陳繼剛
(四川省涼山州會理縣黎溪鎮(zhèn)河口小學(xué) 四川 會理 615100)
1.1 激發(fā)學(xué)習(xí)動機(jī)的教學(xué)策略。興趣是學(xué)習(xí)最好的老師。在新課一開始教學(xué)時(shí),教師就要把抽象的計(jì)算放置于具體的情境中,讓學(xué)生將課本與生活實(shí)際聯(lián)系起來。比如:小明2/3小時(shí)行走了2千米,小紅5/12小時(shí)行走了5/6千米,誰走的快些?先通過線段圖直觀感受,再通過計(jì)算結(jié)果的對比“誰走得更快一些”的課堂設(shè)計(jì),提煉出要計(jì)算的數(shù)學(xué)問題,從中激發(fā)學(xué)生解決問題的需求與欲望,培養(yǎng)學(xué)生的學(xué)習(xí)興趣。接下來,讓學(xué)生根據(jù)已有學(xué)習(xí)經(jīng)驗(yàn)初步猜想“一個(gè)數(shù)除以分?jǐn)?shù)”的計(jì)算方法,為學(xué)生提供開放的、富有挑戰(zhàn)性的問題情境,從而激發(fā)學(xué)生的學(xué)習(xí)動機(jī)。
1.2 自主探索的教學(xué)策略。對于本課的教學(xué)重點(diǎn)和難點(diǎn)——算理、算法的教學(xué),教師要恰當(dāng)?shù)剡\(yùn)用自主探索的教學(xué)策略:先在教學(xué)中打下倒數(shù)的引入,落實(shí)倒數(shù)的具體用法,即將一個(gè)數(shù)的分子和分母互換位置。如果一個(gè)數(shù)沒有分母,可以將其分母直接看作為“1”的分?jǐn)?shù),來尋找倒數(shù)。計(jì)算整數(shù)除以分?jǐn)?shù)2÷2/3的教學(xué)時(shí),讓學(xué)生在小組里借助線段圖來分析:“怎樣才能求出小明的速度?”明確探索的目標(biāo)和要求,初步感受算理,總結(jié)算法,從實(shí)際的生活中理解分?jǐn)?shù)除法的意義和運(yùn)用。分?jǐn)?shù)除以分?jǐn)?shù)(5/6÷5/12)的教學(xué),通過再次組織引導(dǎo)學(xué)生自主探究:“總結(jié)出的方法是不是對其他除數(shù)是分?jǐn)?shù)的除法也同樣適用?”深入理解算理,掌握算法。如此設(shè)計(jì),用類似科學(xué)研究的方式,讓學(xué)生真實(shí)的經(jīng)歷知識的探索、發(fā)現(xiàn)過程,從而培養(yǎng)和提高學(xué)生的學(xué)習(xí)能力。
1.3 獨(dú)立思考與合作交流相結(jié)合的教學(xué)策略。在自主探索的過程中,教師要先引導(dǎo)學(xué)生獨(dú)立思考。獨(dú)立思考對于學(xué)生學(xué)習(xí)數(shù)學(xué)來說,有其至關(guān)重要的意義。學(xué)生的成長屬于個(gè)體成長。個(gè)體成長的過程在于獨(dú)立解決問題中得到發(fā)展。在教學(xué)中讓學(xué)生獨(dú)立探索有一定難度的問題,可激發(fā)學(xué)生攻堅(jiān)克難的思想,個(gè)人面對困難的勇氣,如果探索成功,學(xué)生必然可以從中收獲探索過程的幸福感。如若一個(gè)人探索不下去了,遇到的這種或那種困難,這時(shí)師生間、學(xué)生與學(xué)生之間的相互啟發(fā)和激勵就尤為重要,在合作學(xué)習(xí)中來共同討論完成。給予學(xué)生在有所思索的基礎(chǔ)上,組織他們在小組里進(jìn)行合作探究,交流想法,為學(xué)生自主解決問題提供了幫助與支持,同時(shí)培養(yǎng)了學(xué)生協(xié)作意識與能力。讓學(xué)生在這個(gè)過程中既學(xué)習(xí)了知識,同時(shí)又能讓學(xué)生知道當(dāng)自己面對困難無法解決時(shí),可以尋求他人給予幫助的意識,增進(jìn)學(xué)生之間的友誼之花,從而有利于班集體的管理。這種一舉多得的做法,值得實(shí)踐和推廣。
在教學(xué)中培養(yǎng)學(xué)生良好的數(shù)學(xué)思維能力是數(shù)學(xué)教學(xué)要達(dá)到的重要教學(xué)目標(biāo)之一。在教學(xué)中,教師要結(jié)合教學(xué)內(nèi)容自然滲透了數(shù)形結(jié)合、轉(zhuǎn)化等數(shù)學(xué)思想方法,在潛移默化中進(jìn)行熏陶,逐步達(dá)到舉一反三的目的。
