亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        解壓軸題之:以形引領 分段解決

        2019-11-25 03:58:06許銀伙楊蒼洲
        數(shù)理化解題研究 2019年31期
        關(guān)鍵詞:極小值極大值極值

        許銀伙 楊蒼洲

        (1.福建省泉州外國語中學 362000;2.福建省泉州第五中學 362000)

        壓軸題中有時出現(xiàn)三角函數(shù)與對數(shù)函數(shù)或指數(shù)函數(shù)結(jié)合的不等式或求零點問題,這類問題通常綜合程度較高,整體解決難度較大.可以利用圖形直觀引領,幫助尋找思路,結(jié)合三角函數(shù)的周期性、有界性和單調(diào)性,分段討論,讓問題獲得圓滿的解決.

        例題1(2019年全國理科卷Ⅰ)已知函數(shù)f(x)=sinx-ln(1+x),f′(x)為f(x)的導數(shù).證明:

        (Ⅱ)f(x)有且僅有2個零點.

        (Ⅱ)分析:f(x)=0,即sinx=ln(1+x),作函數(shù)y=sinx和y=ln(1+x)圖象,由圖看出:當x∈(-1,0)時,sinx>ln(1+x),即f(x)>0;

        (4)當x∈[e-1,+)時,f(x)=sinx-ln(1+x)<1-1=0恒成立,無零點.

        綜上所述:f(x)有且僅有2個零點.

        反思與評注1.函數(shù)f(x)中含有兩個超越函數(shù)sinx和ln(1+x),都很容易分別作出函數(shù)圖象,因此可以借助圖象幫助尋找解決思路.

        2.客觀題中的零點問題,基本上都是用數(shù)形結(jié)合解決的,對于主觀題可以借助數(shù)形結(jié)合幫助尋找思路,然后把解答書寫完整.

        (Ⅰ)求函數(shù)f(x)的解析式;

        (Ⅱ)判斷函數(shù)f(x)在(0,π)內(nèi)的零點個數(shù),并加以證明.

        (Ⅱ)函數(shù)f(x)在(0,π)內(nèi)的零點個數(shù)為2.

        綜上所述:函數(shù)f(x)在(0,π)內(nèi)的零點個數(shù)為2.

        綜上所述:函數(shù)f(x)在(0,π)內(nèi)的零點個數(shù)為2.

        反思與評注1.問題(Ⅱ)的方法一和方法二都是分區(qū)間解決,但方法一借助圖象引領,思路更明確.

        2.相比例1,本題利用圖象可以直觀看出有兩個零點,但解答過程需要完整規(guī)范地書寫.

        3.從命題的角度看,例1比例2優(yōu)秀,例2借助圖象可以毫無懸念地獲得準確答案,例1不通過計算無法說清楚.

        (Ⅰ)若函數(shù)f(x)的最小值為0,求a的值;

        (Ⅱ)證明:ex+(lnx-1)sinx>0.

        分析與解(Ⅰ)a=1.

        (Ⅱ)分析:不等式ex+(lnx-1)sinx>0中含有三個超越函數(shù),它們的公共允許值范圍是(0,+).ex∈(0,+),函數(shù)sinx具有周期性,sinx∈[-1,1],當x∈(0,e)時,lnx-1<0;當x∈(e,+)時,lnx-1>0.當x足夠大時, ex函數(shù)值會指數(shù)爆炸,lnx-1的函數(shù)值是緩慢增長,所以當x足夠大時,可以把sinx用-1代入嘗試.因此證明的難點是當x處于0的右側(cè)附近時如何處理,考慮到當x∈(0,+)時,有sinx

        證明令g(x)=ex+(lnx-1)sinx,x∈(0,+).

        (2)當x∈[e,+)時,lnx-1≥0,sinx∈[-1,1],所以g(x)≥ex-(lnx-1).

        由ex-x>1對x>0恒成立可得:x>ln(x+1)對x>0恒成立,所以lnx(x+1)-(x-2)=3>0.

        綜上所述:ex+(lnx-1)sinx>0恒成立.

        反思與評注1. 當x∈(0,e)時,lnx-1<0,sinx∈[-1,1],若利用g(x)>ex+lnx-1,取x=e-2,ex+lnx-10.事實上,當x>0且x→0時,ex→1,(lnx-1)→-,所以(lnx-1)必須乘以無限趨向于0的數(shù)才可以.

        2.本題的解決對觀察與分析,動手實踐,基礎知識以及常用結(jié)論的應用能力有較高要求.

