鐘林
一、數(shù)學(xué)章節(jié)復(fù)習(xí)課現(xiàn)狀
結(jié)合我校教師和學(xué)生的反饋,目前章節(jié)復(fù)習(xí)課存在以下問(wèn)題尚得不到很好解決:學(xué)生的復(fù)習(xí)意識(shí)較弱,沒(méi)有科學(xué)的復(fù)習(xí)方法;復(fù)習(xí)課容量較大且較枯燥,老師講得多,學(xué)生參與少,學(xué)習(xí)積極性不高,課上學(xué)生和老師的思維互動(dòng)較小,學(xué)生主動(dòng)思維量不夠;學(xué)生不清楚知識(shí)之間的聯(lián)系,將知識(shí)系統(tǒng)化結(jié)構(gòu)化的能力弱,對(duì)數(shù)學(xué)思想方法的感悟不夠,遷移能力低,較難提升解決綜合問(wèn)題的能力;學(xué)生對(duì)解題方法的歸納總結(jié)能力弱。
而“引悟”式教學(xué)重視教師“引”和學(xué)生“悟”的過(guò)程,強(qiáng)調(diào)以學(xué)生為主體。因此在我?!耙颉笔浇虒W(xué)實(shí)踐背景下,研究章節(jié)復(fù)習(xí)課的具體有效的復(fù)習(xí)策略和教學(xué)思路。
二、“引悟”式章節(jié)復(fù)習(xí)課案例
(一)引入悟境(以二次函數(shù)上點(diǎn)的表示作為第一臺(tái)階引入)
例1:如圖,已知拋物線 與 軸交點(diǎn)A、點(diǎn)B,與 軸交于點(diǎn)C,點(diǎn)P是拋物線上一點(diǎn).
(1)設(shè)點(diǎn)P的橫坐標(biāo)為 ,則點(diǎn)P的坐標(biāo)可以表示為;
(2)過(guò)點(diǎn)P作PH⊥ 軸于點(diǎn)H,設(shè)點(diǎn)H的橫坐標(biāo)為 ,則點(diǎn)P的坐標(biāo)可
表示為;
(3)過(guò)點(diǎn)P作PQ∥ 軸交直線BC于點(diǎn)Q,設(shè)P點(diǎn)的橫坐標(biāo)為 ,則點(diǎn)Q的坐標(biāo)可表示為;
(4)設(shè)點(diǎn)P的橫坐標(biāo)為 ,將拋物線先向上平移2個(gè)單位長(zhǎng)度,再向左平移3個(gè)單位長(zhǎng)度,則P點(diǎn)的對(duì)應(yīng)點(diǎn)P的坐標(biāo)可表示為;
(5)設(shè)點(diǎn)P的橫坐標(biāo)為 ,若點(diǎn)Q與點(diǎn)P關(guān)于拋物線的對(duì)稱軸對(duì)稱,則點(diǎn)Q的坐標(biāo)可表示為;
(6)如圖,若點(diǎn)P為直線BC上方拋物線上的一點(diǎn)(P點(diǎn)不與點(diǎn)B、C重合),過(guò)點(diǎn)P作PH⊥ 軸于點(diǎn)H,交線段BC于點(diǎn)Q
①當(dāng)點(diǎn)Q為線段BC的中點(diǎn)時(shí),則點(diǎn)Q的坐標(biāo)為,點(diǎn)P的坐標(biāo)為;
②當(dāng)點(diǎn)Q為線段PH的中點(diǎn)時(shí),則點(diǎn)Q的坐標(biāo)為;
③當(dāng)點(diǎn)Q為線段PH的三等分點(diǎn)時(shí),則點(diǎn)Q的坐標(biāo)為;
(二)引領(lǐng)悟識(shí)(通過(guò)點(diǎn)來(lái)表示線段,作為第二臺(tái)階引進(jìn))
例2:(1)如圖,若點(diǎn)P為直線BC上方拋物線上的一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),過(guò)點(diǎn)P作PM⊥BC,交BC于點(diǎn)M,過(guò)點(diǎn)M作 軸的平行線EF,交 軸于點(diǎn)F,PE⊥EF,設(shè)點(diǎn)P的橫坐標(biāo)為 ,點(diǎn)M的橫坐標(biāo)為 ,則PE的長(zhǎng)為,BF的長(zhǎng)為,ME的長(zhǎng)為,MF的長(zhǎng)為.(可用含 、 的式子表示)
(2)如圖,已知拋物線 ,若點(diǎn)P是第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作PQ∥ 軸交直線BC于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為 ,則PQ的長(zhǎng)可以用含 的式子表示為;線段PQ的最大值為,此時(shí)P點(diǎn)的坐標(biāo)為.
(三)引導(dǎo)悟技(通過(guò)線段來(lái)表示出三角形的面積,作為第三臺(tái)階)
例3:如圖,已知拋物線 與 軸交點(diǎn)A、點(diǎn)B,與 軸交于點(diǎn)C,連接BC,點(diǎn)P是線段BC上方拋物線上的點(diǎn),過(guò)點(diǎn)P作PH⊥ 軸于點(diǎn)H,交BC于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為 。ΔPCB面積可以表示為,當(dāng)ΔPCB面積等于ΔABC面積一半時(shí),P點(diǎn)的坐標(biāo)為,ΔPCB面積的最大值為.
(四)引申悟道(利用真題對(duì)剛剛的內(nèi)容進(jìn)行針對(duì)性練習(xí),作為第四臺(tái)階)
1.如圖,已知拋物線 與 軸交點(diǎn)A、點(diǎn)B,與 軸交于點(diǎn)C,連接BC,點(diǎn)P是線段BC上方拋物線上的點(diǎn),過(guò)點(diǎn)P作PH⊥ 軸于點(diǎn)H,交BC于點(diǎn)Q,若過(guò)點(diǎn)P作P作PM⊥BC,交BC于點(diǎn)M,求PM的最大值
2.在平面直角坐標(biāo)系中,已知拋物線 與x軸的交于 , 兩點(diǎn),與y軸交于 .
(1)求拋物線的函數(shù)解析式;
(2)如圖①,點(diǎn)D為第四象限拋物線上一點(diǎn),連接AD,BC交于E,連接BD,記ΔBDE的面積為 ,ΔABE的面積為 ,求 的最大值;
三、教學(xué)設(shè)計(jì)反思
上復(fù)習(xí)課時(shí)需要對(duì)所學(xué)的零碎知識(shí)點(diǎn)進(jìn)行梳理、歸納、整合,從不同角度的分類, 弄清它們的來(lái)龍去脈,溝通其縱橫聯(lián)系,如果說(shuō)新授課是“畫(huà)龍”,復(fù)習(xí)課則是“點(diǎn)睛”。在進(jìn)行專題題型復(fù)習(xí)時(shí),傳統(tǒng)的辦法,往往是以教師直接評(píng)講,然后學(xué)生練習(xí)題目這樣進(jìn)行。這種填鴨式的復(fù)習(xí)其實(shí)不利于學(xué)生掌握題目中知識(shí)點(diǎn)的銜接,也讓很多學(xué)生并不能真正掌握其解題方法。但在這一教學(xué)設(shè)計(jì)中我們嘗試將解題的思路拆分成一層一層的小題,層層引導(dǎo)學(xué)生,讓學(xué)生感悟到二次函數(shù)中的綜合性問(wèn)題實(shí)質(zhì)就是利用設(shè)點(diǎn)坐標(biāo),再表示線段長(zhǎng),通過(guò)幾何方法找到線段之間的關(guān)系,從而建立式子得到最后結(jié)果。