2.1 “轉(zhuǎn)化”的思想方法。在分?jǐn)?shù)除法的教學(xué)過程中,把除法轉(zhuǎn)化成乘法計(jì)算是教學(xué)的一個(gè)重難點(diǎn),對于學(xué)生來說也是思想認(rèn)識上的一次質(zhì)的飛躍。在分析、推導(dǎo)過程中教師要不斷引導(dǎo)學(xué)生發(fā)現(xiàn)“將2÷2/3轉(zhuǎn)化為2÷2×3或2×1/2×3,表示的是先求什么再求什么,進(jìn)而轉(zhuǎn)化為2×3/2的依據(jù)又是什么”,使學(xué)生掌握知識之間的內(nèi)在聯(lián)系,并把新知納入融入到已有的認(rèn)知結(jié)構(gòu)的過程中,自然而然地感受到每一步的轉(zhuǎn)化都是新、舊知識間的傳遞、方法的轉(zhuǎn)化,感受轉(zhuǎn)化數(shù)學(xué)知識間轉(zhuǎn)化的美妙與魅力,從而激發(fā)學(xué)生對于數(shù)學(xué)知識學(xué)習(xí)的興趣。
2.2 “數(shù)形結(jié)合”的思想方法。在教學(xué)分?jǐn)?shù)除法的時(shí)候,教師要注重通過圖形語言揭示分?jǐn)?shù)除法計(jì)算過程的幾何意義。在教學(xué)中,教師要有意識的引導(dǎo)學(xué)生借助于線段圖,將“圖”與“式”相對進(jìn)行解釋、分析、說理,將抽象的知識具體化,利于學(xué)生在理解算理的過程中,同時(shí)感受到“數(shù)形結(jié)合”在解決數(shù)學(xué)問題中的便捷性、科學(xué)性的優(yōu)勢。
2.3 計(jì)算準(zhǔn)確性的提高。在小學(xué)數(shù)學(xué)教學(xué)中,如何提高計(jì)算正確率是一個(gè)不可忽視的問題,尤其是許多小學(xué)生進(jìn)入中高年級后,計(jì)算的正確率大大下降。多年來,常常聽到一些教師說這樣的話:“我班的學(xué)生太粗心了,計(jì)算題又被扣掉了不少分,這么簡單的題目都做錯了,氣死我了!”每當(dāng)聽到這樣的話,我就會反思學(xué)生計(jì)算錯誤的原因到底是什么?怎樣才能提高學(xué)生計(jì)算的正確率呢?一、分析錯誤原因,提高計(jì)算正確率根據(jù)學(xué)生作業(yè)情況分析,學(xué)生出現(xiàn)計(jì)算錯誤的原因主要有以下幾點(diǎn):計(jì)算法則沒能正確掌握發(fā)生錯誤的僅占一小部分,而書寫馬虎、計(jì)算不認(rèn)真的占大多數(shù)。比如,橫式上是加號到了豎式就變成了減號,把數(shù)字“8”看成數(shù)字“3”,豎式數(shù)位沒有對齊等。更有些學(xué)生計(jì)算時(shí)不論數(shù)的大小,能口算的全口算,不能口算的,也懶于動手,憑空口算,思想上不重視,導(dǎo)致計(jì)算上經(jīng)常出錯。有些優(yōu)等生學(xué)習(xí)過于自信,計(jì)算后從不檢驗(yàn);中等生只想盡快完成作業(yè),根本就不想檢驗(yàn);成績差的學(xué)生大多數(shù)等到老師批改后,有錯誤再檢查糾正,這樣便養(yǎng)成了計(jì)算后不檢驗(yàn)的習(xí)慣,從而影響了計(jì)算的正確率。
總之,教師在教學(xué)數(shù)學(xué)的過程中,要關(guān)注數(shù)學(xué)的本質(zhì),讓學(xué)生經(jīng)歷了一個(gè)“猜測——驗(yàn)證——推廣——應(yīng)用”的數(shù)學(xué)學(xué)習(xí)全過程。學(xué)生在學(xué)習(xí)的過程中不僅學(xué)得積極主動,理解所學(xué)的數(shù)學(xué)知識,更重要的是在這一學(xué)習(xí)過程中,學(xué)生能受到了良好數(shù)學(xué)學(xué)習(xí)方式的培養(yǎng),形成良好的認(rèn)知結(jié)構(gòu),既關(guān)注了過程性目標(biāo)的培養(yǎng),又注重了雙基目標(biāo)的落實(shí),有效促進(jìn)了學(xué)生的發(fā)展。