        例題4 (2017年山東理科卷)已知函數(shù)f(x)=x2+2cosx,g(x)=ex(cosx-sinx+2x-2),其中e=2.71828…是自然對數(shù)的底數(shù).

        (Ⅰ)求曲線y=f(x)在點(π,f(π))處的切線方程;

        (Ⅱ)令h(x)=g(x)-af(x)(a∈R),討論h(x)的單調(diào)性,并判斷有無極值,有極值時求出極值.

        分析與解(Ⅰ) 切線方程為:2πx-y-π2-2=0.

        (Ⅱ)h(x)=g(x)-af(x),即h(x)=ex(cosx-sinx+2x-2)-a(x2+2cosx),可得:h′(x)=2(x-sinx)(ex-a)(x∈R),且h′(0)=0.令φ(x)=x-sinx,則φ′(x)≥0,φ(x)在x∈(-,+)單調(diào)遞增, 又φ(0)=0,則當x<0時,φ(x)<0,x-sinx<0;當x>0時,x-sinx>0.

        (1)當a≤0時,ex-a>0對x∈R恒成立.可得:當x<0時,h′(x)<0;當x>0時,h′(x)>0.函數(shù)h(x)在(-,0)單調(diào)遞減,在(0,+)單調(diào)遞增,h(x)有極小值h(0)=-1-2a,無極大值.

        (2)當a>0時,由h′(x)=0得:x1=0和x2=lna.

        ①當lna<0,即00解得:x0;由h′(x)<0解得:lna

        ②當lna>0,即a>1時,利用右圖4,由h′(x)>0得:x<0或x>lna;由h′(x)<0得:0

        ③當lna=0,即a=1時,h′(x)≥0(當且僅當x=0時取等號),h(x)在(-,+)單調(diào)遞增,h(x)無極值.

        反思與評注1. 由h′(x)=2(x-sinx)(ex-a)討論h(x)的單調(diào)區(qū)間,首先是求出h′(x)的零點,其中φ(x)=x-sinx單調(diào)遞增,且φ(0)=0是常用結(jié)論,應該記住.

        2. 當a>0時,分別找出y=x-sinx和y=ex-a的零點,利用它們都是遞增函數(shù),作出草圖可快速求出h′(x)=2(x-sinx)(ex-a)正負值的符號區(qū)間,化一為二,形象直觀.

        猜你喜歡
        極小值極大值極值
        極值點帶你去“漂移”
        極值點偏移攔路,三法可取
        一道抽象函數(shù)題的解法思考與改編*
        構(gòu)造可導解析函數(shù)常見類型例析*
        一類“極值點偏移”問題的解法與反思
        極小值原理及應用
        科技風(2018年19期)2018-05-14 02:18:35
        基于龐特里亞金極小值原理的多運載體有限時間編隊控制
        自動化學報(2017年1期)2017-03-11 17:31:08
        基于小波模極大值理論的勵磁涌流新判據(jù)研究
        基于經(jīng)驗模態(tài)分解的自適應模極大值去噪方法
        行人檢測中非極大值抑制算法的改進
        亚洲综合网国产精品一区| 音影先锋色天堂av电影妓女久久| 精品亚亚洲成av人片在线观看| 日本一区二区三区四区高清不卡| 国产伦精品一区二区三区妓女| 免费无码成人av在线播| 一区二区三无码| 中文字幕在线乱码亚洲| 日本护士xxxx视频| 亚洲国产成人精品无码区在线观看 | 成人激情视频一区二区三区| 欲女在线一区二区三区| 亚洲成人色区| 国产精品偷伦免费观看的| 日本伦理视频一区二区| 亚洲国产婷婷香蕉久久久久久 | 成人伊人亚洲人综合网站222| av日本一区不卡亚洲午夜| av日韩高清一区二区| 亚瑟国产精品久久| 亚洲AV伊人久久综合密臀性色| 日日麻批视频免费播放器| 亚洲精品无码精品mv在线观看| 亚洲日韩v无码中文字幕| 亚洲精品成人网线在线播放va| 国产一区二区视频免费| 久久精品国产精品青草 | 国产在视频线精品视频二代| 人妖啪啪综合av一区| 免费va国产高清大片在线| 99热在线精品播放| 国产精品三级国产精品高| 亚洲综合天堂av网站在线观看| 秋霞鲁丝片av无码| 亚洲一区丝袜美腿在线观看| 少妇免费av一区二区三区久久 | 亚洲av一区二区三区色多多| 中国农村妇女hdxxxx| 久久免费精品国产72精品剧情 | 人妻少妇av中文字幕乱码免费| 澳门蜜桃av成人av|