證明式(1)的左邊:只需證明極端情況,此時(shí)

        只需證

        由引理1可知

        1)當(dāng)0

        2)當(dāng)x>1時(shí),

        解法3是本題的“妙手”,可遇不可求.要想下出真正的“妙手”,必須在平日有一定的經(jīng)驗(yàn)積累和反思總結(jié),形成較為完善的知識(shí)體系,唯有這樣,才有可能完成真正卓越的“妙手”.

        3 試題探源

        “問(wèn)渠哪得清如許,為有源頭活水來(lái)”.原題源于何處,翻翻我們學(xué)的教材、做做歷年高考真題就知道了.事實(shí)上,教材和歷年高考真題是高考試題的重要來(lái)源,是數(shù)學(xué)知識(shí)的“生長(zhǎng)地”,是高考復(fù)習(xí)的“根據(jù)地”,是高考試題的“策源地”.筆者查閱了相關(guān)資料,發(fā)現(xiàn)本題和2014年全國(guó)數(shù)學(xué)高考Ⅱ卷理科第21題有異曲同工之妙.

        例2已知函數(shù)f(x)=ex-e-x-2x.

        1)討論f(x)的單調(diào)性;

        2)設(shè)g(x)=f(2x)-4bf(x),當(dāng)x>0時(shí),g(x)>0,求b的最大值;

        (2014年全國(guó)數(shù)學(xué)高考Ⅱ卷理科試題第21題)

        在例1第②問(wèn)的證明過(guò)程中,涉及對(duì)lnx的有理形式的刻畫,因?yàn)楹瘮?shù)f(x)=lnx在x=0處無(wú)意義,所以轉(zhuǎn)而研究g(x)=ln(x+1)的性質(zhì).在高等數(shù)學(xué)中,我們經(jīng)常會(huì)借助泰勒展開(kāi),得到麥克勞林公式

        經(jīng)計(jì)算可得:

        1)當(dāng)λ≤0時(shí),恒有

        令a=x2,b=1,則

        (2)

        可以看出不等式結(jié)構(gòu)變得比較復(fù)雜了,因此我們的討論停留于此.

        2λ2-4λm(m+2)+m(3m2+4m-1)≥0.

        令φ(m)=2λ2-4λm(m+2)+m(3m2+4m-1),則

        φ′(m)=(m+1)(9m-8λ-1).

        φ′(m)=(m+1)(9m-8λ-1)<0,

        至此,我們完成了命題意圖的深度挖掘.

        4 教學(xué)啟示

        高考以“基礎(chǔ)性、綜合性、應(yīng)用性、創(chuàng)新性”為考查要求,評(píng)價(jià)學(xué)生素養(yǎng)的達(dá)成程度[3].例1作為2022年浙江省數(shù)學(xué)高考試題的壓軸題,以高中數(shù)學(xué)常見(jiàn)的函數(shù)為素材,以常用的方法為手段構(gòu)造函數(shù),并利用這些函數(shù)的性質(zhì)和特點(diǎn)進(jìn)一步研究問(wèn)題.將函數(shù)、導(dǎo)數(shù)、不等式等知識(shí)有機(jī)結(jié)合,考查學(xué)生靈活應(yīng)用知識(shí)解決復(fù)雜問(wèn)題的能力,對(duì)邏輯推理能力、運(yùn)算能力有較高的要求,有效區(qū)分考生的思維層次,為高校選拔優(yōu)秀人才服務(wù).縱觀歷年高考?jí)狠S題,從來(lái)不是偏深的難題、怪題,而是體現(xiàn)觸類旁通的靈活性和變通性.基于高考的教學(xué)導(dǎo)向,我們?cè)谄綍r(shí)的解題教學(xué)中也要更新理念,努力尋求合理的教學(xué)策略,即夯實(shí)雙基,引導(dǎo)思考,培養(yǎng)能力,提升素養(yǎng).

        猜你喜歡
        浙江省素養(yǎng)數(shù)學(xué)
        《初心》
        必修上素養(yǎng)測(cè)評(píng) 第四測(cè)
        必修上素養(yǎng)測(cè)評(píng) 第三測(cè)
        必修上素養(yǎng)測(cè)評(píng) 第八測(cè)
        必修上素養(yǎng)測(cè)評(píng) 第七測(cè)
        浙江省第一測(cè)繪院
        2018年浙江省高中數(shù)學(xué)競(jìng)賽
        2017年浙江省高中數(shù)學(xué)競(jìng)賽
        我為什么怕數(shù)學(xué)
        新民周刊(2016年15期)2016-04-19 18:12:04
        數(shù)學(xué)到底有什么用?
        新民周刊(2016年15期)2016-04-19 15:47:52
        超碰人人超碰人人| h视频在线播放观看视频| 欧美老妇交乱视频在线观看 | av影院手机在线观看| 日韩精品无码一本二本三本色| 国产乱子伦精品免费无码专区 | 中文亚洲成a人片在线观看| 综合激情五月三开心五月| 欧美最猛黑人xxxx| 国产肉体ⅹxxx137大胆| 91日本在线精品高清观看| 久久精品国产亚洲av天美| 欧美大片aaaaa免费观看| 夜色阁亚洲一区二区三区| 国产一区二区三区观看视频| 两人前一后地插着她丰满| 天天躁日日躁狠狠躁欧美老妇| 91精品手机国产在线能| 一本久久a久久精品综合| av免费播放网站在线| a级毛片成人网站免费看| 永久免费看免费无码视频| 久久影院最新国产精品| 四虎影视久久久免费观看| 亚洲av无码片一区二区三区| 亚洲精品二区在线观看| 国产一区二区三区内射| 欧美金发尤物大战黑人| 波多野结衣一区二区三区视频| 自拍偷区亚洲综合激情| 欧美69久成人做爰视频| 国产成人久久精品二区三区牛 | 国产精品白浆一区二区免费看 | 久久aⅴ无码av高潮AV喷| 不卡一本av天堂专区| 帮老师解开蕾丝奶罩吸乳视频 | 国产亚洲精品日韩综合网| 亚洲精品中文字幕不卡| 亚洲精品无码久久久影院相关影片| 国产成人精品三级麻豆| 亚洲情精品中文字幕99在线|